JP6446304B2 - Magnetic characteristic evaluation method and magnetic characteristic evaluation apparatus - Google Patents

Magnetic characteristic evaluation method and magnetic characteristic evaluation apparatus Download PDF

Info

Publication number
JP6446304B2
JP6446304B2 JP2015058989A JP2015058989A JP6446304B2 JP 6446304 B2 JP6446304 B2 JP 6446304B2 JP 2015058989 A JP2015058989 A JP 2015058989A JP 2015058989 A JP2015058989 A JP 2015058989A JP 6446304 B2 JP6446304 B2 JP 6446304B2
Authority
JP
Japan
Prior art keywords
magnetic
sample
evaluation
synchronous detection
electromagnetic induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015058989A
Other languages
Japanese (ja)
Other versions
JP2016176885A (en
Inventor
渡邊 裕之
裕之 渡邊
小原 一浩
一浩 小原
佐藤 孝典
孝典 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Daido Electronics Co Ltd
Original Assignee
Daido Steel Co Ltd
Daido Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Daido Electronics Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2015058989A priority Critical patent/JP6446304B2/en
Priority to CN201610170128.1A priority patent/CN105988093B/en
Publication of JP2016176885A publication Critical patent/JP2016176885A/en
Application granted granted Critical
Publication of JP6446304B2 publication Critical patent/JP6446304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は、磁気特性評価方法および磁気特性評価装置に関するものであり、さらに詳しくは、未着磁の状態で着磁後の磁石材料の磁気特性を評価する評価方法およびそれに用いる装置に関するものである。   The present invention relates to a magnetic property evaluation method and a magnetic property evaluation device, and more particularly to an evaluation method for evaluating the magnetic properties of a magnet material after magnetization in an unmagnetized state and a device used therefor. .

希土類磁石を中心に、高い残留磁束密度等、優れた磁気特性を有する磁石が開発されている(例えば特許文献1)。この種の磁石については、その高い磁気特性のために、着磁した状態での取り扱いに不便を要する場合も多く、未着磁の状態で製造者が工場等から出荷し、購入者や使用者等が、取得後に着磁することが一般的である。一般に、磁石材料においては、同じ材料を用いて、同じ方法で製造を行ったとしても、着磁後の磁気特性において、不可避的にばらつきが生じてしまう。製造者が工場等から出荷する段階で、着磁後に所定範囲の磁気特性を発現する磁石製品を、ばらつきの範囲の中から選別しておくことが求められる。   Magnets having excellent magnetic properties such as high residual magnetic flux density have been developed centering on rare earth magnets (for example, Patent Document 1). This type of magnet is often inconvenient to handle in a magnetized state due to its high magnetic properties, and the manufacturer ships it from a factory etc. in an unmagnetized state. Are generally magnetized after acquisition. Generally, even if magnet materials are manufactured by the same method using the same materials, the magnetic characteristics after magnetization will inevitably vary. When a manufacturer ships from a factory or the like, it is required to select a magnet product that exhibits a predetermined range of magnetic characteristics after magnetization from a range of variations.

従来一般には、着磁後の磁気特性を評価する必要性から、未着磁の状態で出荷を行う磁石材料であっても、製造者において着磁を行っていた。例えば、特許文献2においては、着磁した強磁性材料の磁束密度の分布を、ホール素子アレイを備えた装置で計測する方法が開示されている。   Conventionally, because of the necessity of evaluating the magnetic characteristics after magnetization, even a magnet material that is shipped in an unmagnetized state has been magnetized by the manufacturer. For example, Patent Document 2 discloses a method of measuring a magnetic flux density distribution of a magnetized ferromagnetic material with an apparatus including a Hall element array.

このように、未着磁の状態で出荷すべき磁石材料に着磁して磁気特性を評価する場合に、通常は、全製品の中の一部を抜き取って着磁し、磁気特性の検査を行う。抜き取り検査の対象とならなかった大多数の製品は、着磁後の磁気特性の評価を受けることなく、出荷される。   In this way, when magnetic properties are evaluated by magnetizing a magnet material to be shipped in an unmagnetized state, usually a portion of all products are extracted and magnetized, and the magnetic properties are inspected. Do. The majority of products that were not subject to sampling inspection are shipped without being evaluated for magnetic properties after magnetization.

特開平11−329810号公報Japanese Patent Laid-Open No. 11-329810 特開2013−245958号公報JP 2013-245958 A

上記のように、未着磁のまま出荷すべき磁石材料において、抜き取り検査によって着磁および磁気特性の評価を行う場合に、抜き取り検査を受けた個体においては着磁後に所定の磁気特性が得られていたとしても、実際に出荷等された抜き取り検査を受けていない個体において、着磁後に所定の磁気特性を発現しない事態が起こり得る。このように、着磁後に安定して良好な磁気特性を発現する磁石材料を、製造者が未着磁の状態で選別して出荷することは困難である。   As described above, in the magnet material to be shipped without being magnetized, when magnetic and magnetic properties are evaluated by sampling inspection, a predetermined magnetic property is obtained after magnetization in an individual subjected to sampling inspection. Even in such a case, there may occur a situation in which a predetermined magnetic characteristic is not exhibited after magnetization in an individual that has not actually undergone a sampling inspection that has been shipped or the like. Thus, it is difficult for a manufacturer to select and ship a magnet material that stably exhibits good magnetic characteristics after magnetization in an unmagnetized state.

そこで、抜き取り検査ではなく、出荷する全製品に対して着磁を行い、磁気特性を評価し、良品を選別することが考えらる。この場合には、検査後の製品に対して脱磁を行ったうえで、出荷を行うことになる。このように、全製品に対して着磁、検査、脱磁の各工程を経て出荷を行うことは、多大な時間と労力、費用を要し、現実的ではない。   Therefore, instead of sampling inspection, it is conceivable to magnetize all products to be shipped, evaluate magnetic characteristics, and select non-defective products. In this case, the product after inspection is demagnetized before shipment. As described above, it is not practical to ship all products through the steps of magnetization, inspection, and demagnetization, which requires a lot of time, labor and cost.

本発明が解決しようとする課題は、磁石材料が発現する磁気特性を簡便に評価することができる磁気特性評価方法および磁気特性評価装置を提供することにある。   The problem to be solved by the present invention is to provide a magnetic property evaluation method and a magnetic property evaluation device that can easily evaluate magnetic properties expressed by a magnet material.

上記課題を解決するために、本発明にかかる磁気特性評価方法は、交流磁場によって試料に誘導電流を発生させ、前記誘導電流を同期検波によって検出し、同期検波信号を得る電磁誘導測定を、未着磁の磁石材料よりなる評価試料に対して実行する評価試料測定工程と、前記評価試料と同様に形成された複数の未着磁の標準試料に対して、前記電磁誘導測定を行う標準試料測定工程と、前記複数の標準試料を着磁し、磁気特性値を測定する磁気特性値測定工程と、前記複数の標準試料に対し、前記標準試料測定で得られた同期検波信号と、前記磁気特性値測定工程で得られた磁気特性値との間の関係性を見積もる対応工程と、前記対応工程で見積もられた関係性に基づき、前記評価試料測定工程で前記評価試料に対して得られた同期検波信号から、前記評価試料の磁気特性値を見積もる評価工程と、を有することを要旨とする。前記誘導電流の同期検波による検出は、前記誘導電流により発生する磁束を検出コイル(または前記交流磁場を発生させる励磁コイルと兼用のコイル)の起電力として測定することで、簡便に行うことができる。   In order to solve the above-described problems, the magnetic property evaluation method according to the present invention has not yet performed electromagnetic induction measurement in which an induced current is generated in a sample by an alternating magnetic field, the induced current is detected by synchronous detection, and a synchronous detection signal is obtained. An evaluation sample measurement process executed for an evaluation sample made of a magnetized magnet material, and a standard sample measurement for performing the electromagnetic induction measurement on a plurality of unmagnetized standard samples formed in the same manner as the evaluation sample A magnetic property value measuring step of magnetizing the plurality of standard samples and measuring a magnetic property value, a synchronous detection signal obtained by the standard sample measurement for the plurality of standard samples, and the magnetic property Obtained for the evaluation sample in the evaluation sample measurement step based on the corresponding step for estimating the relationship between the magnetic property values obtained in the value measurement step and the relationship estimated in the corresponding step Synchronous detection signal Al, is summarized in that with an evaluation step of estimating the magnetic characteristic values of the evaluation sample. Detection of the induced current by synchronous detection can be easily performed by measuring the magnetic flux generated by the induced current as an electromotive force of a detection coil (or a coil also serving as an excitation coil for generating the alternating magnetic field). .

ここで、前記磁気測定値は、磁束量であることが好ましい。   Here, the magnetic measurement value is preferably a magnetic flux amount.

