JPH0792140A - Method for evaluating fatigue strength of steel member - Google Patents

Method for evaluating fatigue strength of steel member

Info

Publication number
JPH0792140A
JPH0792140A JP24009593A JP24009593A JPH0792140A JP H0792140 A JPH0792140 A JP H0792140A JP 24009593 A JP24009593 A JP 24009593A JP 24009593 A JP24009593 A JP 24009593A JP H0792140 A JPH0792140 A JP H0792140A
Authority
JP
Japan
Prior art keywords
frequency
steel material
output voltage
exciting
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24009593A
Other languages
Japanese (ja)
Inventor
Akihiko Sugata
晃彦 菅田
Kazuo Uno
和夫 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP24009593A priority Critical patent/JPH0792140A/en
Publication of JPH0792140A publication Critical patent/JPH0792140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To provide a method for evaluating the fatigue strength of steel member in which the accuracy of evaluation can be enhanced by suppressing or avoiding the disturbance factors in the vicinity of the surface of steel member. CONSTITUTION:Before a steel member 1 is subjected to shot-blasting, exciting current of frequency f1 is fed to the exciting coil 211 of a sensor 21 to establish a magnetic loop M connecting the machining face 11 of the steel member 1 and a core 210 and then an induced output voltage V01 is determined. The exciting frequency is then switched to f2 and an induced output voltage V02 is determined. Subsequently, a difference V0=alphaXV01-V02is determined. After the steel member 1 is subjected to shot-blasting, an output voltage V11 induced by the exciting current of frequency f1 is determined. Similarly, an output voltage V12 induced by the exciting current of frequency f2 is determined. Subsequently, a difference V1=alphaXV11-V12is determined, where alpha is a correction coefficient. Increase of residual compressive stress and fatigue strength are grasped from (V1-V0) and (V1/V0).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋼材の疲労強度の評価方
法に関する。この評価方法は、例えば歯車、車軸等の部
品に用いられる鋼材にショットピーニング処理を行った
場合における疲労強度を評価する際に適用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating fatigue strength of steel materials. This evaluation method can be applied, for example, when evaluating the fatigue strength in the case where shot peening treatment is performed on steel materials used for parts such as gears and axles.

【0002】[0002]

【従来の技術】従来より鋼材の非破壊選別方法として、
鋼材の硬さと保磁力との間に一定の関係があることを利
用した装置が知られている(特開昭48−43954号
公報)。この装置では、各硬さに対応する保磁力を予め
求めておき、直流電流を用いて鋼材を磁気的に飽和さ
せ、しかる後に磁気飽和に達したときの磁場とは逆方向
に磁場を増加させることにより、磁化が0となる保磁力
を測定し、保磁力から硬さを評価する方法である。しか
しながらこの方法では、磁気飽和に到達させる磁場と、
磁化を0にする磁場とを鋼材に加える必要があり、操作
性に劣ることから生産ラインへの適用が困難であった。
2. Description of the Related Art Conventionally, as a nondestructive screening method for steel materials,
An apparatus is known that utilizes the fact that there is a certain relationship between the hardness of steel and the coercive force (Japanese Patent Laid-Open No. 48-43954). In this device, the coercive force corresponding to each hardness is obtained in advance, the direct current is used to magnetically saturate the steel material, and then the magnetic field is increased in the direction opposite to the magnetic field when magnetic saturation is reached. Thus, the coercive force at which the magnetization becomes 0 is measured, and the hardness is evaluated from the coercive force. However, this method requires a magnetic field to reach magnetic saturation,
It was necessary to apply a magnetic field to magnetize the steel material, which was inferior in operability and was difficult to apply to the production line.

【0003】ところで一般的に鋼材の疲労強度の向上の
面では、鋼材の最表面から所定の深さ(例えば100μ
m)の域に、圧縮残留応力のピーク値が存在することが
好ましいとされている。故に、実際の製造ラインにおい
ても、圧縮残留応力のピーク値に基づき、鋼材の疲労強
度の良否を評価することが行われている。本出願人は、
鋼材のうち常磁性体である残留オーステナイトが加工誘
起変態して強磁性体であるマルテンサイトとなった場
合、鋼材の透磁率が変化するとともに変態に伴う体積膨
張が生じるので、この透磁率の変化値と圧縮残留応力と
が相関関係にあることに着目し、近年、以下の鋼材の疲
労強度の非破壊評価方法を開発した。即ちこの方法は、
残留オーステナイトをもつ加工前の鋼材の透磁率を検出
する加工前透磁率検出工程と、鋼材の加工後における透
磁率を検出する加工後透磁率検出工程と、検出された加
工前透磁率と加工後透磁率との変化値から圧縮残留応力
を算出する算出工程とからなる測定方法である(平成3
年特許願312312号)。
Generally, in terms of improving the fatigue strength of steel, a predetermined depth (for example, 100 μm) from the outermost surface of the steel is used.
It is said that it is preferable that the peak value of the compressive residual stress exists in the region m). Therefore, even in an actual production line, the quality of fatigue strength of a steel material is evaluated based on the peak value of the compressive residual stress. The applicant is
When retained austenite, which is a paramagnetic material in steel, undergoes work-induced transformation to martensite, which is a ferromagnetic material, the permeability of the steel changes and volume expansion occurs due to the transformation. Focusing on the correlation between the value and the compressive residual stress, in recent years, the following non-destructive evaluation methods for fatigue strength of steel materials have been developed. That is, this method
Permeability detection step before processing to detect the magnetic permeability of the steel material with residual austenite before processing, post-processing magnetic permeability detection step to detect the magnetic permeability of the steel material after processing, detected magnetic permeability before processing and after processing A measuring method comprising a calculation step of calculating the compressive residual stress from the change value with the magnetic permeability (1991).
Annual patent application 312312).

