JP6104161B2 - Surface characteristic evaluation apparatus and surface characteristic evaluation method - Google Patents

Surface characteristic evaluation apparatus and surface characteristic evaluation method Download PDF

Info

Publication number
JP6104161B2
JP6104161B2 JP2013526026A JP2013526026A JP6104161B2 JP 6104161 B2 JP6104161 B2 JP 6104161B2 JP 2013526026 A JP2013526026 A JP 2013526026A JP 2013526026 A JP2013526026 A JP 2013526026A JP 6104161 B2 JP6104161 B2 JP 6104161B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic sensor
core
coil
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013526026A
Other languages
Japanese (ja)
Other versions
JP2014500476A (en
Inventor
良保 牧野
良保 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2013526026A priority Critical patent/JP6104161B2/en
Publication of JP2014500476A publication Critical patent/JP2014500476A/en
Application granted granted Critical
Publication of JP6104161B2 publication Critical patent/JP6104161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/80Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating mechanical hardness, e.g. by investigating saturation or remanence of ferromagnetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • G01B7/105Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance for measuring thickness of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/127Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9046Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents by analysing electrical signals

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、表面特性評価装置及び表面特性評価方法に係わり、特に、被検査対象の残留応力や硬度等の表面特性を評価する表面特性評価装置及び表面特性評価方法に関する。   The present invention relates to a surface characteristic evaluation apparatus and a surface characteristic evaluation method, and more particularly to a surface characteristic evaluation apparatus and a surface characteristic evaluation method for evaluating surface characteristics such as residual stress and hardness of an object to be inspected.

自動車部品などに使用されるギア、シャフトなどの鋼材製品では、耐摩耗性向上、疲労強度向上などのために、熱処理、窒化処理などによる表面硬化、ショットピーニング処理などの表面処理が行われている。
従来、これら製品の表面処理後の残留応力、硬度などの表面特性の評価は、抜き取りの破壊検査により行われていた。そのため、製品を全て直接検査できない、破壊検査であるため検査された製品が使えなくなるなどの問題があった。
Steel products such as gears and shafts used for automobile parts are subjected to surface treatment such as heat treatment, surface hardening by nitriding treatment, shot peening treatment, etc. to improve wear resistance and fatigue strength. .
Conventionally, evaluation of surface characteristics such as residual stress and hardness after surface treatment of these products has been performed by sampling destructive inspection. For this reason, there are problems that all products cannot be inspected directly, and that the inspected product cannot be used because of destructive inspection.

そこで、製品の表面特性を非破壊で検査できる装置の開発の要請が高まっている。このような装置として、例えば、特許文献1には、ショットピーニング処理面上方に配置されるコイルを備えた検査回路に周波数を変化させながら交流信号を入力して、検査回路におけるインピーダンスの周波数応答特性を用いて検査対象における残留応力の発生状態を検査するショットピーニング処理面の非破壊検査装置が開示されている   Therefore, there is an increasing demand for development of an apparatus capable of nondestructively inspecting the surface characteristics of products. As such an apparatus, for example, in Patent Document 1, an AC signal is input to a test circuit having a coil disposed above the shot peening processing surface while changing the frequency, and the frequency response characteristic of the impedance in the test circuit. A non-destructive inspection device for shot peening treatment surfaces that inspects the state of occurrence of residual stress in an inspection object is disclosed.

特開2008−2973号公報JP 2008-2773 A

しかし、上述の技術のように、開磁路構造のコイルをショットピーニング処理面の上方に配置する検査装置では、被検査対象とセンサとの間での磁気の減衰、漏洩が大きいため、検出感度及び測定値の再現性が低下するという問題があった。また、周波数を変化させながら交流信号を入力してインピーダンスの周波数応答特性を求める方法を用いるため、被検査対象への磁気の浸透深さが変化し、深さ方向に分布を有する表面特性を正確に把握することができないという問題があった。   However, in the inspection apparatus in which the coil having the open magnetic circuit structure is disposed above the shot peening processing surface as in the above-described technique, the detection sensitivity is large because the magnetic attenuation and leakage between the inspection target and the sensor are large. In addition, there is a problem that the reproducibility of the measured value is lowered. In addition, since the method of obtaining the frequency response characteristics of the impedance by inputting an AC signal while changing the frequency is used, the penetration depth of the magnetism into the object to be inspected changes, and the surface characteristics having a distribution in the depth direction are accurately determined. There was a problem that could not be grasped.

そこで、本発明は、熱処理、窒化処理、ショットピーニング処理などの表面処理を行った被検査対象の表面特性を、非破壊で精度よく評価することができる表面特性評価装置及び表面特性評価方法を提供することを目的とする。   Accordingly, the present invention provides a surface property evaluation apparatus and a surface property evaluation method that can accurately and non-destructively evaluate the surface properties of an object to be inspected that have undergone surface treatment such as heat treatment, nitriding treatment, and shot peening treatment. The purpose is to do.

上述した目的を達成するために、本発明は、ショットピーニング処理を行った鋼材である被検査対象の表面特性を評価する表面特性評価装置であって、磁性体からなるコアと、このコアに巻回されたコイルとを備え、被検査対象の表面の磁気特性を検出する磁気センサと、この磁気センサのコイルに、単一の周波数の交流電力を供給する電力供給手段と、交流電力が供給されているコイルから磁気検出信号を入力し、この磁気検出信号をコイルに供給された交流電力と同じ周波数の搬送波により同期検波することにより、磁気センサにより検出された被検査対象の表面の磁気特性に応じた表面特性信号を出する信号検出手段と、予め設定された表面特性信号と被検査対象の表面特性との関係を示す値を記憶する記憶手段と、この記憶手段に記憶された値と、単一の周波数の交流電力を供給することにより信号検出手段によって検出された単一の表面特性信号とに基づいて、被検査対象の表面特性を算出する表面特性算出手段と、を有し、電力供給手段は磁気センサのコイルに一定の周波数の交流電力を供給し、これにより、磁気センサのコアが励磁されると共に被検査対象の表面と閉磁路を形成するようになっており、磁気センサのコアは、中央の脚部にコイルが巻回されるE字型コアであることを特徴としている。 In order to achieve the above-described object, the present invention is a surface property evaluation apparatus for evaluating the surface property of a test object, which is a steel material subjected to shot peening treatment, a core made of a magnetic material, and a core wound around the core. A magnetic sensor for detecting the magnetic characteristics of the surface of the object to be inspected, power supply means for supplying AC power of a single frequency to the coil of the magnetic sensor, and AC power is supplied. The magnetic detection signal is input from the coil, and the magnetic detection signal is synchronously detected by a carrier wave having the same frequency as the AC power supplied to the coil, so that the magnetic characteristics of the surface of the inspection target detected by the magnetic sensor are obtained. a signal detecting means for detect the surface characteristic signal corresponding storage means for storing a value that indicates the relationship between the predetermined surface characteristic signal and the surface characteristics of the object to be inspected, in the storage means And憶value, based on a single surface characteristics signals thus detected in the signal detecting means by supplying the AC power of single frequency, the surface characteristic calculating means for calculating the surface characteristics of the object to be inspected The power supply means supplies alternating current power of a certain frequency to the coil of the magnetic sensor so that the core of the magnetic sensor is excited and forms a closed magnetic circuit with the surface of the object to be inspected. The core of the magnetic sensor is an E-shaped core in which a coil is wound around a central leg.

このように構成された本発明によれば、電力供給手段により交流電力を供給された磁気センサにより被検査対象の表面の磁気特性を検出し、信号検出手段において磁気センサにより検出された被検査対象の表面の磁気特性に応じた表面特性信号を検出し、表面特性算出手段により、記憶手段に記憶されている予め設定された表面特性信号と被検査対象の表面特性との関係を示す値と表面特性信号とに基づいて、被検査対象の表面特性を算出することができる。
磁気センサは、コアが被検査対象の表面と閉磁路を形成するので、被検査対象と磁気センサとの間での磁気の減衰、漏洩を防ぐことができる。これにより、表面特性信号の強度を増大させることができ、磁気センサによる磁気特性の検出感度を向上させることができるので、被検査対象の表面特性を非破壊で精度良く評価することができる。
また、一定の周波数の交流電力をコイルに供給することにより、被検査対象の表面特性を評価するため、被検査対象への磁気の浸透深さが一定とすることができるので、深さ方向に分布を有する表面特性も正確に把握することができる。
さらに、磁気センサのコアは、中央の脚部にコイルが巻回されるE字型コアに形成されており、コイルがコアに挟まれているので、磁気の漏れを効果的に抑制することができ、閉磁路を形成しやすい。
ここで、「表面特性を算出する」とは、残留応力や硬度などの絶対値を算出するのみならず、表面特性信号が基準値に対して所定の範囲にあるか否かを算出することにより表面特性を評価する場合を含む概念である。
According to the present invention configured as described above, the magnetic characteristics of the surface of the inspection target are detected by the magnetic sensor supplied with AC power by the power supply means, and the inspection target detected by the magnetic sensor in the signal detection means A surface characteristic signal corresponding to the magnetic characteristic of the surface of the surface is detected, and the surface characteristic calculation means detects the surface characteristic value stored in the storage means and the value indicating the relationship between the surface characteristics of the object to be inspected and the surface Based on the characteristic signal, the surface characteristic of the object to be inspected can be calculated.
In the magnetic sensor, since the core forms a closed magnetic circuit with the surface of the inspection target, it is possible to prevent magnetic attenuation and leakage between the inspection target and the magnetic sensor. As a result, the strength of the surface characteristic signal can be increased, and the detection sensitivity of the magnetic characteristic by the magnetic sensor can be improved, so that the surface characteristic of the object to be inspected can be evaluated with high accuracy in a non-destructive manner.
In addition, by supplying AC power of a certain frequency to the coil, the surface characteristics of the object to be inspected are evaluated, so that the magnetic penetration depth into the object to be inspected can be made constant. The surface characteristics having the distribution can also be accurately grasped.
Further, the core of the magnetic sensor is formed in an E-shaped core in which a coil is wound around a central leg, and the coil is sandwiched between the cores, so that magnetic leakage can be effectively suppressed. And it is easy to form a closed magnetic circuit.
Here, “calculating surface characteristics” means not only calculating absolute values such as residual stress and hardness, but also calculating whether or not the surface characteristic signal is within a predetermined range with respect to a reference value. It is a concept including the case of evaluating surface characteristics.