また、前記交流磁場は、励磁コイルに交流電流を流すことで発生され、前記誘導電流は、前記励磁コイルと兼用または別体の検出コイルに電磁誘導によって流れる電流を、前記励磁コイルに流した交流電流を基準として同期検波することで検出され、該同期検波によって検出された信号の実部の値を、前記対応工程および前記評価工程において、前記同期検波信号として用いることが好ましい。   The alternating magnetic field is generated by passing an alternating current through the exciting coil, and the induced current is an alternating current that flows through the exciting coil through a current that is also used as the exciting coil or separated from the detecting coil by electromagnetic induction. It is preferable to use the value of the real part of the signal detected by synchronous detection with current as a reference and detected by the synchronous detection as the synchronous detection signal in the corresponding step and the evaluation step.

そして、前記対応工程において、所定範囲の磁気特性値に対応する同期検波信号の範囲を、良品範囲として設定し、前記評価工程において、前記評価試料の同期検波信号が前記良品範囲にあれば、前記評価試料を良品と評価するとよい。   In the corresponding step, the range of the synchronous detection signal corresponding to the magnetic characteristic value in a predetermined range is set as a non-defective range, and in the evaluation step, if the synchronous detection signal of the evaluation sample is in the non-defective range, The evaluation sample may be evaluated as a good product.

前記磁石材料は、熱間加工磁石の磁石材料であるとよい。   The magnet material may be a magnet material for a hot work magnet.

本発明にかかる磁気特性評価装置は、交流磁場を発生させ、試料に印加する磁場発生手段と、前記試料において発生した誘導電流を同期検波によって検出する誘導電流検出手段と、を有し、上記のような磁気特性評価方法を実行することを要旨とする。   An apparatus for evaluating magnetic characteristics according to the present invention includes a magnetic field generating means for generating an alternating magnetic field and applying the alternating magnetic field to the sample, and an induced current detecting means for detecting the induced current generated in the sample by synchronous detection. The gist is to execute such a magnetic property evaluation method.

上記発明にかかる磁気特性評価方法においては、磁気特性を評価する対象ではない標準試料に対して、着磁を行い、着磁後の磁気特性を測定している。磁気特性を評価する対象である評価試料に対しては、着磁を行わず、未着磁の状態で電磁誘導測定を行うのみである。そして、標準試料を用いて得られた着磁後の磁気特性と未着磁状態での電磁誘導測定における同期検波信号との間の関係性に基づいて、評価試料において得られた同期検波信号から、着磁した後の評価試料の磁気特性を推定する。このように、評価前の着磁や測定後の脱磁を行うことなく、未着磁の磁石材料よりなる評価試料に対して、簡便に着磁後の磁気特性を評価することができる。工場等から出荷する全製品に対しても、大きな費用や長い時間を要さずに評価を行うことができるので、抜き取り検査を行う場合とは異なり、製造条件等のゆらぎがあっても、着磁後に所定の磁気特性を発現する良品を高確度に選別して出荷等に供することができる。   In the magnetic property evaluation method according to the above invention, a standard sample that is not an object for evaluating magnetic properties is magnetized and the magnetic properties after magnetization are measured. The evaluation sample, which is the object for evaluating the magnetic characteristics, is not magnetized, but is only subjected to electromagnetic induction measurement in an unmagnetized state. Based on the relationship between the magnetic properties after magnetization obtained using the standard sample and the synchronous detection signal in the electromagnetic induction measurement in the non-magnetized state, from the synchronous detection signal obtained in the evaluation sample, The magnetic properties of the evaluation sample after magnetizing are estimated. In this way, the magnetic properties after magnetization can be easily evaluated for an evaluation sample made of an unmagnetized magnet material without performing magnetization before evaluation or demagnetization after measurement. Since all products shipped from factories can be evaluated without requiring large costs and long time, unlike the case of sampling inspection, even if there are fluctuations in manufacturing conditions etc. A non-defective product exhibiting a predetermined magnetic property after magnetism can be selected with high accuracy and used for shipment or the like.

ここで、磁気測定値が、磁束量である場合には、磁気特性値が、同期検波信号との間に良い相関性を示すため、評価試料の磁気特性を、精度良く評価することができる。   Here, when the magnetic measurement value is the amount of magnetic flux, the magnetic characteristic value shows a good correlation with the synchronous detection signal, so that the magnetic characteristic of the evaluation sample can be evaluated with high accuracy.

また、交流磁場が、励磁コイルに交流電流を流すことで発生され、誘導電流が、励磁コイルと兼用または別体の検出コイルに電磁誘導によって流れる電流を、励磁コイルに流した交流電流を基準として同期検波することで検出され、該同期検波によって検出された信号の実部の値を、対応工程および評価工程において、同期検波信号として用いる場合には、試料に流れる誘導電流を、簡便に同期検波することができる。そして、そのようにして得られた実部の値は、虚部の値や絶対値に比べて、磁気特性値と良い相関性を示すので、実部の値を指標とすることで、評価試料の磁気特性値を、精度良く評価することができる。   In addition, an alternating magnetic field is generated by flowing an alternating current through the exciting coil, and an induced current is a current that flows through the induction coil in a separate detection coil that is also used as the exciting coil or the alternating current that flows through the exciting coil. When the value of the real part of the signal detected by the synchronous detection is used as the synchronous detection signal in the corresponding process and the evaluation process, the induced current flowing through the sample can be simply detected synchronously. can do. The real part value thus obtained shows a better correlation with the magnetic property value than the imaginary part value and absolute value. Therefore, by using the real part value as an index, the evaluation sample Can be evaluated with high accuracy.

そして、対応工程において、所定範囲の磁気特性値に対応する同期検波信号の範囲を、良品範囲として設定し、評価工程において、評価試料の磁気特性値が良品範囲にあれば、評価試料を良品と評価する場合には、多数個体の磁石材料の中から、所望の範囲の磁気特性値を有する良品を簡便に選別し、出荷等に供することができる。   Then, in the corresponding step, the range of the synchronous detection signal corresponding to the magnetic characteristic value in the predetermined range is set as a non-defective range, and if the magnetic characteristic value of the evaluation sample is in the non-defective range in the evaluation step, the evaluation sample is regarded as a non-defective product. In the case of evaluation, a non-defective product having a magnetic property value in a desired range can be easily selected from a large number of individual magnetic materials, and can be used for shipment or the like.

磁石材料が、熱間加工磁石の磁石材料である場合には、熱間加工によって、均質な磁石材料が形成されやすいので、磁気特性と電磁誘導測定における同期検波信号との間に、良い相関性が得られる。これにより、評価試料の磁気特性を、精度良く評価することができる。   When the magnet material is a magnet material of a hot-worked magnet, a uniform magnetic material is easily formed by hot working, so there is a good correlation between the magnetic characteristics and the synchronous detection signal in electromagnetic induction measurement. Is obtained. Thereby, the magnetic characteristics of the evaluation sample can be evaluated with high accuracy.

上記発明にかかる磁気特性評価装置を用いれば、上記のような磁気特性評価方法を適用して、磁石材料の磁気特性を未着磁の状態のままで簡便に評価することができる。   If the magnetic characteristic evaluation apparatus concerning the said invention is used, the above magnetic characteristic evaluation methods can be applied, and the magnetic characteristic of a magnet material can be simply evaluated with the state which is not magnetized.

本発明の一実施形態にかかる磁気特性評価装置に備えられる電磁誘導測定装置の概略を示す断面図である。(a)は検査コイルの軸に沿った方向、(b)は検査コイルの軸に垂直な方向の断面を示している。It is sectional drawing which shows the outline of the electromagnetic induction measuring apparatus with which the magnetic characteristic evaluation apparatus concerning one Embodiment of this invention is equipped. (A) is the direction along the axis | shaft of a test | inspection coil, (b) has shown the cross section of the direction perpendicular | vertical to the axis | shaft of a test | inspection coil. 上記電磁誘導測定装置における信号処理を示すブロック図である。It is a block diagram which shows the signal processing in the said electromagnetic induction measuring apparatus. 電磁誘導測定装置の詳細を示す、検査コイルの軸に沿った方向の断面図である。It is sectional drawing of the direction along the axis | shaft of a test | inspection coil which shows the detail of an electromagnetic induction measuring apparatus. 別の例にかかる電磁誘導測定装置の概略を示す断面図であり、(a)は検査コイルの軸に沿った方向、(b)は検査コイルの軸に垂直な方向の断面を示している。It is sectional drawing which shows the outline of the electromagnetic induction measuring device concerning another example, (a) is the direction along the axis | shaft of a test | inspection coil, (b) has shown the cross section of the direction perpendicular | vertical to the axis | shaft of a test | inspection coil. 標準試料における同期検波信号の実部と着磁後の磁束量の関係の一例を示す図である。It is a figure which shows an example of the relationship between the real part of the synchronous detection signal in a standard sample, and the magnetic flux amount after magnetization.

以下、本発明の実施形態にかかる磁気特性評価方法および磁気特性評価装置について、図面を参照しながら説明する。   Hereinafter, a magnetic property evaluation method and a magnetic property evaluation device according to embodiments of the present invention will be described with reference to the drawings.

[磁気特性評価装置]
本発明の一実施形態にかかる磁気特性評価装置は、未着磁状態の試料Sに対して電磁誘導測定を行う電磁誘導測定装置1を有してなる。図1および図2に、本願発明の一実施形態にかかる電磁誘導測定装置1の構成を簡略に示す。
[Magnetic property evaluation equipment]
The magnetic property evaluation apparatus according to an embodiment of the present invention includes an electromagnetic induction measuring apparatus 1 that performs electromagnetic induction measurement on a sample S that is not magnetized. 1 and 2 simply show the configuration of an electromagnetic induction measuring apparatus 1 according to an embodiment of the present invention.