【0004】この方法では、鋼材の表面に当てがわれる
磁芯と、磁芯に巻回され鋼材の表面と磁芯とをつなぐ磁
路を形成する励磁コイルと、磁芯に巻回され励磁コイル
の励磁電流に伴う電磁誘導により鋼材の圧縮残留応力に
応じた電圧信号を出力する検出コイルとをもつセンサが
用いられる。この方法では、センサの磁芯を鋼材の表面
に当てがった状態で、励磁コイルに励磁電流として高周
波交流電流を流すと、磁路における磁束は時間的に変化
し、従って電磁誘導により鋼材の組織に渦電流が生じ
る。さらにこの渦電流によって高周波の磁界が生じる。
これは検出コイルによりインピーダンス変化ひいては出
力電圧値の変化として測定される。ここで、鋼材の組織
(強磁性体であるマルテンサイト、常磁性体であるオー
ステナイトなど)に応じてその透磁率が異なるので、鋼
材の組織に応じて検出コイルの信号に応じた出力電圧値
は変化する。鋼材の組織割合は加工誘起変態の程度によ
って変化するため、検出コイルの出力電圧値により、圧
縮残留応力の程度が把握される。
According to this method, a magnetic core applied to the surface of the steel material, an exciting coil wound around the magnetic core to form a magnetic path connecting the surface of the steel material and the magnetic core, and an exciting coil wound around the magnetic core. A sensor having a detection coil that outputs a voltage signal according to the compressive residual stress of the steel material by electromagnetic induction associated with the exciting current is used. In this method, when a high-frequency alternating current is applied to the exciting coil as the exciting current in the state where the magnetic core of the sensor is applied to the surface of the steel, the magnetic flux in the magnetic path changes with time, and therefore the magnetic induction of the steel causes Eddy current is generated in the tissue. Further, a high frequency magnetic field is generated by this eddy current.
This is measured by the detection coil as a change in impedance and thus as a change in output voltage value. Here, since the magnetic permeability differs depending on the structure of the steel material (such as martensite which is a ferromagnetic material and austenite which is a paramagnetic material), the output voltage value corresponding to the signal of the detection coil depends on the structure of the steel material. Change. Since the structural ratio of the steel material changes depending on the degree of work-induced transformation, the degree of compressive residual stress can be grasped from the output voltage value of the detection coil.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる開発の
一環としてなされたものであり、評価の精度を一層向上
させ得る鋼材の疲労強度の評価方法を提供することを目
的とする。
The present invention has been made as part of such development, and an object of the present invention is to provide a method for evaluating the fatigue strength of a steel material which can further improve the accuracy of evaluation.

【0006】[0006]

【課題を解決するための手段】ところで、鋼材の深さ方
向における組織が均一と仮定した場合、鋼材を浸透する
磁束密度は、高周波交流電流に起因する『表皮効果』の
影響で最表面で一番大きく、最表面から内部に浸透する
磁束密度は基本的には図1の一般特性線E(t)に示す
様に内部に向かうにつれて指数関数的に減少する。tは
鋼材の表面からの深さを意味する。またショットピーニ
ング加工した鋼材の深さ方向における圧縮残留応力の分
布は図2の応力分布特性線K(t)に示す様になり、最
表面からある深さの域において圧縮残留応力のピーク値
Kpをもつ。従って前記した一般特性線E(t)と応力
分布特性線K(t)とを考慮すれば、圧縮残留応力のピ
ーク値Kpをもつ鋼材の磁束密度分布は、基本的には図
2においてF(t)で示される様な特性となる。ここで
F(t)=E(t)×K(t)である。上記した装置に
おける検出コイルの信号に基づく出力電圧値Vは基本的
にはF(t)を積分したものであり、V=∫F(t)d
t(積分範囲0〜∞)で示される。
[Means for Solving the Problems] By the way, assuming that the microstructure in the depth direction of the steel material is uniform, the magnetic flux density penetrating the steel material is uniform at the outermost surface due to the "skin effect" caused by the high-frequency alternating current. The magnetic flux density that is the largest and penetrates from the outermost surface to the inside basically decreases exponentially toward the inside as shown by the general characteristic line E (t) in FIG. t means the depth from the surface of the steel material. The distribution of the compressive residual stress in the depth direction of the steel material subjected to shot peening is as shown by the stress distribution characteristic line K (t) in FIG. 2, and the peak value Kp of the compressive residual stress in the region of a certain depth from the outermost surface is shown. With. Therefore, considering the above-mentioned general characteristic line E (t) and stress distribution characteristic line K (t), the magnetic flux density distribution of the steel material having the peak value Kp of the compressive residual stress is basically F ( The characteristic is as shown by t). Here, F (t) = E (t) × K (t). The output voltage value V based on the signal of the detection coil in the above device is basically an integration of F (t), and V = ∫F (t) d
It is indicated by t (integration range 0 to ∞).

【0007】さて鋼材の最表面は焼入液やショット粒に
直接触れるため、焼入条件やショット投射条件の影響を
大きく受け易く、変動し易い。しかも図1から理解でき
る様に『表皮効果』により鋼材の最表面の磁束密度が最
も大きいため、鋼材の最表面の状況は、『表皮効果』を
も考慮すると、出力電圧値Vに大きく影響する。一方、
前述した様に鋼材の疲労強度の良否の評価は、鋼材の最
表面ではなく、最表面から所定の深さ域における圧縮残
留応力のピーク値の大きさで基本的には定まる。従って
鋼材の最表面の状況が評価精度における外乱要因とな
り、鋼材の疲労強度の評価に影響を与え、評価精度の向
上には限界がある。
Since the outermost surface of the steel material comes into direct contact with the quenching liquid and shot particles, it is easily affected by the quenching conditions and shot projection conditions, and is likely to fluctuate. Moreover, as can be understood from FIG. 1, since the magnetic flux density on the outermost surface of the steel material is the largest due to the “skin effect”, the condition of the outermost surface of the steel material greatly affects the output voltage value V when the “skin effect” is also taken into consideration. . on the other hand,
As described above, the evaluation of the fatigue strength of the steel material is basically determined not by the outermost surface of the steel material but by the magnitude of the peak value of the compressive residual stress in a predetermined depth region from the outermost surface. Therefore, the condition of the outermost surface of the steel material becomes a disturbance factor in the evaluation accuracy, affects the evaluation of the fatigue strength of the steel material, and there is a limit in improving the evaluation accuracy.