本発明において、好ましくは、予め設定された表面特性信号と被検査対象の表面特性との関係を示す値は、表面特性信号と被検査対象との対応関係を示す検量線である。
このように構成された本発明によれば、被検査物の表面特性(例えば、窒化処理を施した際の窒化層の厚みや、ショットピーニング処理を施した際の圧縮残留応力の深さ等)を算出することができる。
In the present invention, it is preferable that the preset value indicating the relationship between the surface characteristic signal and the surface property of the inspection target is a calibration curve indicating the correspondence between the surface characteristic signal and the inspection target.
According to the present invention thus configured, the surface characteristics of the object to be inspected (for example, the thickness of the nitrided layer when the nitriding treatment is performed, the depth of the compressive residual stress when the shot peening treatment is performed, etc.) Can be calculated.

本発明において、好ましくは、予め設定された表面特性信号と被検査対象の表面特性との関係を示す値は、所定の表面特性を有する基準試料における表面特性信号を示す基準値である。
このように構成された本発明によれば、測定した表面特性信号とこの基準値との差分を算出することにより、被検査物の良否判定(例えば、窒化処理を施した際の窒化層の厚みや、ショットピーニング処理を施した際の圧縮残留応力の深さ等が十分であるか否か)を行なうことができる。
In the present invention, it is preferable that the value indicating the relationship between the preset surface characteristic signal and the surface characteristic of the object to be inspected is a reference value indicating the surface characteristic signal in a reference sample having a predetermined surface characteristic.
According to the present invention configured as described above, the quality of the inspected object is determined by calculating the difference between the measured surface characteristic signal and the reference value (for example, the thickness of the nitride layer when nitriding is performed) And whether or not the depth of compressive residual stress when the shot peening process is performed is sufficient.

本発明において、好ましくは、磁気センサのコアは、被検査対象の表面形状に沿って接触可能である。
このように構成された本発明によれば、磁気センサのコアは、被検査対象の表面形状に沿って接触可能であるため、コアを被検査対象の表面に接触させることにより被検査対象と磁気センサとの間での磁気の減衰、漏洩を防ぐことができる。これにより、表面特性信号の強度を増大させることができ、磁気センサによる磁気特性の検出感度を向上させることができる。
In this invention, Preferably, the core of a magnetic sensor can contact along the surface shape of to-be-inspected object.
According to the present invention configured as described above, since the core of the magnetic sensor can be contacted along the surface shape of the object to be inspected, the core to be in contact with the surface of the object to be inspected can be magnetically coupled to the object to be inspected. Magnetic attenuation and leakage with the sensor can be prevented. Thereby, the intensity | strength of a surface characteristic signal can be increased and the detection sensitivity of the magnetic characteristic by a magnetic sensor can be improved.

本発明において、好ましくは、磁気センサのコアは、このコアと被検査対象の表面との距離が3.0mm以下となるように配置可能である。
このように構成された本発明によれば、被検査対象が強磁性体である場合のように、磁気センサにより検出される磁気特性の検出信号が強い場合には、コアと被検査対象の表面との距離が3.0mm以下になるように配置可能であるので、磁気センサと被検査対象の表面とにより閉磁路を形成し、十分な強度の磁気検出信号を得ることができるので、被検査対象の表面特性を非破壊で精度良く評価することができる。
In the present invention, preferably, the core of the magnetic sensor can be arranged such that the distance between the core and the surface of the object to be inspected is 3.0 mm or less.
According to the present invention configured as described above, when the detection signal of the magnetic characteristic detected by the magnetic sensor is strong, such as when the inspection target is a ferromagnetic material, the core and the surface of the inspection target Since the magnetic sensor and the surface of the object to be inspected can form a closed magnetic path, and a sufficiently strong magnetic detection signal can be obtained. The surface characteristics of the object can be evaluated accurately with non-destructiveness.

本発明において、好ましくは、磁気センサのコアは、このコアと被検査対象の表面との距離が0.3mm以下となるように配置可能である。
このように構成された本発明によれば、コアと被検査対象の表面との距離が0.3mm以下になるように配置することができるので、磁気特性の検出信号が弱い被検査対象を測定する場合でも、被検査対象の表面特性を非破壊で精度良く評価することができる。
In the present invention, preferably, the core of the magnetic sensor can be arranged such that the distance between the core and the surface of the object to be inspected is 0.3 mm or less.
According to the present invention configured as described above, since the distance between the core and the surface of the object to be inspected can be arranged to be 0.3 mm or less, the object to be inspected having a weak magnetic property detection signal is measured. Even in this case, the surface characteristics of the object to be inspected can be evaluated with high accuracy in a nondestructive manner.

本発明において、好ましくは、磁気センサのコアは強磁性体により形成されている。
このように構成された本発明によれば、磁気センサのコアは強磁性体により形成されているので、コア内部の磁束密度を高くすることができ、S/N比(S:被検査対象へ浸透する磁気、N:漏れ磁気)を高くすることができるので、磁気センサによる磁気特性の検出感度を向上させることができる。
In the present invention, preferably, the core of the magnetic sensor is formed of a ferromagnetic material.
According to the present invention configured as described above, since the core of the magnetic sensor is formed of a ferromagnetic material, the magnetic flux density inside the core can be increased, and the S / N ratio (S: to the object to be inspected). (Magnetic penetration, N: leakage magnetism) can be increased, so that the detection sensitivity of the magnetic characteristics by the magnetic sensor can be improved.

また、上述した目的を達成するために、本発明は、ショットピーニング処理を行った鋼材である被検査対象の表面特性を評価する表面特性評価装置であって、磁性体からなるコアと、このコアに巻回されたコイルとを備え、被検査対象の表面の磁気特性を検出する磁気センサと、この磁気センサのコイルに、単一の周波数の交流電力を供給する電力供給手段と、交流電力が供給されているコイルから磁気検出信号を入力し、この磁気検出信号をコイルに供給された交流電力と同じ周波数の搬送波により同期検波することにより、磁気センサにより検出された被検査対象の表面の磁気特性に応じた表面特性信号を出する信号検出手段と、予め設定された表面特性信号と被検査対象の表面特性との関係を示す値を記憶する記憶手段と、この記憶手段に記憶された値と、単一の周波数の交流電力を供給することにより信号検出手段によって検出された単一の表面特性信号とに基づいて、被検査対象の表面特性を算出する表面特性算出手段と、を有し、電力供給手段は磁気センサのコイルに一定の周波数の交流電力を供給し、これにより、磁気センサのコアが励磁されると共に被検査対象の表面と閉磁路を形成するようになっており、磁気センサのコアは、コイルが巻回された円柱部と、この円柱部を囲んで配置され且つその一端が基部により閉止された円管部とを備え、円柱部が円管部の軸心に配置され且つ円柱部の一端が円管部の基部に接続されていることを特徴としている。
このように構成された本発明によれば、コイルがコアに囲まれているので、磁気の漏れを効果的に抑制することができ、閉磁路を形成しやすい。また、コアは、製造が容易であり低コストである。
In order to achieve the above-described object, the present invention is a surface property evaluation apparatus for evaluating the surface property of a test object that is a steel material subjected to shot peening treatment, and a core made of a magnetic material, and the core A magnetic sensor for detecting the magnetic characteristics of the surface of the object to be inspected, power supply means for supplying AC power of a single frequency to the coil of the magnetic sensor, and AC power A magnetic detection signal is input from the supplied coil, and this magnetic detection signal is synchronously detected by a carrier wave having the same frequency as the AC power supplied to the coil, whereby the surface magnetism detected by the magnetic sensor is detected. a signal detecting means for the surface characteristic signal to detect in accordance with the characteristics, a storage means for storing a value indicating a preset surface characteristic signal and relationship between the surface characteristics of the object to be inspected, the storage Surface properties based the value stored in the stage, on the single surface characteristics signals thus detected in the signal detecting means by supplying the AC power of single frequency to calculate the surface characteristics of the object to be inspected And a power supply means for supplying AC power of a constant frequency to the coil of the magnetic sensor, thereby exciting the core of the magnetic sensor and forming a closed magnetic circuit with the surface of the object to be inspected. The magnetic sensor core includes a cylindrical part around which a coil is wound, and a circular pipe part that is disposed so as to surround the cylindrical part and whose one end is closed by a base part. It is arranged at the axial center of the pipe part, and one end of the cylindrical part is connected to the base part of the circular pipe part.
According to the present invention configured as described above, since the coil is surrounded by the core, magnetic leakage can be effectively suppressed and a closed magnetic circuit can be easily formed. In addition, the core is easy to manufacture and low cost.

