JP3985695B2 - Method for evaluating the degree of orientation of anisotropic magnetic materials - Google Patents

Method for evaluating the degree of orientation of anisotropic magnetic materials Download PDF

Info

Publication number
JP3985695B2
JP3985695B2 JP2003051606A JP2003051606A JP3985695B2 JP 3985695 B2 JP3985695 B2 JP 3985695B2 JP 2003051606 A JP2003051606 A JP 2003051606A JP 2003051606 A JP2003051606 A JP 2003051606A JP 3985695 B2 JP3985695 B2 JP 3985695B2
Authority
JP
Japan
Prior art keywords
orientation
green compact
degree
measured
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003051606A
Other languages
Japanese (ja)
Other versions
JP2004257984A (en
Inventor
和俊 山本
智喬 中川
義雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2003051606A priority Critical patent/JP3985695B2/en
Publication of JP2004257984A publication Critical patent/JP2004257984A/en
Application granted granted Critical
Publication of JP3985695B2 publication Critical patent/JP3985695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、異方性磁性材料の配向度評価方法に関する。
【0002】
【従来の技術】
一般に、異方性磁石は、結晶磁気異方性を有する磁性材料(異方性磁性材料)を単一の結晶粒程度になるまで粉砕して材料粉末とし、この材料粉末又は同粉末に樹脂バインダーを混合してなる原料を磁界中で圧縮(磁場配向)するか、或いは、成形ローラで機械的に圧延(機械配向)することにより、材料粒子の磁化容易軸が一定の方向に向いた異方性圧粉体を作製し、この異方性圧粉体を焼成等で硬化させたものに着磁処理を施すことによって製造される。
【0003】
このように、異方性磁性材料は磁気特性が発現しやすい磁化容易軸を一定の向きに配向させて使用されるので、着磁前の異方性圧粉体の配向度がまちまちであると、着磁後の最終製品(焼結磁石やボンド磁石)の磁気特性が大きく変化して不良品の発生に繋がる。従って、異方性磁石の原料となる着磁前の異方性圧粉体の配向度を正確に把握することは、異方性磁石の品質保持及び設計管理の面で極めて重要である。
そこで、従来より、X線回析装置を用いて異方性圧粉体の結晶構造を解析することにより、当該圧粉体の配向度を評価する方法が行われる場合がある(特許文献1参照)。
【0004】
【特許文献1】
特開平11−195516号公報(〔0054〕欄)
【0005】
【発明が解決しようとする課題】
しかるに、上記X線回折装置を用いて異方性圧粉体の配向度を評価する場合には、複数の結晶面の解析強度を測定する必要があるので、測定時間が非常に長時間になってしまう。このため、その回折装置を異方性磁石の製造ラインに組み込んで、異方性圧粉体の配向度を評価してラインから不良品を取り除くことは非常に困難である。また、そもそも、X線回折装置は非常に高価であるため、設備コストを必要以上に高騰化させないためには、着磁前の異方性圧粉体の配向度を評価するだけのために当該装置を導入することは得策ではない。
【0006】
一方、BHトレーサや振動試料型磁力計によって異方性圧粉体のヒステリシスループを測定し、このループに基づいて異方性圧粉体の磁気的な配向度を評価することも可能ではある。しかるに、この場合には、異方性圧粉体をいったん着磁させる必要があり、その着磁後の異方性圧粉体を完全に脱磁することが困難であるため、この方法によっても、異方性圧粉体の配向度を簡単に評価することはできない。
【0007】
本発明は、このような実情に鑑み、異方性磁石の原料となる未着磁の異方性圧粉体の配向度を短時間で簡易に評価できるようにして、異方性磁石の品質保持及び設計管理を簡便に行えるようにすることを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成すべく、本発明は次の技術的手段を講じた。
すなわち、本発明方法は、次の各ステップを備えた異方性磁性材料の配向度評価方法である。