【0008】例えば、鋼材Aの圧縮残留応力分布が図3
に実線で示す特性線KAの形態であり、鋼材Bの圧縮残
留応力分布が図3に実線で示す特性線KBの形態であ
り、所定深さにおける残留応力ピーク値の大きさがKp
と共に同一であるとする。この様に鋼材Aと鋼材Bとが
共に残留応力ピーク値Kpの大きさが同一であるにもか
かわらず、鋼材Aの磁束密度分布は特性線FA(t)で
示され、鋼材Bの磁束密度分布は特性線FB(t)で示
される。故に、鋼材Aの出力電圧値VAと鋼材Aの出力
電圧値VBとは、図3の斜線領域ΔVぶん相違した値と
なる。従って、鋼材Aと鋼材Bとでは、所定の深さにお
ける残留応力ピーク値Kpの大きさが同一であるにもか
かわらず、鋼材の評価に相違が生じるおそれがあり、好
ましくない。VA=∫FA(t)dtであり、VB=∫
FB(t)dtで表せるからである。
For example, the compressive residual stress distribution of steel material A is shown in FIG.
Is a characteristic line KA shown by a solid line, the compressive residual stress distribution of the steel material B is a characteristic line KB shown by a solid line in FIG. 3, and the magnitude of the residual stress peak value at a predetermined depth is Kp.
And the same. As described above, the magnetic flux density distribution of the steel material A is represented by the characteristic line FA (t) even though the steel material A and the steel material B both have the same residual stress peak value Kp. The distribution is shown by the characteristic line FB (t). Therefore, the output voltage value VA of the steel material A and the output voltage value VB of the steel material A have different values by the shaded area ΔV in FIG. Therefore, although the steel material A and the steel material B have the same residual stress peak value Kp at a predetermined depth, the evaluation of the steel material may be different, which is not preferable. VA = ∫FA (t) dt and VB = ∫
This is because it can be represented by FB (t) dt.

【0009】そこで本発明者は上記した実情のもとに鋭
意開発を進めた。そして、鋼材の最表面における外乱要
因を回避するには、次の方法が好ましいことを知見し
た。即ち、励磁コイルの励磁電流の周波数をf1 及びf
2 と2つ選択し、第1周波数f 1 を励磁電流とした場合
における最表面の磁束密度と、第1周波数f2 を励磁電
流とした場合における最表面の磁束密度とが実質的に等
応する様に設定する。かつ、励磁電流を第1周波数f1
とした場合における検出コイルの信号により第1出力電
圧値Vαを求め、励磁電流を第2周波数f2 とした場合
における検出コイルの信号により第2出力電圧値Vβを
求め、そしてVαとVβとの差を求め、この差の値に基
づき鋼材の疲労強度の良否を判定すれば、評価精度が向
上することを知見し、試験で確認した。
Therefore, the present inventor has been keenly aware of the above situation.
I proceeded with the development. And the disturbance of the outermost surface of the steel material
In order to avoid the cause, we found that the following method is preferable.
It was That is, the frequency of the exciting current of the exciting coil is f1And f
2And two, and select the first frequency f 1Is the exciting current
Magnetic flux density on the outermost surface and the first frequency f2Exciting electric
And the magnetic flux density on the outermost surface is substantially equal
Set to respond. Also, the exciting current is set to the first frequency f1
In case of
The pressure value Vα is calculated, and the exciting current is set to the second frequency f.2If
The second output voltage value Vβ by the signal of the detection coil at
Then, the difference between Vα and Vβ is calculated, and based on the value of this difference
Therefore, if the fatigue strength of the steel material is judged, the evaluation accuracy will be improved.
It was found that this was the case, and was confirmed by a test.

【0010】即ち、本発明に係る鋼材の疲労強度の評価
方法は、疲労強度に寄与する圧縮残留応力のピーク値を
最表面から所定深さの域に有する鋼材を用いると共に、
鋼材の表面に当てがわれる磁芯と、磁芯に巻回され鋼材
の表面と磁芯とをつなぐ磁路を形成する励磁コイルと、
磁芯に巻回され励磁コイルの励磁電流に伴う電磁誘導に
より鋼材の圧縮残留応力に応じた電圧信号を出力する検
出コイルとをもつセンサを用い、センサの励磁コイルの
励磁電流の周波数を、鋼材の最表面における磁束密度が
実質的に等応する様に第1周波数及び第2周波数の大き
さを選択し、励磁電流の周波数を第1周波数とした状態
において検出コイルにより検出した信号に応じた第1出
力電圧値と、励磁コイルの励磁電流の周波数を第2周波
数とした状態において検出コイルにより検出した信号に
応じた第2出力電圧値との差に基づき、鋼材の疲労強度
の良否を判定することことを特徴とするものである。
That is, the method for evaluating the fatigue strength of a steel material according to the present invention uses a steel material having a peak value of the compressive residual stress contributing to the fatigue strength in a region of a predetermined depth from the outermost surface,
A magnetic core applied to the surface of the steel material, and an exciting coil wound around the magnetic core to form a magnetic path connecting the surface of the steel material and the magnetic core,
Using a sensor that has a detection coil that is wound around a magnetic core and outputs a voltage signal according to the compressive residual stress of the steel material by electromagnetic induction caused by the excitation current of the excitation coil, The magnitudes of the first frequency and the second frequency are selected so that the magnetic flux density on the outermost surface of is substantially equal, and the magnitudes of the first frequency and the second frequency are set according to the signal detected by the detection coil with the frequency of the exciting current being the first frequency Whether the fatigue strength of the steel material is good or bad is determined based on the difference between the first output voltage value and the second output voltage value according to the signal detected by the detection coil in the state where the frequency of the exciting current of the exciting coil is set to the second frequency. It is characterized by doing.

【0011】[0011]

【作用】励磁コイルに励磁電流として高周波の交流電流
を流すと、磁芯及び鋼材を通る磁束は時間的に変化す
る。従って電磁誘導により鋼材の組織に渦電流が生じ
る。さらにこの渦電流によって高周波の磁界が生じる。
これは検出コイルによりインピーダンス変化ひいては出
力電圧値の変化として検出される。ここで、鋼材の組織
(マルテンサイト、オーステナイトなど)に応じてその
透磁率が異なり、鋼材の組織に応じて検出コイルの出力
電圧値は変化するため、検出コイルの出力電圧値に基づ
き圧縮残留応力の程度が把握される。
When a high-frequency alternating current is passed through the exciting coil as an exciting current, the magnetic flux passing through the magnetic core and the steel material changes with time. Therefore, electromagnetic induction causes an eddy current in the structure of the steel material. Further, a high frequency magnetic field is generated by this eddy current.
This is detected by the detection coil as a change in impedance and thus a change in output voltage value. Here, since the magnetic permeability varies depending on the structure of the steel material (such as martensite and austenite) and the output voltage value of the detection coil changes depending on the structure of the steel material, the compressive residual stress is based on the output voltage value of the detection coil. The degree of is understood.