上述した目的を達成するため、本発明は、ショットピーニング処理を行った鋼材である被検査対象の表面特性を評価する表面特性評価方法であって、磁性体からなるコアと、このコアに巻回されたコイルとを備え、被検査対象の表面の磁気特性を検出する磁気センサを準備する工程と、この磁気センサのコイルに単一の周波数の交流電力を供給し、これにより磁気センサのコアを励磁すると共に被検査対象の表面と閉磁路を形成する工程と、交流電力が供給されているコイルから磁気検出信号を入力し、この磁気検出信号をコイルに供給された交流電力と同じ周波数の搬送波により同期検波することにより、磁気センサにより検出された被検査対象の表面の磁気特性に応じた表面特性信号を出する工程と、予め設定された表面特性信号と被検査対象の表面特性との関係を示す値を記憶する工程と、この記憶された関係と、単一の周波数の交流電力を供給することにより表面特性信号を検出する工程において検出された単一の表面特性信号とに基づいて、被検査対象の表面特性を算出する工程と、を有し、磁気センサのコアは、中央の脚部にコイルが巻回されるE字型コアであることを特徴としている。 In order to achieve the above-described object, the present invention provides a surface property evaluation method for evaluating the surface property of a test object that is a steel material subjected to shot peening treatment, and includes a core made of a magnetic material, and a core wound around the core. A magnetic sensor for detecting the magnetic characteristics of the surface of the object to be inspected, and supplying a single frequency AC power to the coil of the magnetic sensor, thereby providing a core for the magnetic sensor. Energizing and forming a closed magnetic circuit with the surface of the object to be inspected, and inputting a magnetic detection signal from a coil to which AC power is supplied, and this magnetic detection signal is a carrier wave having the same frequency as the AC power supplied to the coil by by synchronous detection, the a step of detect a surface characteristic signal corresponding to the magnetic properties of the detected object to be inspected on the surface by the magnetic sensor, and the surface characteristics signal set in advance A step of storing a value that indicates the relationship between the surface characteristics of査subject, and the stored relationship, a single detected in the step of detecting a surface characteristic signal by supplying the AC power of single frequency based on the surface characteristics signal, characterized in that have a, a step of calculating the surface characteristics of the object to be inspected, the core of the magnetic sensor is an E-shaped core coil in the center of the leg portion is wound It is said.

本発明の実施形態による表面特性評価装置を示すブロック図である。It is a block diagram which shows the surface characteristic evaluation apparatus by embodiment of this invention. 本発明の実施形態による表面特性評価装置の磁気センサを示す説明図である。It is explanatory drawing which shows the magnetic sensor of the surface characteristic evaluation apparatus by embodiment of this invention. 本発明の実施形態による表面特性評価装置の磁気センサの複数の変更例をそれぞれ示す斜視図である。It is a perspective view which shows the some modification of the magnetic sensor of the surface characteristic evaluation apparatus by embodiment of this invention, respectively. 本発明の実施例1においてショットピーニング処理を行った鋼材における残留応力の深さ方向の分布を示す線図である。It is a diagram which shows distribution of the depth direction of the residual stress in the steel materials which performed the shot peening process in Example 1 of this invention. 本発明の実施例1においてショットピーニング処理を行った鋼材における残留オーステナイト量の深さ方向の分布を示す線図である。It is a diagram which shows distribution of the depth direction of the amount of retained austenite in the steel materials which performed the shot peening process in Example 1 of this invention. 本発明の実施例2における硬度と表面特性信号の電圧値との関係を示す線図である。It is a diagram which shows the relationship between the hardness in Example 2 of this invention, and the voltage value of a surface characteristic signal. 本発明の実施例4における窒化層の厚みと表面特性信号の電圧値との関係を示す線図である。It is a diagram which shows the relationship between the thickness of the nitride layer in Example 4 of this invention, and the voltage value of a surface characteristic signal.

以下、添付図面を参照して、本発明の実施形態による表面特性評価装置について説明する。   Hereinafter, a surface property evaluation apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.

図1に示すように、本発明の実施形態による表面特性評価装置1は、被検査対象の表面の透磁率変化や逆磁歪効果などの磁気特性を検出して磁気検出信号を出力する磁気センサ10と、この磁気センサ10に交流電力を供給する電力供給手段20と、磁気センサ10により検出された磁気検出信号から被検査対象の表面の磁気特性に応じた表面特性信号を抽出及び検出する信号検出手段21と、この信号検出手段21により得られた表面特性信号に基づいて、残留応力や硬度などの被検査対象の表面特性を算出する表面特性算出手段22と、予め設定された表面特性信号と信号検出手段により検出された表面特性との関係を示す値、具体的に言えば、表面特性信号と表面特性との関係を示す検量線や硬度や残留応力などの表面特性が既知である基準試料を用いてあらかじめ取得した表面特性信号(基準値)を記憶する記憶手段23と、を備えている。また、表面特性算出手段22により算出された表面特性を表示する表示画面、音声出力装置などの表示手段24を備えている。
なお、表面特性評価装置1は、例えば、増幅器などの他の構成要素を備えることができる。
As shown in FIG. 1, a surface property evaluation apparatus 1 according to an embodiment of the present invention detects a magnetic property such as a permeability change and an inverse magnetostriction effect on a surface to be inspected and outputs a magnetic detection signal. And power supply means 20 for supplying AC power to the magnetic sensor 10, and signal detection for extracting and detecting a surface characteristic signal corresponding to the magnetic characteristic of the surface of the inspection object from the magnetic detection signal detected by the magnetic sensor 10 Means 21, surface characteristic calculation means 22 for calculating the surface characteristics of the object to be inspected such as residual stress and hardness based on the surface characteristic signal obtained by the signal detection means 21, and a preset surface characteristic signal A value indicating the relationship between the surface characteristics detected by the signal detection means, specifically, a calibration curve indicating the relationship between the surface characteristics signal and the surface characteristics, and surface characteristics such as hardness and residual stress are known. Storage means 23 for storing the previously acquired surface characteristic signal (reference value) using a reference sample, and a. Further, a display screen 24 for displaying the surface characteristics calculated by the surface characteristic calculation means 22 and a display means 24 such as an audio output device are provided.
The surface property evaluation apparatus 1 can include other components such as an amplifier.

ここで、「表面特性」とは、被検査対象の表面近傍であって、表面処理の影響が及ぶ所定の深さまでの特性、「表面の磁気特性」とは、磁気センサ10により励起された磁気が浸透して検出される被検査対象の所定の深さまでの領域の磁気特性、を示す。   Here, “surface characteristics” means characteristics near the surface of the object to be inspected and up to a predetermined depth affected by the surface treatment, and “surface magnetic characteristics” means magnetism excited by the magnetic sensor 10. Shows the magnetic characteristics of the region up to a predetermined depth of the object to be inspected, which is detected through penetration.

信号検出手段21は、磁気センサ10から出力された磁気検出信号を同期検波する同期検波器21aと、同期検波器21aの検波出力から被検査対象の表面の磁気特性に応じた表面特性信号を抽出するローパスフィルタ21bとを備えている。   The signal detector 21 synchronously detects the magnetic detection signal output from the magnetic sensor 10, and extracts a surface characteristic signal corresponding to the magnetic characteristic of the surface of the inspection target from the detection output of the synchronous detector 21a. And a low-pass filter 21b.

磁気センサ10は、磁気センサ10と被検査対象の表面とにより閉磁路を形成することができる形状となってる。ここでは、このような磁気センサの一例として、E字型のコアを備えた磁気センサについて説明する。E字型のコアは製造が容易であり低コストである。   The magnetic sensor 10 has a shape capable of forming a closed magnetic path by the magnetic sensor 10 and the surface of the inspection target. Here, a magnetic sensor having an E-shaped core will be described as an example of such a magnetic sensor. The E-shaped core is easy to manufacture and low cost.

図2に示すように、磁気センサ10は磁性体からなるE字型のコア11と、コイル12とから構成される。コア11は、中央の脚部11aと、脚部11aの両脇に配置された脚部11b及び11cと、被検査対象30の表面30aに対向して配置される基部11dと、で構成されている。脚部11a、11b、11cの一端はそれぞれ基部11dに連結されている。コア11は、基部11dから表面30aに向かってE字型になるように立設されている。コイル12は、脚部11aに巻かれている。   As shown in FIG. 2, the magnetic sensor 10 includes an E-shaped core 11 made of a magnetic material and a coil 12. The core 11 includes a central leg portion 11a, leg portions 11b and 11c disposed on both sides of the leg portion 11a, and a base portion 11d disposed to face the surface 30a of the inspection target 30. Yes. One end of each of the leg portions 11a, 11b, and 11c is connected to the base portion 11d. The core 11 is erected so as to be E-shaped from the base portion 11d toward the surface 30a. The coil 12 is wound around the leg portion 11a.

ここで、コア11は、好ましくは、強磁性体により形成されており、この場合には、コア11内部の磁束密度を高くすることができ、S/N比(S:鋼材へ浸透する磁気、N:漏れ磁気)を高くすることができるので、磁気センサ10による磁気特性の検出感度を向上させることができる。強磁性体としては、例えば鉄、スーパーマロイ、パーマロイ、珪素鋼、フェライト(Mn−Zn系、Ni−Zn系)、カーボニル鉄ダスト、モリブデン・パーマロイ、センダスト等が挙げられる。   Here, the core 11 is preferably formed of a ferromagnetic material. In this case, the magnetic flux density inside the core 11 can be increased, and the S / N ratio (S: magnetism penetrating into the steel material, N: leakage magnetism) can be increased, so that the detection sensitivity of the magnetic characteristics by the magnetic sensor 10 can be improved. Examples of the ferromagnetic material include iron, supermalloy, permalloy, silicon steel, ferrite (Mn—Zn series, Ni—Zn series), carbonyl iron dust, molybdenum permalloy, Sendust, and the like.