【0009】
(a) 異方性磁性材料よりなる材料粉末を所定方向に完全に磁場配向してなる少なくとも一つの基準圧粉体の体積率と残留磁化を測定する第一ステップ
(b) 体積率と残留磁化を変数とする二次元座標に前記基準圧粉体の測定データをプロットし、その点と原点あるいは複数の点同士を結んで磁化基準線を決定する第二ステップ
(c) 前記材料粉末を所定方向に配向してなる被測定圧粉体の体積率と残留磁化を測定する第三ステップ
(d) 前記被測定圧粉体の測定データを前記二次元座標にプロットし、その測定データの残留磁化が前記磁化基準線から離脱している程度から当該被測定圧粉体の配向度を推定する第四ステップ
【0010】
上記の本発明によれば、材料粉末を完全に磁場配向してなる基準圧粉体の測定データに基づいて磁化基準線を予め決定しておき、被測定圧粉体の残留磁化がその磁化基準性から離脱している程度から当該被測定圧粉体の配向度を特定するようにしているので、被測定圧粉体の残留磁化と体積率を測定して磁化基準線と比較するだけで当該被測定圧粉体の配向度を評価することができる。このため、X線回折装置のような高価な装置を使用しなくても、被測定圧粉体の配向度を未着磁状態のまま短時間で評価することができる。
【0011】
上記の本発明方法において、残留磁化の測定は振動試料型磁力計によって行うことができ、体積率の測定は熱分析装置によって行うことができる。かかる磁力計及び熱分析装置は、一般に磁石製造業者やその開発者が既に所有しているものであるため、本発明方法を実施するに当たって設備コストの高騰を招来しない点で好ましい。
なお、本発明の評価方法において、残留磁化と体積率の測定値を用いることにしたのは、例えば、ゴム磁石を作製する際には、ゴム・添加剤・磁性粉の混練や磁性粉の配列のための圧延成形によって磁性粉に歪みが導入され、真の飽和磁化を求めることが困難だからである。また、ゴム磁石の部位による磁性粉の量のバラツキもあり、磁性粉の混合割合をそのまま用いることもできないからである。
【0012】
【発明の実施の形態】
以下、図面に基づいて、本発明の実施の形態を説明する。
本発明に係る配向度評価方法を実施するには、まず、フェライト等の異方性磁性材料よりなる材料粉末を所定方向に完全に磁場配向することによって基準圧粉体1を作製し、この基準圧粉体1の体積率xpと残留磁化ypを熱分析装置及び振動試料型磁力計等を用いて測定する。
【0013】
なお、かかる完全に磁場配向された基準圧粉体1は、例えば、秤量した異方性磁性材料よりなる材料粉末と蝋の混合物を容器に入れて加熱し、蝋が溶けた状態で強磁場をかけ、その状態で冷却して硬化させることによって作製することができる。
そして、図1(a)に示すように、体積率Xと残留磁化Yを変数とする二次元座標に上記基準圧粉体1の測定データPをプロットし、図1(b)に示すように、その点Pと原点を結んで磁化基準線Lを決定する。また、図1には示していないが、基準圧粉体1を複数用いて複数の測定データPをプロットし、隣り合う点P同士を結んで磁化基準線Lを決定してもよい。
【0014】
次に、基準圧粉体1の場合と同じ材料粉末を所定方向に配向することによって被測定圧粉体2を作製し、この被測定圧粉体2の体積率xrと残留磁化yrを測定する。
なお、かかる被測定圧粉体2は、例えば、秤量した異方性磁性材料よりなる材料粉末とゴム粉末の混合物を混練し、その混練済みの磁性粉入りゴムを所定の圧下率で圧延して、当該材料粉末をゴムシート内で機械配向させることによって作製することができる。
【0015】
そして、図1(c)に示すように、この被測定圧粉体2の測定データRを前記した二次元座標にプロットし、その測定データRの残留磁化yrが磁化基準線Lから離脱している程度によって当該被測定圧粉体2の配向度を特定する。なお、この場合の磁化基準線Lから離脱している程度とは、体積率Xが被測定圧粉体2の体積率xrである場合における、磁化基準線L上の残留磁化yr’(完全磁場配向の場合の残留磁化)に対する被測定圧粉体2の残留磁化yrの比yr/yr’を意味し、この比yr/yr’によって被測定圧粉体2の配向度と見なすことができる。
【0016】
その理由は、後述する実験例でも明らかな通り、磁気異方性圧粉体の残留磁化Yは磁性粉量(体積率X)と比例することから、残留磁化Yは配向度に比例すると仮定することができるからである。
上記の本発明に係る配向度評価方法を利用して、異方性磁石の製造ラインにおいて、磁場配向又は機械配向された直後の異方性圧粉体の結晶配向性を評価するようにすれば、磁気異方性圧粉体の成形工程における圧力設定ミスや成形装置の故障を早期に発見でき、これによって不良品を排除できるため、後続の焼結工程や着磁工程に不良品が流れるのを未然に防止することができる。
【0017】
また、磁気異方性圧粉体の成形装置と後続装置の間に本発明方法を利用した配向性評価装置を配備してこれらの間をオンラインで接続することにより、成形装置の運転状況をほぼリアルタイムで把握できるようになり、磁気異方性圧粉体の評価に基づいて成形装置の運転を即座に停止できるようになる。このため、成形装置の不具合への対応時間が大幅に短縮され、不良品の発生を低減することができる。