【0012】本発明の励磁コイルに流す励磁電流の周波
数をfとし、その周期tとすると、t=1/fの関係か
ら周波数fが大きいと、周期tが小さくなる。この様に
周期tが小さくなると、磁路における磁束の時間的変位
量が増すため、その磁束の時間的変化量を打ち消す電磁
誘導現象により、検出コイルの出力電圧値は高く出力さ
れる傾向にある。よって、その励磁電流の周波数に応じ
て検出コイルの出力電圧値を補正することが好ましい。
そのため、本発明方法では励磁電流の周波数と出力電圧
値との関係を予め測定しておき、その関係に基づき、周
波数に応じて検出コイルの出力電圧値を補正部により補
正することが好ましい。補正部は、例えば、上記関係を
記憶したRAM、ROM等のメモリを利用して構成でき
る。
When the frequency of the exciting current flowing through the exciting coil of the present invention is f and its period is t, the period t becomes smaller when the frequency f is larger because of the relation of t = 1 / f. When the period t becomes small in this way, the temporal displacement of the magnetic flux in the magnetic path increases, so that the output voltage value of the detection coil tends to be output high due to the electromagnetic induction phenomenon that cancels the temporal variation of the magnetic flux. . Therefore, it is preferable to correct the output voltage value of the detection coil according to the frequency of the exciting current.
Therefore, in the method of the present invention, it is preferable that the relationship between the frequency of the exciting current and the output voltage value is measured in advance, and the output voltage value of the detection coil is corrected by the correction unit according to the frequency based on the relationship. The correction unit can be configured using, for example, a memory such as a RAM or a ROM that stores the above relationship.

【0013】[0013]

【実施例】以下、本発明を具体化した実施例を図面を参
照しつつ説明する。(鋼材)本実施例で用いる鋼材1
は、浸炭鋼を浸炭焼入しかつショットピーニングする前
のものであり、面積率で約60〜70%のマルテンサイ
ト組織と約20〜30%の残留オーステナイト組織とか
らなる。この鋼材1はショットピーニングされると、マ
ルテンサイト組織は約80%程度と増加する。この鋼材
1の応力分布は、基本的には図5の応力分布特性線K
(t)で示す様な形態であり、ピーク値Kpをもつ。
Embodiments of the present invention will be described below with reference to the drawings. (Steel) Steel 1 used in this example
Is before carburizing and shot peening of carburized steel, and has a martensite structure of about 60 to 70% and a retained austenite structure of about 20 to 30% in area ratio. When this steel material 1 is shot peened, the martensite structure increases to about 80%. The stress distribution of this steel material 1 is basically the stress distribution characteristic line K of FIG.
It has a form as shown in (t) and has a peak value Kp.

【0014】(測定装置)測定装置2を図4に示す。こ
の測定装置2は、鋼材1の加工面11に当接されるセン
サ21と、センサ21に接続された計測器23とからな
る。センサ21は、珪素鋼板を厚み方向へ積層して構成
したコ字形状の磁芯210と、この磁芯210に巻回さ
れ高周波数の交流電流が通電される励磁コイル211
と、磁芯210に巻回され磁界変化に基づく電磁誘導現
象により電圧値を出力する検出コイル212とからな
る。磁芯210は、その先端部分が鋼材1の加工面11
と確実に当接するように形成されている。
(Measuring Device) The measuring device 2 is shown in FIG. The measuring device 2 includes a sensor 21 that is in contact with the machined surface 11 of the steel material 1, and a measuring instrument 23 connected to the sensor 21. The sensor 21 includes a U-shaped magnetic core 210 formed by stacking silicon steel plates in the thickness direction, and an exciting coil 211 wound around the magnetic core 210 and supplied with a high-frequency alternating current.
And a detection coil 212 wound around the magnetic core 210 and outputting a voltage value by an electromagnetic induction phenomenon based on a magnetic field change. The magnetic core 210 has a tip end portion on which the processed surface 11 of the steel material 11 is processed.
Is formed so as to surely abut.

【0015】計測器23は、図4に示すように、発振器
231と、発振器231から発振する高周波の交流電流
の周波数を変更する周波数可変タイミング回路238
と、発振器231と接続され励磁コイル211に交流電
流を通電する増幅器232と、検出コイル212の出力
信号を増幅させる増幅器233と、増幅器233で増幅
された出力信号を補正する補正回路234と、補正回路
234と接続された演算器235と、演算器235と接
続された表示装置236と、補正回路234に接続され
たメモリ237とからなる。ここで補正回路234とメ
モリ237とで補正部が構成される。
As shown in FIG. 4, the measuring instrument 23 includes an oscillator 231 and a frequency variable timing circuit 238 for changing the frequency of a high frequency alternating current oscillated from the oscillator 231.
An amplifier 232 that is connected to the oscillator 231 and applies an alternating current to the exciting coil 211; an amplifier 233 that amplifies the output signal of the detection coil 212; a correction circuit 234 that corrects the output signal amplified by the amplifier 233; The arithmetic unit 235 is connected to the circuit 234, the display device 236 is connected to the arithmetic unit 235, and the memory 237 is connected to the correction circuit 234. Here, the correction circuit 234 and the memory 237 form a correction unit.

【0016】(周波数の選択)本方法では、励磁コイル
211に通電する励磁電流の周波数を第1周波数f1
び第2周波数f2 として選択する。選択は次の様にす
る。即ち、一般的には、鋼材1の表面から内部に浸透す
る磁束密度は図1の一般特性線E(t)に示す様に内部
に向かうにつれて指数関数的に連続的に減少するため、
取扱上、磁束浸透深さは固定値をもって判別することが
好ましい。そこで図1から理解できる様に固有値として
の磁束浸透深さδは、一般的には、鋼材1の最表面にお
ける磁束密度を1とした場合において、磁束密度が1/
ε(ε:自然対数、ε=2.7)となる深さであると定
義されている。この例でもこの固定値を磁束浸透深さδ
としている。
(Selection of Frequency) In this method, the frequency of the exciting current supplied to the exciting coil 211 is selected as the first frequency f 1 and the second frequency f 2 . The selection is as follows. That is, in general, the magnetic flux density penetrating from the surface of the steel material 1 to the inside decreases exponentially continuously toward the inside as shown by the general characteristic line E (t) in FIG.
In terms of handling, it is preferable to determine the magnetic flux penetration depth with a fixed value. Therefore, as can be understood from FIG. 1, the magnetic flux penetration depth δ as an eigenvalue is generally 1 / where the magnetic flux density is 1 when the magnetic flux density on the outermost surface of the steel material 1 is 1.
The depth is defined as ε (ε: natural logarithm, ε = 2.7). Also in this example, this fixed value is used as the magnetic flux penetration depth δ.
I am trying.