磁気センサ10は、脚部11a、11b、11cのそれぞれの先端部が被検査対象30の表面30aに接触可能に形成されている。例えば、被検査対象30が平板の場合には、脚部11a、11b、11cの先端部が同一平面上になるように形成されている。   The magnetic sensor 10 is formed so that the tip portions of the leg portions 11a, 11b, and 11c can come into contact with the surface 30a of the inspection target 30. For example, when the inspection target 30 is a flat plate, the legs 11a, 11b, and 11c are formed so that the tip ends thereof are on the same plane.

次に、表面特性評価装置1による被検査対象の表面特性評価方法について説明する。ここでは、窒化処理により表面30a近傍に化合物層30bが形成された鋼材を被検査対象30の例として説明する。   Next, a method for evaluating the surface property of the inspection object by the surface property evaluation apparatus 1 will be described. Here, a steel material in which the compound layer 30b is formed in the vicinity of the surface 30a by nitriding will be described as an example of the inspection target 30.

まず、脚部11a、11b、11cが被検査対象30の表面30aに接触するように磁気センサ10を配置する。なお、本実施形態における「接触」とは、脚部11a、11b、11cの少なくとも1部が被検査対象30の表面30aに接触している場合も含まれる(例えば、該表面30aの形状や磁気センサ10の製造上の誤差等により該脚部11a、11b、11cの全体が該表面30aに密着していない場合、等)。   First, the magnetic sensor 10 is arranged so that the legs 11a, 11b, and 11c are in contact with the surface 30a of the inspection target 30. The “contact” in the present embodiment includes a case where at least one of the legs 11a, 11b, and 11c is in contact with the surface 30a of the inspection target 30 (for example, the shape of the surface 30a and the magnetic field). When the entire leg portions 11a, 11b, 11c are not in close contact with the surface 30a due to manufacturing errors of the sensor 10, etc.).

磁気センサ10を被検査対象30の表面30aに接触するように配置することにより、被検査対象30と磁気センサ10との間での磁気の減衰、漏洩を防ぐことができる。これにより、表面特性信号の強度を増大させることができ、磁気センサ10による磁気特性の検出感度を向上させることができる。   By disposing the magnetic sensor 10 so as to be in contact with the surface 30 a of the inspection target 30, it is possible to prevent magnetic attenuation and leakage between the inspection target 30 and the magnetic sensor 10. Thereby, the intensity | strength of a surface characteristic signal can be increased and the detection sensitivity of the magnetic characteristic by the magnetic sensor 10 can be improved.

磁気センサ10と被検査対象30の表面(化合物層30b)とにより閉磁路を形成し、十分な強度の磁気検出信号を得ることができれば、磁気センサ10を被検査対象30の表面30aに接触させなくてもよい。ここで、磁気センサ10と被検査対象30の表面との距離は、3.0mm以下が望ましく、さらに望ましくは0.3mm以下である。磁気検出信号が弱い材質の場合、十分な磁気検出信号の強度を得るために当該距離を0.3mm以下とすることが望ましい。被検査対象30が例えば強磁性体のように磁気検出信号が強い材質の場合は、磁気センサ10により十分な磁気検出信号の強度を得ることができるので、当該距離を3.0mm以下とすることができる。   If the magnetic sensor 10 and the surface (compound layer 30b) of the test object 30 form a closed magnetic circuit and a sufficiently strong magnetic detection signal can be obtained, the magnetic sensor 10 is brought into contact with the surface 30a of the test object 30. It does not have to be. Here, the distance between the magnetic sensor 10 and the surface of the inspection object 30 is desirably 3.0 mm or less, and more desirably 0.3 mm or less. In the case of a material having a weak magnetic detection signal, it is desirable that the distance be 0.3 mm or less in order to obtain a sufficient magnetic detection signal intensity. When the object 30 to be inspected is made of a material having a strong magnetic detection signal such as a ferromagnetic material, the magnetic sensor 10 can obtain a sufficient magnetic detection signal intensity, so that the distance is set to 3.0 mm or less. Can do.

なお、被検査対象物30の形状に合わせて、磁気センサ10の被検査対象物30に対する配置方向を変更するようにしても良い。具体的には、被検査対象物30が曲面、例えば、後述する図3(D)に示すように、被検査対象物30が円柱形状の場合には、磁気センサ10を円柱形状の長手方向に沿って配置するのがよい。   Note that the arrangement direction of the magnetic sensor 10 with respect to the inspection object 30 may be changed in accordance with the shape of the inspection object 30. Specifically, when the object 30 to be inspected is a curved surface, for example, as shown in FIG. 3D described later, when the object 30 to be inspected has a cylindrical shape, the magnetic sensor 10 is placed in the longitudinal direction of the columnar shape. It is good to arrange along.

磁気センサ10と被検査対象30の表面との距離は、検量線や基準値を取得した時の距離と同一にしておくことにより、リフトオフによる表面特性信号の変動誤差を排除することができる。
非接触で評価することにより、例えば、被検査対象30を搬送しながら停止させずに測定することができるので、検査に要する時間を短縮することができる。
By making the distance between the magnetic sensor 10 and the surface of the object 30 to be inspected the same as the distance when the calibration curve or the reference value is acquired, the fluctuation error of the surface characteristic signal due to lift-off can be eliminated.
By performing the non-contact evaluation, for example, measurement can be performed without stopping the object to be inspected 30 while it is being conveyed, so that the time required for inspection can be shortened.

次に、電力供給手段20によりコイル12に所定の周波数の交流電力を供給すると、コア11に交流磁界Hが発生し、周波数に応じて被検査対象30の化合物層30bの所定の深さまで磁気が浸透し、脚部11a、11c及び被検査対象30の化合物層30bの所定の深さまでの領域により閉磁路が形成される。   Next, when AC power of a predetermined frequency is supplied to the coil 12 by the power supply means 20, an AC magnetic field H is generated in the core 11, and magnetism is generated to a predetermined depth of the compound layer 30b of the test object 30 according to the frequency. The closed magnetic circuit is formed by the region that penetrates and reaches the predetermined depths of the legs 11a and 11c and the compound layer 30b of the test object 30.

コイル12に鎖交する交流磁界Hは、磁気が浸透した化合物層30bの磁気特性に応じて変化するため、コイル12により化合物層30bの特性(表面特性)に応じた磁気特性を検出することができる。そして、コイル12から、表面特性に応じて変化する透磁率、逆磁歪効果に基づいて生じる磁気量変化を磁気検出信号として信号検出手段21へ出力する。   Since the alternating magnetic field H linked to the coil 12 changes according to the magnetic property of the compound layer 30b through which the magnetism penetrates, the coil 12 can detect the magnetic property according to the property (surface property) of the compound layer 30b. it can. The coil 12 outputs a change in magnetic quantity generated based on the magnetic permeability and the inverse magnetostriction effect according to the surface characteristics to the signal detection means 21 as a magnetic detection signal.

表面特性と磁気特性との関係では、例えば、表面が硬化したり、化合物層が形成されたりすると透磁率は低下する。ショットピーニング処理などにより圧縮の残留応力を付与した場合には、逆磁歪効果により透磁率が低下する。透磁率が低下すると磁気回路における磁気量が低減するため、磁気検出信号の強度が低下する。   Regarding the relationship between the surface characteristics and the magnetic characteristics, for example, when the surface is cured or a compound layer is formed, the magnetic permeability decreases. When compressive residual stress is applied by shot peening or the like, the magnetic permeability decreases due to the inverse magnetostrictive effect. When the magnetic permeability decreases, the amount of magnetism in the magnetic circuit decreases, so the strength of the magnetic detection signal decreases.

交流電力の周波数は、被検査対象30の材質、評価する特性、評価する深さなどに応じて適宜設定する。例えば、鋼材の最表層面から100〜200μmまでの深さに対して集中的に磁気を浸透させるように設定することができる。   The frequency of the AC power is appropriately set according to the material of the object 30 to be inspected, the characteristics to be evaluated, the depth to be evaluated, and the like. For example, it can set so that magnetism may penetrate | infiltrate intensively with respect to the depth of 100-200 micrometers from the outermost layer surface of steel materials.

信号検出手段21では、磁気センサ10から入力された磁気検出信号より、被検査対象30の表面30aの磁気特性(化合物層30bの磁気特性特性)に応じた表面特性信号を電圧信号として検出する。
磁気センサ10から入力された磁気検出信号は同期検波器21aに入力され、同期検波器21aにおいて、電力供給手段20によりコイル12に供給された交流電力と同じ周波数の搬送波により検波される。同期検波器21aの検波出力は、ローパスフィルタ21bに出力され、ローパスフィルタ21bでは検波出力から被検査対象30の表面30aの磁気特性に応じた表面特性信号を電圧信号として抽出し、表面特性算出手段22に出力する。
The signal detection means 21 detects a surface characteristic signal corresponding to the magnetic characteristic of the surface 30 a of the test object 30 (magnetic characteristic characteristic of the compound layer 30 b) as a voltage signal from the magnetic detection signal input from the magnetic sensor 10.
The magnetic detection signal input from the magnetic sensor 10 is input to the synchronous detector 21a, and the synchronous detector 21a detects the carrier wave having the same frequency as the AC power supplied to the coil 12 by the power supply means 20. The detection output of the synchronous detector 21a is output to the low-pass filter 21b. The low-pass filter 21b extracts a surface characteristic signal corresponding to the magnetic characteristic of the surface 30a of the inspection object 30 from the detection output as a voltage signal, and surface characteristic calculation means 22 to output.