更に、本発明の評価方法を利用すれば、X線回折装置のような高価な装置を使用しなくても、被測定圧粉体の配向度を未着磁状態のまま短時間で評価することができるので、生産効率を落とすことなく異方性圧粉体の全数検査を行うこともでき、異方性磁石の設計管理を簡便化することもできる。
【0018】
一方、多極着磁を行う必要のある異方性磁石では、配向度評価のためにいったん着磁したあとで脱磁しても、完全な脱磁は困難である。このため、最終的に多極着磁を行う際に、配向度評価の際の磁界印加方向において着磁度が高くなってしまい、着磁の対称性が確保できなくなる。この点、本発明方法を利用すれば、多極着磁の磁石を製造する際の磁気異方性圧粉体の配向度を評価する場合に特に有効である。
【0019】
なお、上記した実施形態はすべて例示であって制限的なものではない。本発明の範囲は特許請求の範囲によって規定され、そこに記載された構成と均等の範囲内のすべての変更も本発明に含まれる。
例えば、本発明方法は、機械配向された被測定圧粉体2だけでなく、磁場配向された被測定圧粉体2に対しても適用することができる。もっとも、磁場配向によって異方性圧粉体を圧縮成型する場合には、十分に強力な磁場をかけて作ることから、ほぼ完全な配向が行われることが多い。そのため、機械配向の場合よりも配向度を評価する必要性に乏しいと言える。
【0020】
【実施例】
本発明方法の有用性を実証するため、実際に作製した被測定圧粉体に対して配向度の評価実験を行った。この実験に用いた基準圧粉体1と被測定圧粉体2の諸元はそれぞれ次の通りである。
【0021】
〔基準圧粉体〕
・磁性粉:
戸田工業(株)製のFH−800(商品名)
機械配向用ストロンチウムフェライト(SrO・6Fe2O3)
・上記磁性粉と蝋の混合物を容器に入れて加熱し、蝋が溶けた状態で22kOeの磁場をかけ、その状態で冷却して硬化させて作製した。
【0022】
〔被測定圧粉体〕
・磁性粉:
基準圧粉体の場合と同じ。
・ゴム材料:
NBR
・圧延条件:
上記磁性粉とゴム粉末の混合物を混練し、その混練済みの磁性粉入りゴムを、初期ロールのロール間隔4.8mmでかつシート幅約150mmに設定して、圧下率を種々に変化させて圧延し、当該磁性粉をゴムシート内で機械配向させて作製した。
【0023】
〔供試体の種類〕
磁性粉の添加量(体積率)がそれぞれ38、45、54及び65重量%(mass%)である4種類の供試体を作製し、その4種類の供試体について、成形ロールの圧下率(最終ロール間隔/初期ロール間隔)をそれぞれ1.0、0.62、0.42及び0.25で変化させて圧延し、その場合の残留磁化を振動試料型磁力計(東英工業製 VSM−3)によって測定した。
【0024】
その結果得られた各変数間の関係が図2及び図3である。
このうち、図2に示すように、圧下率が0.25、すなわち、磁性粉入りゴムシートを1/4の厚さに圧延した場合には、完全に磁場配向された基準圧粉体のライン(磁化基準線)とほぼ一致することから、この場合に機械配向による配向度がほぼ完全となる。また、圧下率が1.0(非圧延の状態)に近づくほど、残留磁化は低下する。
【0025】
一方、図3に示すように、磁性粉の添加量(体積率)が変化しても、圧下率と配向度との関係はほぼ一定の状態に維持されている。このため、ある一定の体積率の場合における、磁化基準線上の残留磁化に対する被測定圧粉体の残留磁化の比により、当該圧粉体の配向度を特定できることが判る。
【0026】
【発明の効果】
以上説明したように、本発明によれば、一般に磁石製造業者や開発者が既に所有している装置以外に特別な装置を使用しなくても、異方性磁石の原料となる未着磁の異方性圧粉体の配向度を短時間で簡易に評価できるので、異方性磁石の不良品の発生を抑制できるとともに、同磁石の設計管理をより簡便化することができる。
【図面の簡単な説明】
【図1】本発明に係る配向度評価方法を時系列に示すためのグラフである。
【図2】磁性粉の体積率と残留磁化との関係を示すグラフである。
【図3】圧下率と配向度との関係を示すグラフである。
【符号の説明】
1 基準圧粉体
2 被測定圧粉体
L 磁化基準線
xp 基準圧粉体の体積率
yp 基準圧粉体の残留磁化
xr 被測定圧粉体の体積率
yr 被測定圧粉体の残留磁化
P 測定データ
R 測定データ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating the degree of orientation of an anisotropic magnetic material.
[0002]
[Prior art]