本発明の一実施形態にかかる磁気特性評価装置に備えられる電磁誘導測定装置1は、図1のように、励磁コイル11と検出コイル12の組合体である検査コイル10を有する。励磁コイル11は、中空部に略円筒状の試料Sを貫通させて配置することができる略円筒状のコイルよりなり、磁場発生手段として機能する。検出コイル12は、励磁コイル11の内側に、励磁コイル11と同軸に配置された略円筒状のコイルであり、誘導電流検出手段として機能する。このような励磁コイル11と検出コイル12を同軸に有し、電磁誘導を原理とする検出装置は、渦流探傷装置としても用いられており、従来の渦流探傷装置を電磁誘導測定装置1として転用することもできる。   As shown in FIG. 1, an electromagnetic induction measuring apparatus 1 provided in a magnetic property evaluation apparatus according to an embodiment of the present invention includes an inspection coil 10 that is a combination of an excitation coil 11 and a detection coil 12. The exciting coil 11 is formed of a substantially cylindrical coil that can be disposed by passing a substantially cylindrical sample S through the hollow portion, and functions as a magnetic field generating means. The detection coil 12 is a substantially cylindrical coil disposed coaxially with the excitation coil 11 inside the excitation coil 11, and functions as an induced current detection means. Such a detection device having the excitation coil 11 and the detection coil 12 coaxially and based on the principle of electromagnetic induction is also used as an eddy current flaw detection device, and the conventional eddy current flaw detection device is diverted as the electromagnetic induction measurement device 1. You can also

本電磁誘導測定装置1においては、図2に示すように、発振器21によって励磁コイル11に交流電流を流す。そして、検出コイル12に流れた電流を、増幅器22を用いて増幅してから、検出電流として、同期検波回路23に入力する。同期検波回路23には、参照信号として、発振器21からの出力と、発振器21からの出力を90°の移相器24に通して位相を90°ずらした信号の2つを、参照信号として入力する。   In the electromagnetic induction measuring apparatus 1, an alternating current is passed through the exciting coil 11 by an oscillator 21 as shown in FIG. The current flowing through the detection coil 12 is amplified using the amplifier 22 and then input to the synchronous detection circuit 23 as a detection current. The reference signal is input to the synchronous detection circuit 23 as two reference signals: an output from the oscillator 21 and a signal in which the output from the oscillator 21 is passed through a 90 ° phase shifter 24 and the phase is shifted by 90 °. To do.

同期検波回路23においては、励磁コイル11に流した交流電流を基準として、増幅器22を介して検出コイル12から入力された検出電流を、同期検波(位相検波)する。具体的には、検出電流の波形を、2つの参照信号それぞれの電流波形に乗じて処理することで、検出電流の実部と虚部、つまり励磁に用いた交流電流と同位相の電流成分(抵抗成分)と位相が90°異なる電流成分(リアクタンス成分)とを、分離して、同期検波信号として検出する。さらに、実部と虚部の値から、検出電流の絶対値(振幅)と位相差を算出することができる。なお、増幅器22、同期検波回路23、移相器24としては、ロックインアンプ等として一体になったものを使用してもよい。   In the synchronous detection circuit 23, the detection current input from the detection coil 12 via the amplifier 22 is synchronously detected (phase detection) with reference to the alternating current passed through the excitation coil 11. Specifically, by processing the waveform of the detected current by multiplying the current waveform of each of the two reference signals, the current component and the imaginary part of the detected current, that is, the current component in phase with the alternating current used for excitation ( The resistance component) is separated from the current component (reactance component) that is 90 ° out of phase, and is detected as a synchronous detection signal. Furthermore, the absolute value (amplitude) and phase difference of the detected current can be calculated from the values of the real part and the imaginary part. The amplifier 22, the synchronous detection circuit 23, and the phase shifter 24 may be integrated as a lock-in amplifier or the like.

本電磁誘導測定装置1で電磁誘導測定を行う試料Sは、後述するように、評価試料と標準試料であるが、いずれも未着磁の磁石材料よりなる。励磁コイル11内にこのような試料Sを配置した状態で励磁コイル11に交流を流すと、励磁コイル11の中空部内に交流磁場が発生する。そして、その交流磁場が試料Sに印加されることで、試料Sの表面に誘導電流(渦電流)が発生する。さらに、その誘導電流によって誘導磁場が形成され、その誘導磁場によって、検出コイル12に誘導電流が流れる。この検出コイル12に流れた誘導電流が、検出電流として、同期検波回路23によって同期検波されることになる。   As will be described later, the sample S to be subjected to electromagnetic induction measurement by the electromagnetic induction measuring apparatus 1 is an evaluation sample and a standard sample, and both are made of an unmagnetized magnet material. When an alternating current is passed through the exciting coil 11 with such a sample S placed in the exciting coil 11, an alternating magnetic field is generated in the hollow portion of the exciting coil 11. Then, when the AC magnetic field is applied to the sample S, an induced current (eddy current) is generated on the surface of the sample S. Further, an induced magnetic field is formed by the induced current, and the induced current flows through the detection coil 12 by the induced magnetic field. The induced current flowing through the detection coil 12 is synchronously detected by the synchronous detection circuit 23 as a detection current.

図3に、上で簡略に説明した電磁誘導測定装置1の具体的な構造を示す。図3の電磁誘導測定装置1においては、架台16上に立設された支持部17の先端に、検査コイル10が固定されている。架台16上にはさらに、検査コイル10と同軸になるように、樹脂等の絶縁性材料よりなる位置決め治具13が立設されている。位置決め治具13は、先端に略円筒状の挿入部13aを有している。挿入部13aは、試料Sの円筒形の内径よりもわずかに小さい外径を有している。さらに、位置決め治具13は、挿入部13aの基端側に、試料Sの内径よりも大きい外径を有する抜け止め部13bを有している。抜け止め部13bの先端(挿入部13aと抜け止め部13bの境界)の位置は、検査コイル10の軸方向中央に試料Sを配置した際に、試料Sの下端部が達する位置に略一致している。   FIG. 3 shows a specific structure of the electromagnetic induction measuring apparatus 1 briefly described above. In the electromagnetic induction measuring apparatus 1 of FIG. 3, the inspection coil 10 is fixed to the tip of the support portion 17 that is erected on the gantry 16. Further, a positioning jig 13 made of an insulating material such as resin is erected on the gantry 16 so as to be coaxial with the inspection coil 10. The positioning jig 13 has a substantially cylindrical insertion portion 13a at the tip. The insertion portion 13a has an outer diameter slightly smaller than the cylindrical inner diameter of the sample S. Furthermore, the positioning jig 13 has a retaining portion 13b having an outer diameter larger than the inner diameter of the sample S on the proximal end side of the insertion portion 13a. The position of the tip of the retaining portion 13b (the boundary between the insertion portion 13a and the retaining portion 13b) substantially coincides with the position where the lower end of the sample S reaches when the sample S is arranged at the center in the axial direction of the inspection coil 10. ing.

架台16にはさらに、位置決め治具13の外側に、エアシリンダ等の昇降装置15が固定されている。そして、昇降装置15に磁石突出し治具14が連結されており、昇降装置15によって、磁石突出し治具14が、上下方向(検査コイル10の軸に沿った方向)に昇降運動される。磁石突出し治具14は、位置決め治具13の抜け止め部13bの外径よりもわずかに大きい内径を有する円筒形に形成されている。磁石突出し治具14は、昇降装置15によって下降された状態において、先端の位置が、位置決め治具13の抜け止め部13bの先端の位置と略一致するようになっている。図3は、この磁石突出し治具14が下降された状態を示している。   Further, an elevating device 15 such as an air cylinder is fixed to the gantry 16 outside the positioning jig 13. And the magnet protrusion jig | tool 14 is connected with the raising / lowering apparatus 15, and the magnet protrusion jig | tool 14 is raised / lowered by the raising / lowering apparatus 15 in the up-down direction (direction along the axis | shaft of the test | inspection coil 10). The magnet protruding jig 14 is formed in a cylindrical shape having an inner diameter slightly larger than the outer diameter of the retaining portion 13 b of the positioning jig 13. In the state where the magnet protruding jig 14 is lowered by the elevating device 15, the position of the tip is substantially coincident with the position of the tip of the retaining portion 13 b of the positioning jig 13. FIG. 3 shows a state where the magnet protruding jig 14 is lowered.