表面特性算出手段22は、信号検出手段21により得られた信号に基づいて、残留応力や硬度などの被検査対象30の表面特性を算出する。表面特性算出手段22は、電圧と表面特性との関係として記憶手段23に記憶された検量線に基づいて、硬度、残留応力値などを算出することができる。ここで、被検査対象30の表面特性を管理する値として表面特性信号の電圧値のみで十分な場合には、検量線による表面特性の算出を行わなくてもよい。   The surface characteristic calculation means 22 calculates the surface characteristics of the inspection object 30 such as residual stress and hardness based on the signal obtained by the signal detection means 21. The surface characteristic calculation unit 22 can calculate the hardness, the residual stress value, and the like based on the calibration curve stored in the storage unit 23 as the relationship between the voltage and the surface characteristic. Here, when only the voltage value of the surface characteristic signal is sufficient as a value for managing the surface characteristic of the inspection object 30, the calculation of the surface characteristic by the calibration curve may not be performed.

表面特性算出手段22は、算出された表面特性が所定の範囲内であるか否かにより良否判定を行うことができるようにしてもよい。   The surface property calculation means 22 may be able to make a pass / fail determination based on whether or not the calculated surface property is within a predetermined range.

また、所定の表面特性を示す基準試料の表面特性信号(基準値)と測定した表面特性信号との差分値に基づいて良否判定を行うようにしても良い。この場合、まず、所定の表面特性を示す基準試料を用意してあらかじめ表面特性信号を測定しておき、記憶手段23に基準値として記憶させておく。表面特性算出手段22は、この基準値と測定した表面特性信号との差分値を算出して、表面特性信号が所定の範囲にあるか否かにより良否判定を行う。   Further, the quality determination may be performed based on a difference value between a surface characteristic signal (reference value) of a reference sample showing a predetermined surface characteristic and a measured surface characteristic signal. In this case, first, a reference sample showing a predetermined surface characteristic is prepared, a surface characteristic signal is measured in advance, and stored in the storage means 23 as a reference value. The surface characteristic calculation unit 22 calculates a difference value between the reference value and the measured surface characteristic signal, and determines whether the surface characteristic signal is within a predetermined range.

例えば、被検査対象30の表面の硬度をH±αに管理したいときに、基準試料として硬度Hの試料を用いて基準値を設定し、αに対応する表面特性信号の差分値を閾値として設定し、算出された差分値が閾値を超えた場合に不良と判定することができる。   For example, when it is desired to manage the hardness of the surface of the inspection object 30 to H ± α, a reference value is set using a sample of hardness H as a reference sample, and a difference value of a surface characteristic signal corresponding to α is set as a threshold value. When the calculated difference value exceeds the threshold value, it can be determined as defective.

表面特性算出手段22により算出された表面特性、判定結果は、表示手段24に出力され、表示手段24は、画面、音声出力などにより表面特性、判定結果を表示する。例えば、硬度、残留応力などの表面特性の値を表示することができる。また、表面特性信号の電圧値のみを表示することもできる。   The surface characteristics and determination results calculated by the surface characteristic calculation means 22 are output to the display means 24, and the display means 24 displays the surface characteristics and determination results by a screen, audio output, or the like. For example, values of surface characteristics such as hardness and residual stress can be displayed. Also, only the voltage value of the surface characteristic signal can be displayed.

表面特性算出手段22において、被検査対象の良否判定を行う場合には、警告音や警告灯により不良を警告表示することもできる。   When the surface characteristic calculation means 22 performs pass / fail determination of an object to be inspected, it is possible to display a warning of a defect by a warning sound or a warning lamp.

表面特性評価装置1によれば、磁気センサ10と被検査対象30の表面30aから所定の深さまでの領域とにより閉磁路を形成するので、被検査対象30と磁気センサ10との間での磁気の減衰、漏洩を防ぐことができる。これにより、表面特性信号の強度を増大させることができ、磁気センサ10による磁気特性の検出感度を向上させることができるので、被検査対象30の表面特性を非破壊で精度良く評価することができる。   According to the surface characteristic evaluation apparatus 1, a closed magnetic path is formed by the magnetic sensor 10 and the region from the surface 30 a of the inspection target 30 to a predetermined depth, and therefore, the magnetism between the inspection target 30 and the magnetic sensor 10 is formed. Attenuation and leakage can be prevented. As a result, the strength of the surface characteristic signal can be increased, and the detection sensitivity of the magnetic characteristic by the magnetic sensor 10 can be improved, so that the surface characteristic of the object to be inspected 30 can be evaluated nondestructively with high accuracy. .

また、検査中は、一定の周波数の交流電力をコイル12に供給することにより、被検査対象30の表面特性を評価するようにしているので、被検査対象30への磁気の浸透深さが一定とすることができるので、深さ方向に分布を有する表面特性も正確に把握することができる。これにより、窒化層の厚さの評価などを行うことができる。   Further, during inspection, the surface characteristics of the inspection object 30 are evaluated by supplying AC power of a constant frequency to the coil 12, so that the penetration depth of the magnetism into the inspection object 30 is constant. Therefore, it is possible to accurately grasp the surface characteristics having a distribution in the depth direction. Thereby, the thickness of the nitride layer can be evaluated.

本実施形態では、被検査対象30として窒化処理により化合物層30bが形成された鋼材の表面特性評価について説明したが、硬度、残留応力など表面の磁気特性変化を伴う表面特性も正確に評価することができる。   In this embodiment, the surface property evaluation of the steel material in which the compound layer 30b is formed by nitriding as the object to be inspected 30 has been described. Can do.

電力供給手段20によりコイル12に供給する交流電力の周波数を変えることにより、磁気の浸透深さを変えることができる。周波数が高いほど磁気の浸透深さが浅くなるため、表面から浅い領域の表面特性を評価することができる。このように交流電力の周波数を変えることにより、残留応力の深さ方向の分布や化合物層の厚さなどを評価することができる。   By changing the frequency of the AC power supplied to the coil 12 by the power supply means 20, the magnetic penetration depth can be changed. Since the magnetic penetration depth becomes shallower as the frequency is higher, the surface characteristics of the shallow region from the surface can be evaluated. By changing the frequency of the AC power in this way, the distribution of residual stress in the depth direction, the thickness of the compound layer, and the like can be evaluated.

次に、図3により、磁気センサの変形例を説明する。上述した実施形態では、E字型のコア11を備えた磁気センサを用いたが、これに限定されるものではなく、磁気センサと被検査対象の表面から所定の深さまでの領域とにより閉磁路を形成するならば、各種形状のコアを備えた磁気センサを用いることができる。   Next, a modified example of the magnetic sensor will be described with reference to FIG. In the above-described embodiment, the magnetic sensor including the E-shaped core 11 is used. However, the present invention is not limited to this, and a closed magnetic circuit is formed by the magnetic sensor and a region from the surface of the inspection target to a predetermined depth. Can be used, a magnetic sensor having variously shaped cores can be used.

図3(A)に示すように、コイル42が巻回された円柱部41aと、この円柱部41aを囲んで配置され且つその一端が基部41cにより閉止された円管部41bとを備え、円柱部41aが円管部41bの軸心に配置され且つ円柱部41aの一端が円管部41bの基部に接続されている磁気センサ40を用いることができる。この磁気センサ40によれば、コイル42全周が円管部41bにより囲まれているため、磁気の漏れを効果的に抑制することができ、閉磁路を形成しやすい。   As shown in FIG. 3 (A), a cylindrical part 41a around which a coil 42 is wound, and a circular pipe part 41b arranged so as to surround the cylindrical part 41a and closed at one end by a base part 41c are provided. It is possible to use the magnetic sensor 40 in which the portion 41a is arranged at the axial center of the circular tube portion 41b and one end of the cylindrical portion 41a is connected to the base portion of the circular tube portion 41b. According to the magnetic sensor 40, since the entire circumference of the coil 42 is surrounded by the circular tube portion 41b, magnetic leakage can be effectively suppressed, and a closed magnetic circuit is easily formed.

また、図3(B)に示すようなU型コア51にコイル52を巻回した磁気センサ50や図3(C)に示すようなL型コア61にコイル62を巻回した磁気センサ60などを用いることもできる。   Further, a magnetic sensor 50 in which a coil 52 is wound around a U-shaped core 51 as shown in FIG. 3B, a magnetic sensor 60 in which a coil 62 is wound around an L-shaped core 61 as shown in FIG. Can also be used.

更に、図3(D)に示すように、脚部11a、11b、11cの形状を、被検査対象30の形状に沿って接触可能に構成したコア11を用いた磁気センサ10を用いることもできる。   Further, as shown in FIG. 3D, a magnetic sensor 10 using a core 11 configured such that the shapes of the legs 11a, 11b, and 11c can be brought into contact with the shape of the object to be inspected 30 can be used. .

次に、上述した本発明の実施形態による表面特性評価装置の効果を説明する。
(1)本実施形態による表面特性評価装置1によれば、磁気センサ10と被検査対象30の表面30aから所定の深さまでの領域とにより閉磁路を形成するので、被検査対象30と磁気センサ10との間での磁気の減衰、漏洩を防ぐことができる。これにより、表面特性信号の強度を増大させることができ、磁気センサ10による磁気特性の検出感度を向上させることができるので、被検査対象30の表面特性を非破壊で精度良く評価することができる。
また、コイル12に一定の周波数の交流電力を供給することにより、被検査対象30の表面特性を評価するため、被検査対象30への磁気の浸透深さが一定とすることができるので、深さ方向に分布を有する表面特性も正確に把握することができる。
Next, the effect of the surface property evaluation apparatus according to the above-described embodiment of the present invention will be described.
(1) According to the surface characteristic evaluation apparatus 1 according to the present embodiment, a closed magnetic path is formed by the magnetic sensor 10 and the region from the surface 30a of the inspection target 30 to a predetermined depth. 10 can be prevented from being attenuated or leaked. As a result, the strength of the surface characteristic signal can be increased, and the detection sensitivity of the magnetic characteristic by the magnetic sensor 10 can be improved, so that the surface characteristic of the object to be inspected 30 can be evaluated nondestructively with high accuracy. .
Further, since the surface characteristics of the inspection object 30 are evaluated by supplying AC power of a constant frequency to the coil 12, the depth of magnetic penetration into the inspection object 30 can be made constant. Surface characteristics having a distribution in the vertical direction can also be accurately grasped.