In general, an anisotropic magnet is obtained by crushing a magnetic material having anisotropic magnetic anisotropy (anisotropic magnetic material) to a single crystal grain size to obtain a material powder. Anisotropy in which the axis of easy magnetization of material particles is oriented in a fixed direction by compressing the raw material obtained by mixing (magnetic orientation) in a magnetic field or mechanically rolling with a forming roller (mechanical orientation) It is manufactured by producing a magnetic green compact and subjecting the anisotropic green compact to a hardened material by firing or the like.
[0003]
As described above, since anisotropic magnetic materials are used with the easy axis of magnetization easily exhibiting magnetic properties oriented in a certain direction, the degree of orientation of the anisotropic compact before magnetization is varied. The magnetic properties of the final product (sintered magnet or bonded magnet) after magnetization are greatly changed, leading to the generation of defective products. Therefore, accurately grasping the degree of orientation of the anisotropic green compact before magnetization, which is a raw material of the anisotropic magnet, is extremely important in terms of quality maintenance and design management of the anisotropic magnet.
Therefore, conventionally, there is a case where a method for evaluating the degree of orientation of the green compact by analyzing the crystal structure of the anisotropic green compact using an X-ray diffraction apparatus (see Patent Document 1). ).
[0004]
[Patent Document 1]
JP-A-11-195516 (column [0054])
[0005]
[Problems to be solved by the invention]
However, when the degree of orientation of the anisotropic green compact is evaluated using the X-ray diffractometer, it is necessary to measure the analytical strength of a plurality of crystal planes, and the measurement time becomes very long. End up. For this reason, it is very difficult to incorporate the diffraction device into a production line for anisotropic magnets, evaluate the degree of orientation of the anisotropic green compact, and remove defective products from the line. In the first place, since the X-ray diffractometer is very expensive, in order not to raise the facility cost more than necessary, the X-ray diffractometer is used only for evaluating the degree of orientation of the anisotropic green compact before magnetization. It is not a good idea to introduce equipment.