以上のような構成を有することで、図3に示すように、挿入部13aの先端を試料Sの円筒部に貫通させるようにして位置決め治具13に試料Sを取り付けておき、位置決め治具13を昇降装置15によって下降させた状態とすると、試料Sは、検査コイル10の中空部内で、検査コイル10の軸方向および軸に垂直な方向の中央の位置において、位置決め治具13の抜け止め部13bおよび磁石突出し治具14の先端面によって安定に支持された状態となる。これにより、測定ごとの試料Sの位置の不一致や測定中の試料位置の経時変動等の影響を低減して、電磁誘導測定を高い精度および再現性で行うことができる。一方、位置決め治具13が昇降装置15によって上昇された状態において、試料Sは、検査コイル10の中空部から抜け、検査コイル10の上方に配置された状態となる。これにより、電磁誘導測定装置1への試料Sの取付けや試料Sの交換を容易に行うことができる。試料Sの取付けや交換を自動化することもできるので、大量生産された磁石材料の各個体に対して、自動的に電磁誘導測定を順次行うことが容易となる。   With the configuration as described above, the sample S is attached to the positioning jig 13 so that the tip of the insertion portion 13a penetrates the cylindrical portion of the sample S as shown in FIG. Is lowered by the lifting device 15, the sample S has a retaining portion of the positioning jig 13 in the hollow portion of the inspection coil 10 at the center position in the axial direction and the direction perpendicular to the axis of the inspection coil 10. 13b and the end surface of the magnet protruding jig 14 are stably supported. Thereby, it is possible to reduce the influence of the mismatch of the position of the sample S for each measurement and the temporal variation of the sample position during the measurement, and to perform the electromagnetic induction measurement with high accuracy and reproducibility. On the other hand, in a state where the positioning jig 13 is raised by the lifting device 15, the sample S comes out of the hollow portion of the inspection coil 10 and is placed above the inspection coil 10. Thereby, attachment of the sample S to the electromagnetic induction measuring apparatus 1 and replacement | exchange of the sample S can be performed easily. Since the attachment and replacement of the sample S can be automated, it is easy to automatically perform electromagnetic induction measurement sequentially for each individual mass-produced magnet material.

上記のように、本電磁誘導測定装置1は、試料Sに交流磁場を印加し、それによって試料Sに発生した誘導電流を検出するものであり、従来一般の渦流探傷装置の測定部を転用することができる。上記電磁誘導測定装置1と同様の構成に限らず、交流磁場を発生させ、その交流磁場によって試料Sに発生した誘導電流を同期検波できるものであれば、いかなる装置でも適用することができる。   As described above, the electromagnetic induction measuring apparatus 1 detects an induced current generated in the sample S by applying an AC magnetic field to the sample S, and diverts the measurement unit of a conventional general eddy current flaw detector. be able to. The present invention is not limited to the same configuration as that of the electromagnetic induction measuring apparatus 1, and any apparatus can be applied as long as it can generate an alternating magnetic field and synchronously detect the induced current generated in the sample S by the alternating magnetic field.

例えば、上記電磁誘導測定装置1においては、略円筒型の励磁コイル11と検出コイル12よりなる検査コイル10の中空部に、略円筒形の試料Sを貫通させて測定を行ったが、試料Sが板状の場合に、検査コイル10を扁平な略角筒状とし、その内部に試料Sを貫通させるようにすればよい。このように、試料Sを貫通させる検査コイル10の形状は、試料Sの形状に合わせて、試料S全体において高い均一性をもって磁場の印加および検出を行えるように、任意に選択すればよい。また、それらのように、中空筒状の検査コイル10の内部に貫通させて試料Sを配置する貫通コイル式の電磁誘導測定装置のみならず、図4に示したように、プローブ式の電磁誘導測定装置1’とすることもできる。つまり、試料Sの表面の一部の領域に、試料Sに接触させないように、検査コイル10を含む検査プローブ10’を配置し、その領域に対して電磁誘導測定を行う形態とすることができる。なお、測定誤差を排除する観点から、貫通コイル式、プローブ式のいずれにおいても、試料Sの端部を避け、中央部近傍で測定を行うことが好ましい。   For example, in the electromagnetic induction measuring apparatus 1, the measurement was performed by passing the substantially cylindrical sample S through the hollow portion of the inspection coil 10 including the substantially cylindrical excitation coil 11 and the detection coil 12. If the inspection coil 10 is plate-shaped, the inspection coil 10 may be formed into a flat and substantially rectangular tube shape, and the sample S may be passed through the inspection coil 10. Thus, the shape of the inspection coil 10 that penetrates the sample S may be arbitrarily selected according to the shape of the sample S so that the magnetic field can be applied and detected with high uniformity in the entire sample S. Further, as shown in FIG. 4, a probe type electromagnetic induction as well as a through coil type electromagnetic induction measuring device in which the sample S is disposed through the hollow cylindrical inspection coil 10 as shown in FIG. It can also be set as the measuring apparatus 1 ′. That is, the inspection probe 10 ′ including the inspection coil 10 may be disposed in a partial region on the surface of the sample S so as not to contact the sample S, and electromagnetic induction measurement may be performed on the region. . In addition, from the viewpoint of eliminating measurement errors, it is preferable to perform measurement in the vicinity of the center portion, avoiding the end portion of the sample S, in both the penetration coil type and the probe type.

さらに、上記電磁誘導装置1のように、検査コイル10において、検出コイル12を励磁コイル11と別体として設ける必要はなく、単一のコイルを励磁コイル11および検出コイル12として兼用し、励磁と検出の両方を行ってもよい。この場合は、試料Sにおける電磁誘導によってコイルを流れる交流に与えられる変調成分を、同期検波によって検出すればよい。このような単一のコイルを用いる形式は、特にプローブ式の電磁誘導測定装置1’において好適に用いることができる。   Further, unlike the electromagnetic induction device 1, in the inspection coil 10, it is not necessary to provide the detection coil 12 as a separate body from the excitation coil 11, and a single coil is also used as the excitation coil 11 and the detection coil 12. Both detections may be performed. In this case, the modulation component given to the alternating current flowing through the coil by electromagnetic induction in the sample S may be detected by synchronous detection. Such a form using a single coil can be suitably used particularly in the probe type electromagnetic induction measuring apparatus 1 '.

[磁気特性評価方法]
次に、本発明の一実施形態にかかる磁気特性評価方法について説明する。本発明者らは、磁石材料に対して未着磁の状態で電磁誘導測定を行って得た同期検波信号と、着磁後の磁気特性値の間に、良い相関性があることを見出した。そして、未着磁の磁石材料に対して電磁誘導測定を行うことで、実際に着磁することなしに、着磁後の磁気特性値を見積もる本磁気特性評価方法を構築した。
[Magnetic property evaluation method]
Next, a magnetic property evaluation method according to an embodiment of the present invention will be described. The present inventors have found that there is a good correlation between a synchronous detection signal obtained by performing electromagnetic induction measurement in a non-magnetized state on a magnet material and a magnetic characteristic value after magnetization. . Then, the present magnetic property evaluation method was constructed to estimate the magnetic property value after magnetization without actually magnetizing by performing electromagnetic induction measurement on an unmagnetized magnet material.

本評価方法は、未着磁の磁石材料に対する電磁誘導測定を同期検波にて行うことができる電磁誘導測定装置を備えた磁気特性評価装置を用いて実行する。ここでは、上記で説明した電磁誘導測定装置1を備えた磁気特性評価装置を用いて、ある評価試料の着磁後の磁束量(フラックス)を評価する場合について説明する。   This evaluation method is executed by using a magnetic property evaluation apparatus including an electromagnetic induction measuring apparatus capable of performing electromagnetic induction measurement on an unmagnetized magnet material by synchronous detection. Here, the case where the magnetic flux amount (flux) after magnetization of a certain evaluation sample is evaluated using the magnetic characteristic evaluation apparatus provided with the electromagnetic induction measuring apparatus 1 described above will be described.

本評価方法においては、電磁誘導測定を行う試料Sとして、磁気特性を評価すべき対象である評価試料の他に、評価試料の磁気特性を測定するための参照として、複数の標準試料を使用する。評価試料、標準試料とも、着磁することで永久磁石となる磁石材料である。標準試料は、評価試料と同様に形成された磁石材料である。つまり、製造誤差の範囲内で、評価試料と同じ成分組成で、そして同じ製造方法によって製造された、複数の磁石材料である。評価試料、標準試料とも、未着磁の状態で準備しておき、電磁誘導測定を行う。後述するように、着磁後の磁石材料の磁気特性は、磁石材料の製造誤差の範囲内でばらつくが、評価の精度を高める観点から、複数の標準試料は、着磁後の磁気特性ができる限り広い範囲に分布するように選択することが好ましい。   In this evaluation method, as a sample S for performing electromagnetic induction measurement, a plurality of standard samples are used as a reference for measuring the magnetic properties of the evaluation sample, in addition to the evaluation sample that is the target of magnetic property evaluation. . Both the evaluation sample and the standard sample are magnet materials that become permanent magnets when magnetized. The standard sample is a magnet material formed in the same manner as the evaluation sample. In other words, it is a plurality of magnet materials manufactured with the same component composition as the evaluation sample and manufactured by the same manufacturing method within the range of manufacturing error. Both the evaluation sample and the standard sample are prepared in an unmagnetized state, and electromagnetic induction measurement is performed. As will be described later, the magnetic properties of the magnet material after magnetization vary within the range of manufacturing errors of the magnet material, but from the viewpoint of improving the accuracy of evaluation, a plurality of standard samples can have magnetic properties after magnetization. It is preferable to select so that it is distributed over as wide a range as possible.