(2)磁気センサ10のコア11を被検査対象30の表面30aに接触するように配置することにより、被検査対象30と磁気センサ10との間での磁気の減衰、漏洩を防ぐことができる。これにより、表面特性信号の強度を増大させることができ、磁気センサ10による磁気特性の検出感度を向上させることができる。また、リフトオフによる表面特性信号の変動誤差を排除することができる。 (2) By disposing the core 11 of the magnetic sensor 10 so as to be in contact with the surface 30a of the inspection target 30, magnetic attenuation and leakage between the inspection target 30 and the magnetic sensor 10 can be prevented. . Thereby, the intensity | strength of a surface characteristic signal can be increased and the detection sensitivity of the magnetic characteristic by the magnetic sensor 10 can be improved. In addition, the fluctuation error of the surface characteristic signal due to lift-off can be eliminated.

(3)被検査対象が強磁性体である場合には、磁気センサ10のコア11を、被検査対象30と非接触、かつ、コア11と被検査対象30の表面30aとの距離が3.0mm以下になるように配置する場合、磁気センサ10と被検査対象30の表面とにより閉磁路を形成し、十分な強度の磁気検出信号を得ることができるので、被検査対象30の表面特性を非破壊で精度良く評価することができる。得られる磁気検出信号が弱い被検査対象を測定する場合でも、コアと被検査対象の表面との距離が0.3mm以下になるように配置することで、被検査対象の表面特性を非破壊で精度良く評価することができる。
また、非接触で評価することにより、例えば、被検査対象30を搬送しながら停止させずに測定することができるので、検査に要する時間を短縮することができる。
(3) When the inspection object is a ferromagnetic material, the core 11 of the magnetic sensor 10 is not in contact with the inspection object 30 and the distance between the core 11 and the surface 30a of the inspection object 30 is 3. When the magnetic sensor 10 is arranged to be 0 mm or less, a closed magnetic circuit is formed by the magnetic sensor 10 and the surface of the object 30 to be inspected, and a sufficiently strong magnetic detection signal can be obtained. Non-destructive and accurate evaluation is possible. Even when measuring an object to be inspected with a weak magnetic detection signal, the surface characteristics of the object to be inspected can be made nondestructive by arranging the core and the surface of the object to be inspected so that the distance between them is 0.3 mm or less. It can be evaluated with high accuracy.
In addition, by performing the non-contact evaluation, for example, it is possible to perform measurement without stopping the object to be inspected 30 while conveying the object to be inspected, so that the time required for inspection can be shortened.

(4)コア11はフェライトなどの強磁性体により形成した場合、コア11内部の磁束密度を高くすることができ、S/N比(S:鋼材へ浸透する磁気、N:漏れ磁気)を高くすることができ、磁気センサ10による磁気特性の検出感度を向上させることができる。 (4) When the core 11 is formed of a ferromagnetic material such as ferrite, the magnetic flux density inside the core 11 can be increased, and the S / N ratio (S: magnetism penetrating the steel material, N: leakage magnetism) is increased. The detection sensitivity of the magnetic characteristics by the magnetic sensor 10 can be improved.

以下に、本発明の表面特性評価装置による表面特性測定の実施例を示す。   Examples of surface property measurement using the surface property evaluation apparatus of the present invention are shown below.

(実施例1)
本実施例では、ショットピーニング処理を行った鋼材の表面の残留応力の評価を行った。
Example 1
In this example, the residual stress on the surface of the steel material subjected to the shot peening treatment was evaluated.

評価試料として、SCH420Hガス浸炭材の表面にショットピーニング処理を行った表面処理材を用いた。比較材として表面処理を行っていない未処理材を用いた。ショットピーニング処理は、粒子径100μm、硬さHv900〜950の噴射材を用い、噴射圧0.2MPaで行った。   As an evaluation sample, a surface-treated material obtained by performing shot peening treatment on the surface of the SCH420H gas carburized material was used. An untreated material that was not subjected to surface treatment was used as a comparative material. The shot peening process was performed using an injection material having a particle diameter of 100 μm and a hardness of Hv 900 to 950 at an injection pressure of 0.2 MPa.

残留応力の評価は、E字型コアの磁気センサを表面に接触させて行った。コアは強磁性体のMn−Zn系フェライトからなり、4mm×4mm×3mmの角柱状の脚部が3mm間隔で配置されて形成されている。コイルに供給する交流電流は、20kHz、3.5mAとした。   The residual stress was evaluated by bringing an E-shaped core magnetic sensor into contact with the surface. The core is made of a ferromagnetic Mn—Zn-based ferrite, and is formed by arranging prismatic leg portions of 4 mm × 4 mm × 3 mm at intervals of 3 mm. The alternating current supplied to the coil was 20 kHz and 3.5 mA.

表面特性評価装置により検出された表面特性信号の電圧は、未処理材の0.79Vに対して表面処理材では0.71Vと低下していた。   The voltage of the surface characteristic signal detected by the surface characteristic evaluation apparatus was reduced to 0.71 V for the surface-treated material compared to 0.79 V for the untreated material.

図4に表面処理材における残留応力の深さ方向の分布を示す。残留応力は、表面処理材を電解研磨によって数μmずつ研磨しながらX線応力測定法により測定した。図5に示すように表面処理材では未処理材に比べ大きな圧縮残留応力が深さ15μmをピークに付与されていることがわかる。   FIG. 4 shows the distribution of the residual stress in the surface treatment material in the depth direction. The residual stress was measured by an X-ray stress measurement method while polishing the surface treatment material by several μm by electrolytic polishing. As shown in FIG. 5, it can be seen that the surface treated material has a larger compressive residual stress than the untreated material, with a depth of 15 μm as a peak.

SCH420Hガス浸炭材には残留オーステナイトが存在し、ショットピーニング処理によってマルテンサイト変態するため残留オーステナイト量は減少する。図5に残留オーステナイト量の深さ方向の分布を示す。図5に示すように表面処理材では未処理材に比べ残留オーステナイト量が大きく減少していることがわかる。   Residual austenite is present in the SCH420H gas carburized material, and the amount of retained austenite decreases because of martensitic transformation by shot peening. FIG. 5 shows the distribution of the retained austenite amount in the depth direction. As shown in FIG. 5, it can be seen that the amount of retained austenite is significantly reduced in the surface-treated material compared to the untreated material.

圧縮の残留応力が付与された場合、残留オーステナイト量の低減による透磁率変化に比べ、逆磁歪効果による磁気特性変化の方が支配的であり、表面処理材全体の透磁率変化としては減少している。
表面特性信号の電圧変化は透磁率変化と対応しており、本発明の表面特性評価装置により、残留応力の精度良い評価が可能であることが確認された。
When compressive residual stress is applied, the change in magnetic properties due to the inverse magnetostriction effect is more dominant than the change in permeability due to the reduction in the amount of retained austenite, and the change in permeability of the entire surface treatment material is reduced. Yes.
The voltage change of the surface characteristic signal corresponds to the permeability change, and it was confirmed that the residual stress can be evaluated with high accuracy by the surface characteristic evaluation apparatus of the present invention.

(実施例2)
本実施例では、熱処理により硬度を変化させた鋼材(SKS3)を用いて、鋼材の硬度に対する表面特性信号の評価を行った。
(Example 2)
In this example, the surface characteristic signal with respect to the hardness of the steel material was evaluated using a steel material (SKS3) whose hardness was changed by heat treatment.

硬度の評価は、E字型コアの磁気センサを表面に接触させて行った。コイルに供給する交流電流は、20kHz、3.5mAとした。   The hardness was evaluated by bringing an E-shaped core magnetic sensor into contact with the surface. The alternating current supplied to the coil was 20 kHz and 3.5 mA.

図6にビッカース硬度と表面特性信号の電圧(装置出力)との関係を示す。ビッカース硬度が高くなる程、対応して表面特性信号の電圧が低下する傾向が認められ、本発明の表面特性評価装置により、硬度の精度良い評価が可能であることが確認された。   FIG. 6 shows the relationship between the Vickers hardness and the surface characteristic signal voltage (device output). The higher the Vickers hardness, the correspondingly the tendency that the voltage of the surface characteristic signal decreases, and it was confirmed that the surface characteristic evaluation apparatus of the present invention can evaluate the hardness with high accuracy.

(実施例3)
本実施例では、磁気センサを被検査対象に接触させる効果について評価した。
(Example 3)
In this example, the effect of bringing the magnetic sensor into contact with the test object was evaluated.

評価試料及び条件は実施例1と同じである。コアを接触させず、評価試料表面からの距離が1mmとなるように配置した場合、表面特性信号は0.2Vと十分な信号強度であったが、コアを接触させた場合の表面特性信号は0.8Vと大幅に増大した。これにより、磁気センサのコアを被検出対象に接触させることにより表面特性信号の強度が増大し、検出感度を向上させることができることが確認された。   The evaluation sample and conditions are the same as in Example 1. When the core is not contacted and the distance from the surface of the sample to be evaluated is 1 mm, the surface characteristic signal is 0.2 V and the signal strength is sufficient, but the surface characteristic signal when the core is contacted is It greatly increased to 0.8V. Thus, it was confirmed that the strength of the surface characteristic signal is increased by bringing the core of the magnetic sensor into contact with the detection target, and the detection sensitivity can be improved.