【0017】磁束浸透深さδは一般的には以下の式
(a)で算出される。即ち、励磁周波数をf、鋼材表層
の透磁率をμ、鋼材表層の導電率をσとしたとき、 δ=〔1/(π・f・μ・σの積)の平方根〕……(a) そして、図5に示す様に、鋼材1の圧縮残留応力のピー
ク値Kpを呈する深さの近傍領域において、磁束浸透深
さδ1 、δ2 を選択し、前記した式(a)に基づき、磁
束浸透深さδ1 が得られる第1周波数f1 、磁束浸透深
さδ2 が得られる第2周波数f2 を選択する。本例では
具体的には第1周波数f1 は15KHz、第2周波数f
2 は30KHzとした。
The magnetic flux penetration depth δ is generally calculated by the following equation (a). That is, when the excitation frequency is f, the permeability of the steel surface layer is μ, and the electrical conductivity of the steel surface layer is σ, δ = [1 / (square root of π · f · μ · σ)] ... (a) Then, as shown in FIG. 5, in the region near the depth exhibiting the peak value Kp of the compressive residual stress of the steel material 1, the magnetic flux penetration depths δ 1 and δ 2 are selected, and based on the formula (a), the first frequency f 1 of the magnetic flux penetration depth [delta] 1 is obtained, selecting the second frequency f 2 to the magnetic flux penetration depth [delta] 2 is obtained. In this example, specifically, the first frequency f 1 is 15 KHz and the second frequency f 1 is
2 was 30 KHz.

【0018】また図5においては一般特性線E1 は、深
さ方向において組織が均一の鋼材を用いた場合におい
て、第1周波数f1 を採用した際の一般的な磁束浸透分
布を示し、一般特性線E2 は第2周波数f2 を採用した
際の一般的な磁束浸透分布を示す。ここで図5の一般特
性線E1 、E2 の図示左端から理解できる様に、鋼材1
の最表面の磁束密度が実質的に等応(図5の縦軸におい
て1と仮定している)する様に設定する。その理由は、
鋼材1における最表面付近の外乱要因を軽減または回避
するためである。
Further, in FIG. 5, a general characteristic line E 1 shows a general magnetic flux permeation distribution when the first frequency f 1 is adopted when a steel material having a uniform structure in the depth direction is used. The characteristic line E 2 shows a general magnetic flux permeation distribution when the second frequency f 2 is adopted. As can be seen from the left ends of the general characteristic lines E 1 and E 2 in FIG.
Is set so that the magnetic flux density on the outermost surface of is substantially equal (assuming 1 on the vertical axis in FIG. 5). The reason is,
This is for reducing or avoiding disturbance factors near the outermost surface of the steel material 1.

【0019】また図5において特性線F1 は、圧縮残留
応力のピーク値Kpをもつ鋼材1を用い、周波数f1
励磁電流とした場合における磁束密度分布を示す。特性
線F 2 は、ピーク値Kpをもつ鋼材1を用い、周波数f
2 を励磁電流とした場合における磁束密度分布を示す。 (加工前透磁率検出工程)図4に示すように、まずショ
ット前の鋼材1の加工面11にセンサ21を当接する。
これにより、鋼材1の加工面11は深さhn の範囲内で
磁束を生じる。計測器23では、検出コイル212の信
号に応じて出力電圧値V01が検出され、メモリ237に
記憶される。
Further, in FIG. 5, the characteristic line F1Is a compression residue
Using the steel material 1 having the peak stress value Kp, the frequency f1To
The magnetic flux density distribution when an exciting current is used is shown. Characteristic
Line F 2Is a steel material 1 having a peak value Kp and a frequency f
2Shows the magnetic flux density distribution when is the exciting current. (Permeability detection step before processing) As shown in FIG.
The sensor 21 is brought into contact with the machined surface 11 of the steel material 1 before turning.
As a result, the machined surface 11 of the steel material 1 has a depth h.nWithin the range of
Generates magnetic flux. In the measuring instrument 23, the signal of the detection coil 212 is received.
Output voltage value V01Is detected and stored in the memory 237.
Remembered.

【0020】すなわち、センサ21の励磁コイル211
に高周波数交流の励磁電流(周波数f1 )を通電するこ
とにより、鋼材1の加工面11と磁芯210をつなぐル
ープ状の磁路Mが形成される。このとき図1に示すよう
に、加工面11の表面より100μm程度までの深さh
nで磁束(Φ)が発生する。磁芯210の透磁率は既知
のため、磁束(Φ)の発生量は基本的には加工面11の
深さhnにおける透磁率(μ)の大小によって決定され
る。
That is, the exciting coil 211 of the sensor 21.
When a high-frequency alternating exciting current (frequency f 1 ) is applied to, a loop-shaped magnetic path M that connects the machined surface 11 of the steel material 1 and the magnetic core 210 is formed. At this time, as shown in FIG. 1, the depth h from the surface of the processed surface 11 to about 100 μm
A magnetic flux (Φ) is generated at n. Since the magnetic permeability of the magnetic core 210 is known, the generation amount of the magnetic flux (Φ) is basically determined by the magnitude of the magnetic permeability (μ) at the depth hn of the processed surface 11.

【0021】次に周波数可変タイミング回路238によ
り励磁周波数をf1 からf2 に切り替え、同様にして周
波数f2 による出力電圧値V02を得る。そしてメモリ2
37からV01を呼び出し、その差を、ショットピーニン
グ前の鋼材1における差分値V0 とする。即ち、差分値
0 は(V0 =α×V01−V02)で示される。ここでα
は補正係数であり、励磁電流の周波数に応じて『表皮効
果』が異なり、励磁電流の周波数が高い程、検出コイル
212の出力電圧値は高く出力される傾向にあるため、
それを補正するためのものである。
Next, the frequency variable timing circuit 238 switches the excitation frequency from f 1 to f 2 , and similarly the output voltage value V 02 at the frequency f 2 is obtained. And memory 2
V 01 is called from 37, and the difference is set as the difference value V 0 in the steel material 1 before shot peening. That is, the difference value V 0 is represented by (V 0 = α × V 01 −V 02 ). Where α
Is a correction coefficient, and the "skin effect" varies depending on the frequency of the exciting current, and the higher the exciting current frequency, the higher the output voltage value of the detection coil 212 tends to be output.
It is for correcting it.