本評価方法においては、(1)評価試料測定工程、(2)標準試料測定工程、(3)磁気特性値測定工程、(4)対応工程、(5)評価工程の各工程を実行する。それぞれについて順次説明する。   In this evaluation method, (1) evaluation sample measurement step, (2) standard sample measurement step, (3) magnetic characteristic value measurement step, (4) corresponding step, and (5) evaluation step are executed. Each will be described in turn.

(1)評価試料測定工程
まず、製品として出荷する磁石材料等、磁気特性評価の対象である評価試料を、未着磁の状態で準備し、試料Sとして、電磁誘導測定装置1を用いて同期検波による電磁誘導測定を行う。その結果として、検出コイル12から出力された検出電流の、実部と虚部の値が得られる。ここでは、実部の値を記録しておく。
(1) Evaluation sample measurement process First, an evaluation sample which is a target for magnetic property evaluation, such as a magnet material to be shipped as a product, is prepared in an unmagnetized state, and the sample S is synchronized using the electromagnetic induction measuring device 1. Perform electromagnetic induction measurement by detection. As a result, the real part and imaginary part values of the detection current output from the detection coil 12 are obtained. Here, the value of the real part is recorded.

(2)標準試料測定工程
次に、複数の標準試料のそれぞれに対して、未着磁の状態で、試料Sとして、上記工程(1)と同じ電磁誘導測定装置1を用いて、同じ条件にて、電磁誘導測定を行う。そして、それぞれの標準試料について得られた検出電流の実部の値を記録しておく。ここで、電磁誘導測定装置1が、図3に示したような位置決め治具13を有していることで、評価試料と標準試料の間、そして各標準試料の間で、測定条件が変化するのが防止される。
(2) Standard Sample Measurement Step Next, for each of the plurality of standard samples, the sample S is subjected to the same conditions as the sample S using the same electromagnetic induction measuring apparatus 1 as in the step (1). To perform electromagnetic induction measurement. Then, the value of the real part of the detected current obtained for each standard sample is recorded. Here, since the electromagnetic induction measuring apparatus 1 has the positioning jig 13 as shown in FIG. 3, the measurement conditions change between the evaluation sample and the standard sample and between the standard samples. Is prevented.

(3)磁気特性値測定工程
次に、磁気特性値測定工程において、複数の標準試料のそれぞれを同じ条件で着磁する。ここで、着磁の条件は、実際の磁石製品となる評価試料が着磁される際に想定される条件と揃えておく。着磁は、静磁場やパルス磁場等を用いて適宜行えばよい。
(3) Magnetic characteristic value measuring step Next, in the magnetic characteristic value measuring step, each of the plurality of standard samples is magnetized under the same conditions. Here, the conditions for magnetization are aligned with the conditions assumed when the evaluation sample to be an actual magnet product is magnetized. Magnetization may be appropriately performed using a static magnetic field, a pulse magnetic field, or the like.

次に、着磁した各標準試料に対して、磁気特性値として、磁束量の測定を行い、記録する。磁束量の測定は、フラックスメータ等、公知の測定装置を用いて行うことができる。この際、評価精度を向上させる観点から、得られた磁束量が、製品となる評価試料を着磁した際に要求される磁束量の範囲の内側と外側の両方に分布しているのを確認しておくことが好ましい。なお、以上の(1)〜(3)の各工程は、任意の順序で実行して構わない。   Next, the amount of magnetic flux is measured and recorded as a magnetic characteristic value for each magnetized standard sample. The amount of magnetic flux can be measured using a known measuring device such as a flux meter. At this time, from the viewpoint of improving the evaluation accuracy, it was confirmed that the obtained magnetic flux amount was distributed both inside and outside the magnetic flux amount range required when the evaluation sample as a product was magnetized. It is preferable to keep it. In addition, you may perform each process of the above (1)-(3) in arbitrary orders.

(4)対応工程
次に、対応工程において、標準試料に対して、上記(2)標準試料測定工程の電磁誘導測定で得られた実部の値と、上記(3)磁気特性値測定工程で得られた磁束量の値の関係性を見積もる。つまり、各標準試料個体について計測された実部の値と、磁束量の値を対応させ、未着磁状態の電磁誘導測定において、ある実部の値が得られた時に、着磁後の磁束量がどのような値になるか、という対応関係を見積もる。
(4) Corresponding Step Next, in the corresponding step, with respect to the standard sample, the real part value obtained by the electromagnetic induction measurement in the above (2) standard sample measuring step and the above (3) magnetic property value measuring step The relationship between the obtained magnetic flux values is estimated. In other words, the real part value measured for each individual standard sample is associated with the value of the magnetic flux, and the magnetic flux after magnetization is obtained when a certain real part value is obtained in the electromagnetic induction measurement in the unmagnetized state. Estimate the correspondence of the value of the quantity.

図5に、上記特許文献1に開示されるのと同様の熱間加工されたNd−Fe−B系磁石材料よりなる複数の標準試料に対して、未着磁の状態の電磁誘導測定で得られた実部の値と、着磁後に得られた磁束量との関係を示す。磁束量は、mWb・Tを単位として示しており、Tは磁束量測定に用いるフラックスメータのサーチコイルの巻き数Tを示している。図5によると、電磁誘導測定の実部の値が大きくなるほど、磁束量が小さくなっており、未着磁状態の電磁誘導測定の実部の値と、着磁後の磁束量の値の間には、強い線形の相関が存在することが分かる。これは、未着磁状態における電磁誘導測定で得られた実部の値を指標として、着磁後の磁束量を予測し、見積もり可能であることを意味している。   FIG. 5 is obtained by electromagnetic induction measurement in a non-magnetized state with respect to a plurality of standard samples made of a hot-worked Nd—Fe—B magnet material similar to that disclosed in Patent Document 1 above. The relationship between the obtained real part value and the amount of magnetic flux obtained after magnetization is shown. The amount of magnetic flux is expressed in units of mWb · T, and T indicates the number of turns T of the search coil of the flux meter used for measuring the amount of magnetic flux. According to FIG. 5, the larger the value of the real part of the electromagnetic induction measurement, the smaller the amount of magnetic flux. Between the value of the real part of the electromagnetic induction measurement in the unmagnetized state and the value of the magnetic flux amount after magnetization. It can be seen that there is a strong linear correlation. This means that the amount of magnetic flux after magnetization can be predicted and estimated using the value of the real part obtained by electromagnetic induction measurement in an unmagnetized state as an index.

このようにして、(4)対応工程において、未着磁の状態で同期検波による電磁誘導測定で得られた実部の値と、着磁後の磁束量との間の関係性を見積もる。ここで、複数の標準試料に対して得られた測定点と測定点の間の領域に相当する実部の値に対しては、線形補間等の補間操作を適宜行って、対応する磁束量の値を算出してもよいし、図5に実線で示すように、カーブフィッテングを行って、実部の値と磁束量の間の対応式を算出してもよい。図5では、対応式として一次式を用いているが、測定点の分布に応じて、任意の数学式を用いればよい。   In this way, in the corresponding step (4), the relationship between the value of the real part obtained by electromagnetic induction measurement by synchronous detection in an unmagnetized state and the amount of magnetic flux after magnetization is estimated. Here, with respect to the real part value corresponding to the area between the measurement points obtained for a plurality of standard samples, an interpolation operation such as linear interpolation is appropriately performed to obtain the corresponding magnetic flux amount. A value may be calculated, or, as indicated by a solid line in FIG. 5, curve fitting may be performed to calculate a correspondence expression between the value of the real part and the amount of magnetic flux. In FIG. 5, a linear expression is used as the corresponding expression, but an arbitrary mathematical expression may be used according to the distribution of measurement points.

さらに、上記で得られた実部の値と磁束量の関係性に基づいて、出荷等する製品となる評価試料を着磁した際に要求される所定の磁束量の範囲に対応する実部の値の範囲を、良品範囲として設定しておくことが好ましい。図5では、このように規定した良品範囲を、2本の破線の間の領域として示している。   Furthermore, based on the relationship between the value of the real part obtained above and the amount of magnetic flux, the real part corresponding to the predetermined range of magnetic flux required when the evaluation sample to be shipped is magnetized. It is preferable to set the value range as a non-defective range. In FIG. 5, the non-defective product range thus defined is shown as a region between two broken lines.