(実施例4)
本実施例では、窒化処置により窒化層を設けた鋼材を用いて、窒化層の厚みに対する表面特性信号の評価を行った。鋼材(SKD61)をNH3雰囲気中で500〜600℃にて加熱することにより、厚みが1.5μm〜10.0μmの窒化層を設けた。
Example 4
In this example, the surface characteristic signal with respect to the thickness of the nitride layer was evaluated using a steel material provided with a nitride layer by nitriding treatment. The steel material (SKD61) was heated at 500 to 600 ° C. in an NH 3 atmosphere to provide a nitride layer having a thickness of 1.5 μm to 10.0 μm.

評価は、E字型コアの磁気センサを表面に接触させて行った。コイルに供給する交流電流は、20kHz、3.5mAとした。   The evaluation was performed by bringing an E-shaped core magnetic sensor into contact with the surface. The alternating current supplied to the coil was 20 kHz and 3.5 mA.

表面特性評価装置により検出された表面特性信号の電圧は、図7に示すように窒化層の厚みが増加するに従って増加していた。これにより、窒化層の厚みの精度良い評価が可能であることが確認された。   The voltage of the surface characteristic signal detected by the surface characteristic evaluation apparatus increased as the thickness of the nitride layer increased as shown in FIG. Thereby, it was confirmed that the thickness of the nitride layer can be accurately evaluated.

Claims (10)

ショットピーニング処理を行った鋼材である被検査対象の表面特性を評価する表面特性評価装置であって、
磁性体からなるコアと、このコアに巻回されたコイルとを備え、被検査対象の表面の磁気特性を検出する磁気センサと、
この磁気センサのコイルに、単一の周波数の交流電力を供給する電力供給手段と、
交流電力が供給されている前記コイルから磁気検出信号を入力し、この磁気検出信号を前記コイルに供給された交流電力と同じ周波数の搬送波により同期検波することにより、前記磁気センサにより検出された被検査対象の表面の磁気特性に応じた表面特性信号を出する信号検出手段と、
予め設定された表面特性信号と被検査対象の表面特性との関係を示す値を記憶する記憶手段と、
この記憶手段に記憶された値と、前記単一の周波数の交流電力を供給することにより前記信号検出手段によって検出された単一の表面特性信号とに基づいて、被検査対象の表面特性を算出する表面特性算出手段と、を有し、
前記電力供給手段は前記磁気センサのコイルに一定の周波数の交流電力を供給し、これにより、前記磁気センサの前記コアが励磁されると共に被検査対象の表面と閉磁路を形成するようになっており、
前記磁気センサのコアは、中央の脚部にコイルが巻回されるE字型コアであることを特徴とする表面特性評価装置。
A surface property evaluation apparatus for evaluating the surface property of a test object that is a steel material subjected to shot peening treatment,
A magnetic sensor comprising a core made of a magnetic material and a coil wound around the core, and detecting magnetic characteristics of the surface of the object to be inspected;
Power supply means for supplying AC power of a single frequency to the coil of the magnetic sensor;
A magnetic detection signal is input from the coil to which AC power is supplied, and this magnetic detection signal is synchronously detected by a carrier wave having the same frequency as that of the AC power supplied to the coil, thereby detecting the target detected by the magnetic sensor. a signal detecting means for detect the surface characteristic signal corresponding to the magnetic properties of the inspected surface,
Storage means for storing a value indicating a relationship between a preset surface characteristic signal and a surface characteristic of an inspection target;
The value stored in the storage means, wherein based on a single surface characteristics signals thus detected in the signal detecting means by supplying the AC power of single frequency, the surface properties of the object to be inspected And a surface property calculation means for calculating,
The power supply means supplies AC power of a certain frequency to the coil of the magnetic sensor, whereby the core of the magnetic sensor is excited and forms a closed magnetic circuit with the surface of the object to be inspected. And
The magnetic sensor core is an E-shaped core in which a coil is wound around a central leg portion.
ショットピーニング処理を行った鋼材である被検査対象の表面特性を評価する表面特性評価装置であって、
磁性体からなるコアと、このコアに巻回されたコイルとを備え、被検査対象の表面の磁気特性を検出する磁気センサと、
この磁気センサのコイルに、単一の周波数の交流電力を供給する電力供給手段と、
交流電力が供給されている前記コイルから磁気検出信号を入力し、この磁気検出信号を前記コイルに供給された交流電力と同じ周波数の搬送波により同期検波することにより、前記磁気センサにより検出された被検査対象の表面の磁気特性に応じた表面特性信号を出する信号検出手段と、
予め設定された表面特性信号と被検査対象の表面特性との関係を示す値を記憶する記憶手段と、
この記憶手段に記憶された値と、前記単一の周波数の交流電力を供給することにより前記信号検出手段によって検出された単一の表面特性信号とに基づいて、被検査対象の表面特性を算出する表面特性算出手段と、を有し、
前記電力供給手段は前記磁気センサのコイルに一定の周波数の交流電力を供給し、これにより、前記磁気センサの前記コアが励磁されると共に被検査対象の表面と閉磁路を形成するようになっており、
前記磁気センサのコアは、コイルが巻回された円柱部と、この円柱部を囲んで配置され且つその一端が基部により閉止された円管部とを備え、円柱部が円管部の軸心に配置され且つ円柱部の一端が円管部の基部に接続されていることを特徴とする表面特性評価装置。
A surface property evaluation apparatus for evaluating the surface property of a test object that is a steel material subjected to shot peening treatment,
A magnetic sensor comprising a core made of a magnetic material and a coil wound around the core, and detecting magnetic characteristics of the surface of the object to be inspected;
Power supply means for supplying AC power of a single frequency to the coil of the magnetic sensor;
A magnetic detection signal is input from the coil to which AC power is supplied, and this magnetic detection signal is synchronously detected by a carrier wave having the same frequency as that of the AC power supplied to the coil, thereby detecting the target detected by the magnetic sensor. a signal detecting means for detect the surface characteristic signal corresponding to the magnetic properties of the inspected surface,
Storage means for storing a value indicating a relationship between a preset surface characteristic signal and a surface characteristic of an inspection target;
The value stored in the storage means, wherein based on a single surface characteristics signals thus detected in the signal detecting means by supplying the AC power of single frequency, the surface properties of the object to be inspected And a surface property calculation means for calculating,
The power supply means supplies AC power of a certain frequency to the coil of the magnetic sensor, whereby the core of the magnetic sensor is excited and forms a closed magnetic circuit with the surface of the object to be inspected. And
The core of the magnetic sensor includes a cylindrical part around which a coil is wound, and a circular pipe part which is disposed so as to surround the cylindrical part and whose one end is closed by a base part, and the cylindrical part is an axis of the circular pipe part The surface characteristic evaluation apparatus is characterized in that one end of the cylindrical part is connected to the base part of the circular pipe part.
前記予め設定された表面特性信号と被検査対象の表面特性との関係を示す値は、表面特性信号と被検査対象との対応関係を示す検量線である請求項1又は2に記載の表面特性評価装置。   3. The surface characteristic according to claim 1, wherein the value indicating the relationship between the preset surface characteristic signal and the surface characteristic of the inspection target is a calibration curve indicating a correspondence relationship between the surface characteristic signal and the inspection target. Evaluation device. 前記予め設定された表面特性信号と被検査対象の表面特性との関係を示す値は、所定の表面特性を有する基準試料における表面特性信号を示す基準値である請求項1又は2に記載の表面特性評価装置。   The surface according to claim 1 or 2, wherein the value indicating the relationship between the preset surface characteristic signal and the surface characteristic of the object to be inspected is a reference value indicating a surface characteristic signal in a reference sample having a predetermined surface characteristic. Characteristic evaluation device. 前記磁気センサのコアは、被検査対象の表面形状に沿って接触可能である請求項1乃至4の何れか1項に記載の表面特性評価装置。   The surface characteristic evaluation apparatus according to claim 1, wherein the core of the magnetic sensor can be contacted along a surface shape of an inspection target. 前記磁気センサのコアは、このコアと被検査対象の表面との距離が3.0mm以下になるように配置可能である請求項1乃至4の何れか1項に記載の表面検査特性評価装置。   The surface inspection characteristic evaluation apparatus according to any one of claims 1 to 4, wherein the core of the magnetic sensor can be arranged such that a distance between the core and the surface of the inspection target is 3.0 mm or less. 前記磁気センサのコアは、このコアと被検査対象の表面との距離が0.3mm以下になるように配置可能である請求項1乃至4の何れか1項に記載の表面検査特性評価装置。   The surface inspection characteristic evaluation apparatus according to any one of claims 1 to 4, wherein the core of the magnetic sensor can be arranged such that a distance between the core and the surface of the inspection target is 0.3 mm or less. 前記磁気センサのコアは、強磁性体により形成されている請求項1乃至請求項4の何れか1項に記載の表面特性評価装置。   The surface characteristic evaluation apparatus according to claim 1, wherein the core of the magnetic sensor is formed of a ferromagnetic material. 前記強磁性体はフェライトである請求項8に記載の表面特性評価装置。   The surface property evaluation apparatus according to claim 8, wherein the ferromagnetic material is ferrite. ショットピーニング処理を行った鋼材である被検査対象の表面特性を評価する表面特性評価方法であって、
磁性体からなるコアと、このコアに巻回されたコイルとを備え、被検査対象の表面の磁気特性を検出する磁気センサを準備する工程と、
この磁気センサのコイルに単一の周波数の交流電力を供給し、これにより前記磁気センサの前記コアを励磁すると共に被検査対象の表面と閉磁路を形成する工程と、
交流電力が供給されている前記コイルから磁気検出信号を入力し、この磁気検出信号を前記コイルに供給された交流電力と同じ周波数の搬送波により同期検波することにより、前記磁気センサにより検出された被検査対象の表面の磁気特性に応じた表面特性信号を出する工程と、
予め設定された表面特性信号と被検査対象の表面特性との関係を示す値を記憶する工程と、
この記憶された関係と、前記単一の周波数の交流電力を供給することにより前記表面特性信号を検出する工程において検出された単一の表面特性信号とに基づいて、被検査対象の表面特性を算出する工程と、
を有し、
前記磁気センサのコアは、中央の脚部にコイルが巻回されるE字型コアであることを特徴とする表面特性評価方法。
A surface property evaluation method for evaluating the surface property of a test object that is a steel material subjected to shot peening treatment,
A step of preparing a magnetic sensor comprising a core made of a magnetic material and a coil wound around the core, and detecting a magnetic characteristic of the surface of the object to be inspected;
Supplying AC power of a single frequency to the coil of the magnetic sensor, thereby exciting the core of the magnetic sensor and forming a closed magnetic circuit with the surface of the object to be inspected;
A magnetic detection signal is input from the coil to which AC power is supplied, and this magnetic detection signal is synchronously detected by a carrier wave having the same frequency as that of the AC power supplied to the coil, thereby detecting the target detected by the magnetic sensor. a step of surface properties signal to detect in accordance with the magnetic properties of the inspected surface,
Storing a value indicating a relationship between a preset surface characteristic signal and a surface characteristic of an inspection target;
This and stored relationship, said single based on a single surface characteristics signal detected in the step of detecting the surface characteristic signal by supplying the AC power frequency, the surface properties of the object to be inspected A calculating step;
Have
The surface property evaluation method according to claim 1, wherein the core of the magnetic sensor is an E-shaped core in which a coil is wound around a central leg.
JP2013526026A 2010-12-21 2011-12-21 Surface characteristic evaluation apparatus and surface characteristic evaluation method Active JP6104161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013526026A JP6104161B2 (en) 2010-12-21 2011-12-21 Surface characteristic evaluation apparatus and surface characteristic evaluation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010284720 2010-12-21
JP2010284720 2010-12-21
PCT/JP2011/080544 WO2012086845A1 (en) 2010-12-21 2011-12-21 Surface property magnetic evaluation device and method
JP2013526026A JP6104161B2 (en) 2010-12-21 2011-12-21 Surface characteristic evaluation apparatus and surface characteristic evaluation method