【0022】差分値の大きさは図5において斜線部分の
領域で示される。図5の斜線部分の領域で示される様
に、この斜線部分の領域は、鋼材の深さ方向における最
表面付近では小さく、ゼロまたはゼロに近いものである
が、圧縮残留応力のピーク値Kp付近では表面付近より
も大きいものである。従って、差分値V0 を評価手段と
すれば、評価の際の外乱要因となり易い鋼材1の最表面
付近における影響を軽減または回避するのに有利であ
る。従って疲労強度の評価の精度が向上し、信頼性が増
す。
The magnitude of the difference value is shown by the shaded area in FIG. As shown by the shaded area in FIG. 5, the shaded area is small near the outermost surface in the depth direction of the steel material and is zero or close to zero, but near the peak value Kp of the compressive residual stress. Is larger than near the surface. Therefore, if the difference value V 0 is used as the evaluation means, it is advantageous to reduce or avoid the influence in the vicinity of the outermost surface of the steel material 1 which is likely to cause a disturbance during the evaluation. Therefore, the accuracy of fatigue strength evaluation is improved and reliability is increased.

【0023】(加工後透磁率検出工程)次いで鋼材1の
加工面11に所定のショットピーニング処理を施す。こ
れにより残留オーステイトは加工誘起変態して強磁性体
であるマルテンサイト量が増加する。この状態で、図4
に示す様にその鋼材1の加工面11にセンサ21を当接
すると共に、励磁コイル211に周波数f1 の高周波数
交流である励磁電流を通電する。これにより計測器23
で、上記した加工前透磁率検出工程と同様に、第1周波
数f1 に基づく出力電圧値V11を得る。更に前述同様に
周波数可変タイミング回路238により励磁電流の周波
数をf1 からf2 に切り替え、同様にして第2周波数f
2 に基づく出力電圧値V12を得る。そしてその差を、シ
ョットピーニング後の鋼材1における差分値V1 とす
る。差分値V1 は(V1 =α×V11−V12)で示され
る。αは前述同様に補正係数である。
(Processing Permeability Permeability Detection Step) Next, the machined surface 11 of the steel material 1 is subjected to a predetermined shot peening treatment. As a result, the residual austenite undergoes work-induced transformation to increase the amount of martensite, which is a ferromagnetic material. In this state,
As shown in FIG. 5, the sensor 21 is brought into contact with the machined surface 11 of the steel material 1, and the exciting coil 211 is supplied with an exciting current which is a high-frequency alternating current of the frequency f 1 . As a result, the measuring instrument 23
Then, the output voltage value V 11 based on the first frequency f 1 is obtained as in the above-described pre-processing magnetic permeability detection step. Further, as described above, the frequency of the exciting current is switched from f 1 to f 2 by the frequency variable timing circuit 238, and the second frequency f is similarly set.
An output voltage value V 12 based on 2 is obtained. Then, the difference is defined as a difference value V 1 in the steel material 1 after shot peening. The difference value V 1 is represented by (V 1 = α × V 11 −V 12 ). α is a correction coefficient as described above.

【0024】(算出工程)ショットピーニング前後の差
分値の差(V1 −V0 )と、X線残留応力測定装置で測
定した圧縮残留応力のピーク値との関係は、基本的に
は、図6に示されている様になり、両者は相関性があ
る。また圧縮残留応力のピーク値と疲労強度向上率と
は、図7に示す様に相関性がある。従って図6及び図7
を考慮すれば、(V1 −V0 )により疲労強度向上率が
把握できる。
(Calculation step) The relationship between the difference (V 1 -V 0 ) between the difference values before and after shot peening and the peak value of the compressive residual stress measured by the X-ray residual stress measuring device is basically as shown in the figure. As shown in 6, there is a correlation between the two. Further, the peak value of the compressive residual stress and the fatigue strength improvement rate have a correlation as shown in FIG. Therefore, FIG. 6 and FIG.
In consideration of the above, the fatigue strength improvement rate can be grasped from (V 1 −V 0 ).

【0025】本実施例では図6に示す相関特性、図7に
示す相関特性をメモリ237に記憶させておくので、シ
ョットピーニング前の鋼材1における差分値V0 、ショ
ットピーニング後の鋼材1における差分値V1 を求めれ
ば、鋼材1をショットピーニング処理をした場合におけ
る鋼材1の圧縮残留応力の形態を迅速に把握でき、鋼材
1の疲労強度の良否の評価を非破壊でかつ迅速に判別で
きる。
In this embodiment, since the correlation characteristic shown in FIG. 6 and the correlation characteristic shown in FIG. 7 are stored in the memory 237, the difference value V 0 in the steel material 1 before shot peening and the difference in the steel material 1 after shot peening. If the value V 1 is obtained, the form of the compressive residual stress of the steel material 1 when the steel material 1 is shot peened can be quickly grasped, and the evaluation of the fatigue strength of the steel material 1 can be determined nondestructively and quickly.

【0026】(他の例)本発明方法は上記した実施例に
限定されるものではなく、要旨を逸脱しない範囲内で必
要に応じて適宜選択できるものである。例えば鋼材はシ
ョットピーニングされたものに限定されるものではな
い。
(Other Examples) The method of the present invention is not limited to the above-mentioned embodiments, and can be appropriately selected as needed within the scope not departing from the gist. For example, steel is not limited to shot peened steel.

【0027】[0027]

【発明の効果】本発明の鋼材の疲労強度の評価方法によ
れば、圧縮残留応力のピーク値によって疲労強度の良否
を評価する際において、評価の際の外乱要因となり易い
鋼材の最表面付近における影響を回避するのに有利であ
る。従って疲労強度の評価の精度が高まり、信頼性が向
上する。
According to the method for evaluating the fatigue strength of a steel material of the present invention, when evaluating the quality of the fatigue strength by the peak value of the compressive residual stress, it is possible to determine the vicinity of the outermost surface of the steel material which is likely to be a disturbance factor in the evaluation. It is advantageous to avoid the influence. Therefore, the accuracy of fatigue strength evaluation is increased, and the reliability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼材における一般的な磁束浸透深さの形態を示
すグラフである。
FIG. 1 is a graph showing a general form of magnetic flux penetration depth in a steel material.