(5)評価工程
最後に、評価工程において、(4)対応工程で標準試料に対して見積もられた未着磁状態の電磁誘導測定の実部の値と着磁後の磁束量との関係性に基づき、(1)評価試料測定工程で未着磁の評価試料に対する電磁誘導測定で得られた実部の値から、着磁後の評価試料の磁束量を見積もる。具体的には、着磁後の評価試料の磁束量が所定の許容される範囲に収まっているかどうかを判定するために、(4)対応工程で実部の値と磁束量の関係性に基づいて設定した良品範囲の中に、(1)評価試料測定工程で得られた評価試料の実部の値が入っているかどうかを判定する。評価試料の実部の値が良品範囲に入っている場合には、評価試料が、所定の許容範囲の磁束量を着磁後に獲得する蓋然性が高い良品であると判定することができる。一方、評価試料の実部の値が良品範囲に入っていない場合には、評価試料が、所定の許容範囲の磁束量を着磁後に有さない蓋然性が高い不良品であると判定することができる。さらに、評価試料が良品か不良品かの選別のみならず、着磁後の評価試料の磁束量を数値として予測することが求められる場合には、(1)評価試料測定工程で得られた実部の値を、図5に実線で示した一次式のような実部の値と磁束量との関係に当てはめ、評価試料を着磁した場合の磁束量を算出すればよい。
(5) Evaluation process Finally, in the evaluation process, (4) Relationship between the value of the real part of the electromagnetic induction measurement in the non-magnetized state estimated for the standard sample in the corresponding process and the amount of magnetic flux after magnetization Based on the characteristics, (1) the amount of magnetic flux of the evaluation sample after magnetization is estimated from the value of the real part obtained by the electromagnetic induction measurement for the unmagnetized evaluation sample in the evaluation sample measurement step. Specifically, in order to determine whether or not the magnetic flux amount of the evaluation sample after magnetization is within a predetermined allowable range, (4) based on the relationship between the value of the real part and the magnetic flux amount in the corresponding step. (1) It is determined whether or not the value of the real part of the evaluation sample obtained in the evaluation sample measurement step is in the non-defective product range set in the above. When the value of the real part of the evaluation sample is within the non-defective range, it can be determined that the evaluation sample is a non-defective product that has a high probability of acquiring a predetermined allowable range of magnetic flux after magnetization. On the other hand, when the value of the real part of the evaluation sample is not within the non-defective range, it is possible to determine that the evaluation sample is a defective product having a high probability of not having a predetermined allowable range of magnetic flux after magnetization. it can. Furthermore, in addition to selecting whether the evaluation sample is a non-defective product or a defective product, when it is required to predict the magnetic flux amount of the evaluation sample after magnetization as a numerical value, (1) the actual value obtained in the evaluation sample measurement step The value of the part may be applied to the relationship between the value of the real part and the amount of magnetic flux as shown by the solid line in FIG. 5 to calculate the amount of magnetic flux when the evaluation sample is magnetized.

以上のような各工程を有する本磁気特性評価方法においては、評価試料に対して着磁を行うことなく、着磁しない状態で電磁誘導測定を行うのみで、着磁後の磁束量を見積もっている。このような見積もりの信頼性は、図5に示すように、未着磁状態における同期検波を用いた電磁誘導測定の結果と着磁後の磁束量との間に強い相関性があることによって、保証される。   In this magnetic property evaluation method having the above-described steps, the magnetic flux after magnetization is estimated only by performing electromagnetic induction measurement without magnetizing the evaluation sample without performing magnetization. Yes. The reliability of such estimation is, as shown in FIG. 5, because there is a strong correlation between the result of electromagnetic induction measurement using synchronous detection in an unmagnetized state and the amount of magnetic flux after magnetization. Guaranteed.

磁石材料を着磁して得られる磁石が所望の性能を発揮するかどうかは、着磁後の磁石において発現される磁束量をはじめとする磁気特性が所定の範囲内にあるかどうかに大きく依存する。しかし、製造される磁石材料においては、組織中の結晶粒の大きさ等、制御しきれないばらつきが個体ごとに不可避的に存在する。それらの着磁前の磁石材料における不可避的なばらつきは、磁束量をはじめとした着磁後に発現される磁気特性に大きなばらつきを与える可能性がある。出荷する磁石材料が所望の性能を発揮するかどうかを判定するためには、個別の磁石材料を着磁し、その磁気特性を測定することが、最も直接的である。しかし、磁石材料を着磁しない状態で出荷等に供する場合に、全個体に対して一旦着磁して検査を行うならば、着磁したうえで検査し、その後再度脱磁するという工程に、膨大な時間と費用を要し、現実的に実行することは極めて困難である。従来一般に行われているように、全個体のうち一部のみを抜き取って着磁し、検査を行う場合には、検査に要する時間や費用を節減することはできるが、全個体における磁気特性の不可避的なばらつきを検出することが困難となる。これに対し、本製造方法においては、評価試料を着磁することなく着磁後の評価試料の磁気特性を推定するため、着磁および脱磁に要する時間と費用を省略して、全個体に対して検査を行い、磁気特性が所定範囲となる個体を簡便かつ高確度に選別することが可能となる。特に、上記図3で示したような自動化に適した電磁誘導測定装置1を用いて、評価試料の交換と測定を自動で行えるようにすれば、大量生産される磁石材料に対し、全個体の検査を効率的に実施することができる。   Whether a magnet obtained by magnetizing a magnet material exhibits a desired performance depends largely on whether the magnetic characteristics including the amount of magnetic flux expressed in the magnet after magnetization are within a predetermined range. To do. However, in the magnetic material to be manufactured, there are unavoidably uncontrollable variations such as the size of crystal grains in the structure for each individual. Such unavoidable variations in the magnet material before magnetization may give large variations in the magnetic characteristics expressed after magnetization, including the amount of magnetic flux. In order to determine whether the magnet material to be shipped exhibits the desired performance, it is most direct to magnetize individual magnet materials and measure their magnetic properties. However, if the magnet material is subjected to shipment in a state where it is not magnetized, if it is once magnetized and inspected for all individuals, it will be inspected after being magnetized, and then demagnetized again. It takes a lot of time and money, and it is extremely difficult to carry out realistically. As is generally done in the past, when extracting and magnetizing only a part of all individuals, the time and cost required for the inspection can be reduced, but the magnetic properties of all individuals can be reduced. It becomes difficult to detect inevitable variations. On the other hand, in this manufacturing method, the magnetic properties of the evaluation sample after magnetization are estimated without magnetizing the evaluation sample. It is possible to easily and highly accurately select individuals whose magnetic characteristics fall within a predetermined range. In particular, if the electromagnetic induction measuring apparatus 1 suitable for automation as shown in FIG. 3 is used so that the evaluation sample can be exchanged and measured automatically, the magnetic material to be mass-produced can be obtained for all individuals. Inspection can be carried out efficiently.

未着磁状態の磁石材料における結晶粒の大きさ等、微視的な構造上および組成上のばらつきは、着磁後の磁石材料の磁気特性に大きな影響を与えても、未着磁状態の磁石材料において計測される諸物性には顕著な影響を与えない場合も多く、未着磁の状態でそれらのばらつきを検出することは容易ではない。しかし、本評価方法においては、磁石材料の表面で発生する誘導電流を、微小な変化に敏感な同期検波によって検出しており、上記のような微視的なばらつきに起因する誘導電流への影響を高感度に検知することができる。特に、上記の図3で示したような、位置決め治具13を用いて再現性よく電磁誘導測定を行うことができる電磁誘導測定装置1を用いることで、磁石材料表面の誘導電流における微小な変化を一層高精度に検出することができる。   Even if microscopic structural and compositional variations such as the size of crystal grains in an unmagnetized magnet material greatly affect the magnetic properties of the magnetized material, In many cases, the physical properties measured in the magnet material do not have a significant effect, and it is not easy to detect such variations in an unmagnetized state. However, in this evaluation method, the induced current generated on the surface of the magnet material is detected by synchronous detection sensitive to minute changes, and the influence on the induced current due to the above-mentioned microscopic variation is detected. Can be detected with high sensitivity. In particular, by using the electromagnetic induction measuring apparatus 1 capable of performing electromagnetic induction measurement with high reproducibility using the positioning jig 13 as shown in FIG. 3 above, a minute change in the induced current on the surface of the magnet material is achieved. Can be detected with higher accuracy.

電磁誘導測定を行う際に、励磁コイル11から磁石材料に磁場が印加されることにはなるが、この磁場は交流磁場であり、しかも着磁に用いる磁場に比べて、無視しうる程度の大きさしか有さないため、電磁誘導測定を経ることで評価試料が磁化されることはない。例えば、上記図5の例で用いたようなNd−Fe−B系磁石材料の着磁は、30〜50kOe(約2500〜4000kA/m)程度の磁場で行われるのに対し、電磁誘導測定時には、例えばφ50mm、100ターンの励磁コイルに1Aの交流電流を流して測定を行う場合に、試料に印加される交流磁場は、2kA/mあるいはそれよりも小さいと見積もられ、着磁時の磁場の1/1000以下となっている。なお、励磁コイル11に流す交流電流の周波数は、同期検波測定で十分な精度で検出可能な信号を得る観点から、例えば100Hz〜10kHzとされる。   When performing the electromagnetic induction measurement, a magnetic field is applied from the exciting coil 11 to the magnet material, but this magnetic field is an alternating magnetic field and is negligible compared to the magnetic field used for magnetization. Therefore, the evaluation sample is not magnetized through the electromagnetic induction measurement. For example, the Nd—Fe—B based magnet material used in the example of FIG. 5 is magnetized in a magnetic field of about 30 to 50 kOe (about 2500 to 4000 kA / m), while at the time of electromagnetic induction measurement. For example, when measurement is performed by passing an AC current of 1 A through an excitation coil of φ50 mm and 100 turns, the AC magnetic field applied to the sample is estimated to be 2 kA / m or less, and the magnetic field during magnetization Of 1/1000 or less. In addition, the frequency of the alternating current passed through the exciting coil 11 is set to, for example, 100 Hz to 10 kHz from the viewpoint of obtaining a signal that can be detected with sufficient accuracy by synchronous detection measurement.