Publications (2)

Publication Number Publication Date
JP2014500476A JP2014500476A (en) 2014-01-09
JP6104161B2 true JP6104161B2 (en) 2017-03-29

Family

ID=45563472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013526026A Active JP6104161B2 (en) 2010-12-21 2011-12-21 Surface characteristic evaluation apparatus and surface characteristic evaluation method

Country Status (3)

Country Link
JP (1) JP6104161B2 (en)
CN (1) CN103119432B (en)
WO (1) WO2012086845A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102200900B1 (en) * 2019-07-12 2021-01-08 임재생 Apparatus For Non-destructive Inspection For Pipes

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2833109A1 (en) * 2013-07-31 2015-02-04 Bayern Engineering GmbH & Co. KG Measurement apparatus with compensation
WO2015125340A1 (en) * 2014-02-21 2015-08-27 新東工業株式会社 Surface-properties inspection/classification device, surface-properties inspection/classification system, and surface-properties inspection/classification method
CN104142365B (en) * 2014-08-13 2016-10-26 爱德森(厦门)电子有限公司 The design of a kind of direct current perseverance magnetic source and using method
CN104112563B (en) * 2014-08-13 2016-06-01 爱德森(厦门)电子有限公司 A kind of designing and employing method exchanging Heng Ciyuan
JP6446304B2 (en) * 2015-03-23 2018-12-26 大同特殊鋼株式会社 Magnetic characteristic evaluation method and magnetic characteristic evaluation apparatus
MX2018000961A (en) * 2015-08-06 2018-06-07 Sintokogio Ltd Surface property inspection method and surface property inspection device for steel product.
CN105823797B (en) * 2016-03-21 2019-07-12 电子科技大学 A kind of induction thermal imagery non-destructive testing device based on symbiosis formula magnetic yoke coil
CN109997038B (en) * 2016-12-01 2023-02-17 东京制纲株式会社 Method and apparatus for evaluating damage of magnetic linear body
WO2019012991A1 (en) * 2017-07-10 2019-01-17 新東工業株式会社 Surface characteristic evaluation method, surface characteristic evaluation device, and surface characteristic evaluation system
CN108890538A (en) * 2018-07-06 2018-11-27 杭州江潮电机有限公司 Reduce the blasting craft method of magnetic bridge position magnetic conductivity in lateral laminated type rotor structure
JP7035923B2 (en) * 2018-09-10 2022-03-15 株式会社Sumco Ingot V-notch evaluation method, ingot V-notch processing method, and ingot V-notch evaluation device
DE102020206906A1 (en) * 2020-06-03 2021-12-09 Robert Bosch Gesellschaft mit beschränkter Haftung Method for monitoring the residual compressive stresses of components in a shot peening process
CN114908224B (en) * 2021-02-08 2024-01-16 中国航发商用航空发动机有限责任公司 Material surface composite strengthening device and method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB573182A (en) * 1943-05-21 1945-11-09 Arthur John King Improvements in or relating to the detection of faults in articles of non-magnetic material
US4495466A (en) * 1982-04-08 1985-01-22 The United States Of America As Represented By The Secretary Of The Air Force Eddy current test probe with circumferential Segments and method of testing material surrounding fastener holes
IT1163522B (en) * 1983-06-15 1987-04-08 Cise Spa METER BODY SURFACE AND SUB-SURFACE DEFECTS METER ABOVE CURIE TEMPERATURE
US4922201A (en) * 1989-01-09 1990-05-01 The United States Of America As Represented By The Secretary Of The Navy Eddy current method for measuring electrical resistivity and device for providing accurate phase detection
JPH0466863A (en) * 1990-07-09 1992-03-03 Toyota Motor Corp Residual stress measuring method by steel working
US5532587A (en) * 1991-12-16 1996-07-02 Vetco Pipeline Services, Inc. Magnetic field analysis method and apparatus for determining stress characteristics in a pipeline
JPH0792140A (en) * 1993-09-27 1995-04-07 Toyota Motor Corp Method for evaluating fatigue strength of steel member
JP3584453B2 (en) * 1995-11-17 2004-11-04 Jfeスチール株式会社 Micro defect detector
US6057684A (en) * 1995-10-31 2000-05-02 Yoshihiro Murakami Magnetic flaw detection apparatus using an E-shaped magnetic sensor and high-pass filter
GB9605843D0 (en) * 1996-03-20 1996-05-22 Ormiston Peter T A device for measuring the thickness of a coating
JP3765188B2 (en) * 1998-07-28 2006-04-12 住友化学株式会社 Carburization measurement method
JP2002156366A (en) * 2000-11-17 2002-05-31 Hitachi Metals Ltd Inspection method of spherical graphitic cast iron member
JP3513601B2 (en) * 2001-06-15 2004-03-31 岩手大学長 Nondestructive measurement method for aging of ferromagnetic materials due to brittleness change
JP4289074B2 (en) * 2003-08-14 2009-07-01 Jfeスチール株式会社 Steel strip manufacturing method
JP5004519B2 (en) 2006-06-22 2012-08-22 株式会社不二製作所 Method and apparatus for nondestructive inspection of shot peened surface
JP2010164306A (en) * 2009-01-13 2010-07-29 Ntn Corp Method and device for hardened depth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102200900B1 (en) * 2019-07-12 2021-01-08 임재생 Apparatus For Non-destructive Inspection For Pipes

Also Published As

Publication number Publication date
JP2014500476A (en) 2014-01-09
CN103119432B (en) 2015-12-02
WO2012086845A1 (en) 2012-06-28
CN103119432A (en) 2013-05-22

Similar Documents

Publication Publication Date Title
JP6104161B2 (en) Surface characteristic evaluation apparatus and surface characteristic evaluation method
JP5850414B2 (en) Surface characteristic inspection apparatus and surface characteristic inspection method
KR20070121506A (en) Nondestructive inspection method and apparatus for a surface processed by shot peening
KR102504193B1 (en) Steel surface property evaluation device and surface property evaluation method
KR102496959B1 (en) Surface property evaluation method, surface property evaluation device, and surface property evaluation system
JP6968791B2 (en) Methods and devices for observing magnetic fields in the material area, as well as the use of the device.
KR102503235B1 (en) Method for evaluating the surface properties of steel
CN111344564A (en) Method and system for non-destructive material inspection
JP5648663B2 (en) Hardened hardened layer thickness inspection device and nickel plating film thickness inspection device
CN107923878B (en) Method and apparatus for inspecting surface characteristics of steel product
JP5557645B2 (en) Barkhausen noise inspection system
JP2012063181A (en) Hardening state inspection device and hardening state inspection method
Surkov et al. Magnetic testing techniques used to analyze gas pipeline tubes
Vértesy et al. Inspection of diesel engine injectors by several electromagnetic nondestructive methods
TW202014701A (en) Method for nondestructive assessment of steel
Yu et al. On damage evaluation method of the ferromagnetic material based on weak magnetic field detection technology
Hillmann et al. A new Barkhausen noise technique for applications at miniaturized geometries
Kumar et al. Use of Magnetic Barkhausen Noise to Evaluate the Mechanical Properties and Residual Stress
Champagne et al. Detection of Thermal Damage in X2M Gears Steel Using Barkhausen Noise Analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160229

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160309

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170228

R150 Certificate of patent or registration of utility model

Ref document number: 6104161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250