【図2】ショットピーニング加工した鋼材を用いた場合
において、鋼材の深さ方向における圧縮残留応力の分布
及び磁束密度の分布を示すグラフである。
FIG. 2 is a graph showing a distribution of compressive residual stress and a distribution of magnetic flux density in a depth direction of a steel material when a shot peened steel material is used.

【図3】製品別における圧縮残留応力の分布、磁束密度
の分布を示すグラフである。
FIG. 3 is a graph showing the distribution of compressive residual stress and the distribution of magnetic flux density for each product.

【図4】測定装置の構成図である。FIG. 4 is a configuration diagram of a measuring device.

【図5】差分値を示すためのグラフである。FIG. 5 is a graph showing a difference value.

【図6】(V1 −V0 )と圧縮残留応力のピーク値との
関係を示すグラフである。
FIG. 6 is a graph showing the relationship between (V 1 −V 0 ) and the peak value of compressive residual stress.

【図7】圧縮残留応力のピーク値と疲労強度向上率との
関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the peak value of compressive residual stress and the fatigue strength improvement rate.

【符号の説明】[Explanation of symbols]

図中、1は鋼材、11は加工面、2は測定装置、21は
センサ、23は計測器、210は磁芯、211は励磁コ
イル、212は検出コイル、231は発振器、238は
周波数可変タイミング回路、234は補正回路、235
は演算器を示す。
In the figure, 1 is a steel material, 11 is a machined surface, 2 is a measuring device, 21 is a sensor, 23 is a measuring instrument, 210 is a magnetic core, 211 is an exciting coil, 212 is a detecting coil, 231 is an oscillator, 238 is a frequency variable timing. Circuit 234 is a correction circuit 235
Indicates an arithmetic unit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】疲労強度に寄与する圧縮残留応力のピーク
値を最表面から所定深さの域に有する鋼材を用いると共
に、 該鋼材の表面に当てがわれる磁芯と、該磁芯に巻回され
鋼材の表面と該磁芯とをつなぐ磁路を形成する励磁コイ
ルと、該磁芯に巻回され該励磁コイルの励磁電流に伴う
電磁誘導により鋼材の圧縮残留応力に応じた電圧信号を
出力する検出コイルとをもつセンサを用い、 該センサの該励磁コイルの励磁電流の周波数を、該鋼材
の最表面における磁束密度が実質的に等応する様に第1
周波数及び第2周波数の大きさを選択し、 該励磁電流の周波数を第1周波数とした状態において該
検出コイルにより検出した信号に応じた第1出力電圧値
と、該励磁コイルの励磁電流の周波数を第2周波数とし
た状態において該検出コイルにより検出した信号に応じ
た第2出力電圧値との差に基づき、該鋼材の疲労強度の
良否を判定することを特徴とする鋼材の疲労強度の評価
方法。
1. A steel material having a peak value of compressive residual stress that contributes to fatigue strength in a region of a predetermined depth from the outermost surface, a magnetic core applied to the surface of the steel material, and a magnetic core wound around the magnetic core. An exciting coil that forms a magnetic path connecting the surface of the steel material and the magnetic core, and a voltage signal according to the compressive residual stress of the steel material by electromagnetic induction that is wound around the magnetic core and is accompanied by the exciting current of the exciting coil. A sensor having a detecting coil for controlling the frequency of the exciting current of the exciting coil of the sensor so that the magnetic flux density on the outermost surface of the steel material is substantially equalized.
The frequency and the magnitude of the second frequency are selected, and the first output voltage value corresponding to the signal detected by the detection coil in the state where the frequency of the excitation current is set to the first frequency, and the frequency of the excitation current of the excitation coil. Of the fatigue strength of the steel material is determined based on the difference between the second output voltage value according to the signal detected by the detection coil in the state where the second frequency is Method.
JP24009593A 1993-09-27 1993-09-27 Method for evaluating fatigue strength of steel member Pending JPH0792140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24009593A JPH0792140A (en) 1993-09-27 1993-09-27 Method for evaluating fatigue strength of steel member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24009593A JPH0792140A (en) 1993-09-27 1993-09-27 Method for evaluating fatigue strength of steel member

Publications (1)

Publication Number Publication Date
JPH0792140A true JPH0792140A (en) 1995-04-07

Family

ID=17054422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24009593A Pending JPH0792140A (en) 1993-09-27 1993-09-27 Method for evaluating fatigue strength of steel member

Country Status (1)

Country Link
JP (1) JPH0792140A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332641A (en) * 1997-06-05 1998-12-18 Shimizu Corp Method for determining plasticization of steel material
JP2004198246A (en) * 2002-12-18 2004-07-15 Nsk Ltd Method for diagnosing load state of bearing
JP2008002973A (en) * 2006-06-22 2008-01-10 Fuji Seisakusho:Kk Nondestructive testing method and device of shot peening treated surface
JP2010256279A (en) * 2009-04-28 2010-11-11 Ihi Corp Method and apparatus for measuring carburized depth
JP2014500476A (en) * 2010-12-21 2014-01-09 新東工業株式会社 Surface characteristic evaluation apparatus and surface characteristic evaluation method
KR20140033395A (en) * 2011-05-10 2014-03-18 신토고교 가부시키가이샤 Surface property inspection device and surface property inspection method
JP2015525336A (en) * 2013-05-30 2015-09-03 新東工業株式会社 Surface characteristic inspection apparatus, surface characteristic inspection system, and surface characteristic inspection method
WO2017022328A1 (en) * 2015-08-06 2017-02-09 新東工業株式会社 Surface property inspection method and surface property inspection device for steel product
KR20180018814A (en) 2015-06-25 2018-02-21 신토고교 가부시키가이샤 Apparatus for evaluating surface properties of steel and method for evaluating surface properties
KR20180079284A (en) 2015-11-09 2018-07-10 신토고교 가부시키가이샤 Method of evaluating surface properties of steel
WO2019012991A1 (en) 2017-07-10 2019-01-17 新東工業株式会社 Surface characteristic evaluation method, surface characteristic evaluation device, and surface characteristic evaluation system
WO2020095485A1 (en) * 2018-11-07 2020-05-14 新東工業株式会社 Deterioration evaluation method
WO2021132007A1 (en) * 2019-12-24 2021-07-01 日立建機株式会社 Gear reusability determination method and gear reusability determination system
US11994493B2 (en) 2019-03-08 2024-05-28 Sintokogio, Ltd. Method for nondestructive assessment of steel
US12007299B2 (en) 2019-12-24 2024-06-11 Hitachi Construction Machinery Co., Ltd. Reusability determination method for gear and reusability determination system for gear