上記では、評価対象の磁気特性値として、磁束量を採用しており、図5のように、着磁後の磁束量が、未着磁状態の電磁誘導測定の結果との間に良い相関性を有することを確認した。しかし、磁束量以外にも、着磁後の磁石材料において発現される種々の磁気特性値を、本磁気特性評価方法によって評価することができる。この場合、(3)磁気特性評価工程において、着磁後の標準試料に対し、磁束量の代わりに、所望の磁気特性値を測定し、以降の工程に用いればよい。磁束量以外の評価可能な磁気特性値としては、透磁率、保磁力、残留磁束密度等を挙げることができる。   In the above, the amount of magnetic flux is adopted as the magnetic characteristic value to be evaluated. As shown in FIG. 5, the amount of magnetic flux after magnetization has a good correlation with the result of electromagnetic induction measurement in an unmagnetized state. It was confirmed to have However, in addition to the amount of magnetic flux, various magnetic characteristic values expressed in the magnet material after magnetization can be evaluated by this magnetic characteristic evaluation method. In this case, in the (3) magnetic property evaluation step, a desired magnetic property value may be measured for the standard sample after magnetization instead of the magnetic flux amount and used in the subsequent steps. Examples of magnetic characteristic values that can be evaluated other than the amount of magnetic flux include magnetic permeability, coercive force, residual magnetic flux density, and the like.

また、上記では、電磁誘導測定において、励磁コイル11に流される交流電流の波形を基準として検出コイル12に流れる電流を検出した同期検波信号に含まれる情報のうち、実部の値を指標として、着磁後の磁気特性の評価を行っているが、指標として用いる情報は、実部の値(x)に限られない。他に、虚部の値(y)、絶対値(z=(x+y1/2)、位相差(θ)等の情報を用いることができる。下の表1に、単一の電磁誘導測定で得られた実部x、虚部y、絶対値zのそれぞれと磁束量との間の対応関係を線形近似した際に得られる、相関係数Rの二乗値Rを示す。なお、ここで用いている電磁誘導測定および着磁後の磁束量の測定結果は、図5に示したのとは別の試料の組を用いて測定したものである。 Further, in the above, in the electromagnetic induction measurement, among the information included in the synchronous detection signal in which the current flowing in the detection coil 12 is detected with reference to the waveform of the alternating current flowing in the excitation coil 11, the value of the real part is used as an index. Although the magnetic characteristics after magnetization are evaluated, the information used as an index is not limited to the real part value (x). In addition, information such as an imaginary part value (y), an absolute value (z = (x 2 + y 2 ) 1/2 ), and a phase difference (θ) can be used. Table 1 below shows the correlation coefficient obtained when linearly approximating the correspondence between the real part x, the imaginary part y, and the absolute value z obtained by a single electromagnetic induction measurement and the amount of magnetic flux. It shows a square value R 2 of R. In addition, the measurement result of the magnetic induction after the electromagnetic induction measurement and magnetization used here is measured using a set of samples different from that shown in FIG.

Figure 0006446304
Figure 0006446304

表1によると、実部xや絶対値zを用いる場合に、虚部yを用いる場合よりも、着磁後の磁束量との間に良い相関性が得られていることが分かる。特に、実部xを用いる場合に、良い相関性が得られている。これは、実部に比べて、虚部の方が検査コイル10に対する測定位置の影響等、測定条件のゆらぎの影響を受けやすいことによる。絶対値も、虚部成分を含むことから、測定位置の影響をある程度受けやすい。このように、電磁誘導測定の実部を指標として用いることで、精度よく着磁後の評価試料の磁気特性を見積もることができる。   According to Table 1, it can be seen that when the real part x and the absolute value z are used, a better correlation is obtained with the amount of magnetic flux after magnetization than when the imaginary part y is used. In particular, good correlation is obtained when the real part x is used. This is because the imaginary part is more susceptible to fluctuations in measurement conditions such as the influence of the measurement position on the inspection coil 10 than the real part. Since the absolute value also includes an imaginary part component, it is easily affected to some extent by the measurement position. Thus, by using the real part of the electromagnetic induction measurement as an index, it is possible to accurately estimate the magnetic characteristics of the evaluation sample after magnetization.

上記のように、本磁気特性評価方法は、磁化することで永久磁石となるいかなる磁石材料に対しても適用することができる。つまり、熱間加工磁石、焼結磁石のいずれの磁石材料に対しても適用することができる。しかし、焼結磁石の場合には、焼結時に表面が酸化等の変質を受ける場合が多く、こうした表面の変質は、同期検波を用いた電磁誘導測定において、検出される信号に大きな変調を与える。よって、着磁後の磁気特性に影響するような結晶粒の大きさのばらつき等に由来する信号を埋もれさせて、検出しにくくしてしまう可能性がある。これに対し、熱間加工磁石の場合には、熱間加工によって、均質な磁石材料が形成されやすく、酸化のような表面の変質も受けにくい。よって、本磁気特性評価方法は、焼結磁石よりも、熱間加工磁石に適用する場合の方が、高精度に着磁後の磁気特性の評価を行うことができる。また、同様に、磁石材料表面の傷等も同期検波を用いた電磁誘導測定の結果に大きな影響を与えるので、磁石材料は、熱間加工以外に、研磨等の機械加工を受けていない方が好ましい。   As described above, this magnetic property evaluation method can be applied to any magnet material that becomes a permanent magnet by being magnetized. That is, the present invention can be applied to any magnet material such as a hot-worked magnet and a sintered magnet. However, in the case of a sintered magnet, the surface is often subjected to alteration such as oxidation during sintering, and this alteration of the surface gives large modulation to the detected signal in electromagnetic induction measurement using synchronous detection. . Therefore, there is a possibility that a signal derived from a variation in crystal grain size that affects the magnetic characteristics after magnetization is buried, making it difficult to detect. On the other hand, in the case of a hot-worked magnet, a homogeneous magnet material is easily formed by hot working and is not easily affected by surface alteration such as oxidation. Therefore, when this magnetic property evaluation method is applied to a hot-working magnet rather than a sintered magnet, the magnetic property after magnetization can be evaluated with higher accuracy. Similarly, since scratches on the surface of the magnet material have a large effect on the results of electromagnetic induction measurement using synchronous detection, the magnet material should not be subjected to mechanical processing such as polishing other than hot processing. preferable.

以上のように、本磁気特性評価方法は、着磁後に大きな残留磁束密度を与えるために、着磁せずに検査して出荷することが好ましい熱間加工磁石に対して、着磁後の磁気特性を予測するのに、特に好適に用いることができる。そのような磁気特性に優れた熱間加工磁石として、例えば、上記特許文献1に記載されているような磁石、具体的には、Nd−Fe−B系等、R−T−B系(Rは希土類金属であり、R:28〜30質量%、B:0.85〜1.10質量%、T鉄族遷移金属)の成分組成を有する異方性熱間押出加工磁石を挙げることができる。   As described above, this magnetic property evaluation method uses a magnetized magnet for a hot-worked magnet that is preferably inspected and shipped without being magnetized in order to give a large residual magnetic flux density after magnetization. It can be particularly preferably used for predicting characteristics. As such hot-working magnets having excellent magnetic properties, for example, magnets such as those described in Patent Document 1, specifically, Nd—Fe—B system, R-T-B system (R Is a rare earth metal, and R: 28-30% by mass, B: 0.85-1.10% by mass, T iron group transition metal), an anisotropic hot extruded magnet can be mentioned. .

以上、本発明の実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。   As mentioned above, although embodiment of this invention was described in detail, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the summary of this invention.

1 電磁誘導測定装置
10 検査コイル
11 励磁コイル
12 検出コイル
13 位置決め治具
14 磁石突出し治具
15 昇降装置
S 試料
DESCRIPTION OF SYMBOLS 1 Electromagnetic induction measuring apparatus 10 Inspection coil 11 Excitation coil 12 Detection coil 13 Positioning jig 14 Magnet protrusion jig 15 Lifting apparatus S Sample

Claims (6)

交流磁場によって試料に誘導電流を発生させ、前記誘導電流を同期検波によって検出し、同期検波信号を得る電磁誘導測定を、未着磁の磁石材料よりなる評価試料に対して実行する評価試料測定工程と、
前記評価試料と同様に形成された複数の未着磁の標準試料に対して、前記電磁誘導測定を行う標準試料測定工程と、
前記複数の標準試料を着磁し、磁気特性値を測定する磁気特性値測定工程と、
前記複数の標準試料に対し、前記標準試料測定で得られた同期検波信号と、前記磁気特性値測定工程で得られた磁気特性値との間の関係性を見積もる対応工程と、
前記対応工程で見積もられた関係性に基づき、前記評価試料測定工程で前記評価試料に対して得られた同期検波信号から、前記評価試料の磁気特性値を見積もる評価工程と、を有することを特徴とする磁気特性評価方法。
An evaluation sample measurement step for generating an induced current in a sample by an alternating magnetic field, detecting the induced current by synchronous detection, and performing electromagnetic induction measurement for obtaining a synchronous detection signal on an evaluation sample made of an unmagnetized magnet material When,
A standard sample measurement step for performing the electromagnetic induction measurement on a plurality of unmagnetized standard samples formed in the same manner as the evaluation sample,
Magnetic property value measuring step of magnetizing the plurality of standard samples and measuring magnetic property values;
A corresponding step of estimating a relationship between the synchronous detection signal obtained in the standard sample measurement and the magnetic property value obtained in the magnetic property value measurement step with respect to the plurality of standard samples;
An evaluation step of estimating the magnetic property value of the evaluation sample from the synchronous detection signal obtained for the evaluation sample in the evaluation sample measurement step based on the relationship estimated in the corresponding step. A characteristic magnetic property evaluation method.
前記磁気特性値は、磁束量であることを特徴とする請求項1に記載の磁気特性評価方法。 The magnetic characteristic evaluation method according to claim 1, wherein the magnetic characteristic value is a magnetic flux amount. 前記交流磁場は、励磁コイルに交流電流を流すことで発生され、
前記誘導電流は、前記励磁コイルと兼用または別体の検出コイルに電磁誘導によって流れる電流を、前記励磁コイルに流した交流電流を基準として同期検波することで検出され、
該同期検波によって検出された信号の実部の値を、前記対応工程および前記評価工程において、前記同期検波信号として用いることを特徴とする請求項1または2に記載の磁気特性評価方法。
The alternating magnetic field is generated by passing an alternating current through the exciting coil,
The induced current is detected by synchronously detecting a current that flows by electromagnetic induction in a separate detection coil that is also used as the excitation coil, based on an alternating current that flows in the excitation coil,
3. The magnetic characteristic evaluation method according to claim 1, wherein a value of a real part of the signal detected by the synchronous detection is used as the synchronous detection signal in the corresponding step and the evaluation step.
前記対応工程において、所定範囲の磁気特性値に対応する同期検波信号の範囲を、良品範囲として設定し、
前記評価工程において、前記評価試料の同期検波信号が前記良品範囲にあれば、前記評価試料を良品と評価することを特徴とする請求項1から3のいずれか1項に記載の磁気特性評価方法。
In the corresponding step, the range of the synchronous detection signal corresponding to the magnetic characteristic value in the predetermined range is set as a non-defective range,
4. The magnetic property evaluation method according to claim 1, wherein, in the evaluation step, if the synchronous detection signal of the evaluation sample is within the non-defective range, the evaluation sample is evaluated as a non-defective product. 5. .
前記磁石材料は、熱間加工磁石の磁石材料であることを特徴とする請求項1から4のいずれか1項に記載の磁気特性評価方法。   The magnetic property evaluation method according to claim 1, wherein the magnet material is a magnet material of a hot-worked magnet. 交流磁場を発生させ、試料に印加する磁場発生手段と、
前記試料において発生した誘導電流を同期検波によって検出する誘導電流検出手段と、を有し、
請求項1から5のいずれか1項に記載の磁気特性評価方法を実行することを特徴とする磁気特性評価装置。
A magnetic field generating means for generating an alternating magnetic field and applying it to the sample;
Inductive current detection means for detecting the induced current generated in the sample by synchronous detection,
A magnetic property evaluation apparatus that executes the magnetic property evaluation method according to claim 1.
JP2015058989A 2015-03-23 2015-03-23 Magnetic characteristic evaluation method and magnetic characteristic evaluation apparatus Active JP6446304B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015058989A JP6446304B2 (en) 2015-03-23 2015-03-23 Magnetic characteristic evaluation method and magnetic characteristic evaluation apparatus
CN201610170128.1A CN105988093B (en) 2015-03-23 2016-03-23 Magnetic characteristic evaluation method and magnetic characteristic valuator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015058989A JP6446304B2 (en) 2015-03-23 2015-03-23 Magnetic characteristic evaluation method and magnetic characteristic evaluation apparatus

Publications (2)

Publication Number Publication Date
JP2016176885A JP2016176885A (en) 2016-10-06
JP6446304B2 true JP6446304B2 (en) 2018-12-26

Family

ID=57044564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015058989A Active JP6446304B2 (en) 2015-03-23 2015-03-23 Magnetic characteristic evaluation method and magnetic characteristic evaluation apparatus

Country Status (2)

Country Link
JP (1) JP6446304B2 (en)
CN (1) CN105988093B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6288894B1 (en) * 2017-07-27 2018-03-07 株式会社テクレコ Magnetic ink detection device
CN109142508A (en) * 2018-08-09 2019-01-04 西红柿科技(武汉)有限公司 A kind of magnetic conductivity instrument for Magnetic Flux Leakage Inspecting
JP2020056704A (en) * 2018-10-03 2020-04-09 株式会社玉川製作所 Automatic sample exchange device for vibrating sample magnetometer
CN117607244B (en) * 2024-01-22 2024-04-30 河南工学院 Multi-sensitive-array crane steel wire rope flux weakening on-line monitoring method and system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342962A (en) * 1980-04-21 1982-08-03 Bell Telephone Laboratories, Incorporated Method for measuring coercivity in magnetic materials
JPH05119138A (en) * 1991-08-19 1993-05-18 Daido Steel Co Ltd Method and apparatus for estimating magnetic characteristics after magnetization of raw material
JP3985695B2 (en) * 2003-02-27 2007-10-03 株式会社ジェイテクト Method for evaluating the degree of orientation of anisotropic magnetic materials
JP5262436B2 (en) * 2008-08-27 2013-08-14 Jfeスチール株式会社 Magnetic measurement method and apparatus
CN103119432B (en) * 2010-12-21 2015-12-02 新东工业株式会社 Character of surface evaluating apparatus and character of surface evaluation method
CN103930775B (en) * 2011-11-07 2016-10-12 日产自动车株式会社 Magnetic evaluating apparatus and evaluation methodology thereof
JP2013245958A (en) * 2012-05-23 2013-12-09 Hitachi Industrial Equipment Systems Co Ltd Magnetic flux density distribution measurement apparatus and magnetic flux density measurement method
CN202770984U (en) * 2012-09-20 2013-03-06 上海市计量测试技术研究院 Magnetic material shielding property self-evaluating device
EP2960669B1 (en) * 2013-02-25 2022-04-06 Nissan Motor Co., Ltd. Magnet evaluating device and method
JP2014203872A (en) * 2013-04-02 2014-10-27 株式会社ダイドー電子 Method for regenerating scrap magnet

Also Published As

Publication number Publication date
CN105988093A (en) 2016-10-05
CN105988093B (en) 2019-05-03
JP2016176885A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP6446304B2 (en) Magnetic characteristic evaluation method and magnetic characteristic evaluation apparatus
CN103238064B (en) Depth of quenching assay method and depth of quenching determinator
CN104903718A (en) Apparatus and method for detecting inner defects of steel plate
KR102049524B1 (en) Contrast test specimens for measuring defects in tube expansion using eddy current test and method for measuring defects using the same
EP3124964A1 (en) Surface characteristic inspection method and surface characteristic inspection device
CN105466998A (en) Method for utilizing variable-frequency variable-magnetic field excitation to test hardness property of ferromagnetic material
Lee et al. Estimation of deep defect in ferromagnetic material by low frequency eddy current method
US20120153944A1 (en) Method for inspecting an austenitic stainless steel weld
Ulapane et al. Designing a pulsed eddy current sensing set-up for cast iron thickness assessment
Cheng Magnetic flux leakage testing of reverse side wall-thinning by using very low strength magnetization
Vértesy et al. Nondestructive investigation of wall thinning in layered ferromagnetic material by magnetic adaptive testing
JP6551885B2 (en) Nondestructive inspection device and nondestructive inspection method
KR101107757B1 (en) The complicated type nondestructive inspection apparatus using the hybrid magnetic induction thin film sensor
CN105874329B (en) Detect the device and method of the defect of steel plate
KR100626228B1 (en) Apparatus and Method for detecting defect with magnetic flux inducted by AC magnetic field
CN113532255B (en) Method and device for detecting thickness of magnetic leakage and eddy current
Singh et al. Thickness evaluation of aluminium plate using pulsed eddy current technique
Tumanski et al. The magnetovision method as a tool to investigate the quality of electrical steel
Gotoh et al. Evaluation of electromagnetic inspection of outer side defect on small diameter and thick steel tube with steel support using 3-d nonlinear fem
Göktepe Investigation of Bx and By components of the magnetic flux leakage in ferromagnetic laminated sample
CN111133308B (en) Eddy current flaw detection method
Wang et al. Simultaneous imaging defect and measuring lift-off using a double layer parallel-cable-based probe
OKA et al. Examination of the inductance method for non-destructive testing in structural metallic material by means of the pancake-type coil
STANĚK et al. Experimental Gaussmeter For Circular Magnetization
Cheng et al. Magnetic flux leakage testing for defect characterization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181203

R150 Certificate of patent or registration of utility model

Ref document number: 6446304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250