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332641A (en) * 1997-06-05 1998-12-18 Shimizu Corp Method for determining plasticization of steel material
JP2004198246A (en) * 2002-12-18 2004-07-15 Nsk Ltd Method for diagnosing load state of bearing
JP2008002973A (en) * 2006-06-22 2008-01-10 Fuji Seisakusho:Kk Nondestructive testing method and device of shot peening treated surface
JP2010256279A (en) * 2009-04-28 2010-11-11 Ihi Corp Method and apparatus for measuring carburized depth
JP2014500476A (en) * 2010-12-21 2014-01-09 新東工業株式会社 Surface characteristic evaluation apparatus and surface characteristic evaluation method
JP2014066733A (en) * 2011-05-10 2014-04-17 Sintokogio Ltd Surface characteristic inspection device and surface characteristic inspection method
US9157892B2 (en) 2011-05-10 2015-10-13 Sintokogio, Ltd. Surface property inspection device and surface property inspection method
KR20140033395A (en) * 2011-05-10 2014-03-18 신토고교 가부시키가이샤 Surface property inspection device and surface property inspection method
JP2015525336A (en) * 2013-05-30 2015-09-03 新東工業株式会社 Surface characteristic inspection apparatus, surface characteristic inspection system, and surface characteristic inspection method
US10768144B2 (en) 2015-06-25 2020-09-08 Sintokogio, Ltd. Surface characteristics evaluation apparatus and surface characteristics evaluation method for steel material
KR20180018814A (en) 2015-06-25 2018-02-21 신토고교 가부시키가이샤 Apparatus for evaluating surface properties of steel and method for evaluating surface properties
WO2017022328A1 (en) * 2015-08-06 2017-02-09 新東工業株式会社 Surface property inspection method and surface property inspection device for steel product
JPWO2017022328A1 (en) * 2015-08-06 2018-06-07 新東工業株式会社 Surface property inspection method and surface property inspection apparatus for steel products
KR20180079284A (en) 2015-11-09 2018-07-10 신토고교 가부시키가이샤 Method of evaluating surface properties of steel
US10768129B2 (en) 2015-11-09 2020-09-08 Sintokogio, Ltd. Surface characteristics evaluation method for steel material
KR20200020939A (en) 2017-07-10 2020-02-26 신토고교 가부시키가이샤 Surface property evaluation method, surface property evaluation device and surface property evaluation system
WO2019012991A1 (en) 2017-07-10 2019-01-17 新東工業株式会社 Surface characteristic evaluation method, surface characteristic evaluation device, and surface characteristic evaluation system
US11442033B2 (en) 2017-07-10 2022-09-13 Sintokogio, Ltd. Surface property inspection method, surface property inspection apparatus, and surface property inspection system
WO2020095485A1 (en) * 2018-11-07 2020-05-14 新東工業株式会社 Deterioration evaluation method
JP2020076623A (en) * 2018-11-07 2020-05-21 新東工業株式会社 Degradation evaluation method
US11561140B2 (en) 2018-11-07 2023-01-24 Sintokogio, Ltd. Deterioration evaluation method
US11994493B2 (en) 2019-03-08 2024-05-28 Sintokogio, Ltd. Method for nondestructive assessment of steel
WO2021132007A1 (en) * 2019-12-24 2021-07-01 日立建機株式会社 Gear reusability determination method and gear reusability determination system
JP2021103088A (en) * 2019-12-24 2021-07-15 日立建機株式会社 Gear wheel reuse propriety determination method and gear wheel reuse propriety determination system
US12007299B2 (en) 2019-12-24 2024-06-11 Hitachi Construction Machinery Co., Ltd. Reusability determination method for gear and reusability determination system for gear

Similar Documents

Publication Publication Date Title
US8269488B2 (en) Eddy current testing method, steel pipe or tube tested by the eddy current testing method, and eddy current testing apparatus for carrying out the eddy current testing method
JPH0792140A (en) Method for evaluating fatigue strength of steel member
Stupakov et al. Evaluation of surface decarburization depth by magnetic Barkhausen noise technique
WO2010050155A1 (en) Barkhausen noise inspection apparatus and inspection method
Kahrobaee et al. Magnetic NDT Technology for characterization of decarburizing depth
Stashkov et al. Magnetic incremental permeability as indicator of compression stress in low-carbon steel
Moorthy Important factors influencing the magnetic Barkhausen noise profile
Stupakov et al. Evaluation of a nitrided case depth by the magnetic Barkhausen noise
Samimi et al. Multi-parameter evaluation of magnetic Barkhausen noise in carbon steel
JPH0466863A (en) Residual stress measuring method by steel working
Samimi et al. Stress response of magnetic barkhausen noise in submarine hull steel: a comparative study
JP2009236896A (en) Magnetic characteristic measuring device and magnetic characteristic measuring method
Stashkov et al. Studying field dependence of reversible magnetic permeability in plastically deformed low-carbon steels
Piotrowski et al. The influence of elastic deformation on the properties of the magnetoacoustic emission (MAE) signal for GO electrical steel
JP3223596B2 (en) Method and apparatus for detecting deformation behavior in metal material
Stashkov et al. Magnetic non-destructive testing of residual stresses in low carbon steels
Artetxe et al. Analysis of the voltage drop across the excitation coil for magnetic characterization of skin passed steel samples
JPH05203503A (en) Apparatus for measuring residual stress distribution of steel
Piotrowski et al. Possibility of application of magnetoacoustic emission for the assessment of plastic deformation level in ferrous materials
EP0704686B1 (en) Stress sensor
JP3087499B2 (en) Non-destructive measurement method of quench hardened layer depth
Jolfaei et al. EM sensor system for characterisation of advanced high strength strip steels
Novikov et al. Testing uniaxial stresses in steels with allowance for their magnetoelastic sensitivity
JP2010085372A (en) Device and method for measuring magnetic characteristics
JPH05281063A (en) Measuring device for tension of steel material