[0006]
On the other hand, it is also possible to measure the hysteresis loop of the anisotropic green compact with a BH tracer or a vibrating sample magnetometer and evaluate the magnetic orientation degree of the anisotropic green compact based on this loop. However, in this case, it is necessary to magnetize the anisotropic compact once, and it is difficult to completely demagnetize the anisotropic compact after the magnetization. The degree of orientation of the anisotropic green compact cannot be easily evaluated.
[0007]
In view of such circumstances, the present invention makes it possible to easily evaluate the degree of orientation of an unmagnetized anisotropic green compact, which is a raw material for an anisotropic magnet, in a short time. The purpose is to enable easy maintenance and design management.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention takes the following technical means.
That is, the method of the present invention is a method for evaluating the degree of orientation of an anisotropic magnetic material comprising the following steps.
[0009]
(A) First step of measuring volume fraction and remanent magnetization of at least one reference green compact obtained by completely magnetically orienting a material powder made of an anisotropic magnetic material in a predetermined direction (b) Volume fraction and remanent magnetization A second step of plotting the measurement data of the reference green compact in two-dimensional coordinates with the variable as a variable, and connecting the point and the origin or a plurality of points to determine a magnetization reference line (c) the material powder in a predetermined direction A third step (d) of measuring the volume fraction and the residual magnetization of the green compact to be measured, wherein the measurement data of the green compact to be measured is plotted on the two-dimensional coordinates, and the residual magnetization of the measurement data is A fourth step of estimating the degree of orientation of the green compact to be measured from the degree of separation from the magnetization reference line.
According to the present invention, the magnetization reference line is determined in advance based on the measurement data of the reference green compact obtained by completely magnetically orienting the material powder, and the residual magnetization of the green compact to be measured is the magnetization reference. Since the degree of orientation of the green compact to be measured is specified from the degree of separation from the properties, the residual magnetization and volume ratio of the green compact to be measured are measured and compared with the magnetization reference line. The degree of orientation of the green compact to be measured can be evaluated. For this reason, the orientation degree of the green compact to be measured can be evaluated in an unmagnetized state in a short time without using an expensive apparatus such as an X-ray diffraction apparatus.
[0011]
In the method of the present invention, the residual magnetization can be measured with a vibrating sample magnetometer, and the volume ratio can be measured with a thermal analyzer. Such magnetometers and thermal analyzers are generally already owned by magnet manufacturers and their developers, and therefore are preferable in that they do not cause an increase in equipment costs when implementing the method of the present invention.
In the evaluation method of the present invention, the measured values of remanent magnetization and volume fraction were used, for example, when rubber magnets were manufactured, rubber / additive / magnetic powder kneading or magnetic powder arrangement This is because distortion is introduced into the magnetic powder by the rolling forming, and it is difficult to obtain true saturation magnetization. Further, there is a variation in the amount of magnetic powder depending on the portion of the rubber magnet, and the mixing ratio of the magnetic powder cannot be used as it is.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In order to carry out the orientation degree evaluation method according to the present invention, first, a reference powder 1 is prepared by completely magnetically orienting a material powder made of an anisotropic magnetic material such as ferrite in a predetermined direction. The volume ratio xp and the residual magnetization yp of the green compact 1 are measured using a thermal analyzer and a vibrating sample magnetometer.
[0013]
In addition, the reference green compact 1 which is completely magnetically oriented is prepared by, for example, putting a weighed mixture of material powder and wax made of anisotropic magnetic material into a container and heating it, and applying a strong magnetic field in a state where the wax is melted. It can be made by cooling and curing in that state.
Then, as shown in FIG. 1 (a), the measurement data P of the reference green compact 1 is plotted on two-dimensional coordinates with the volume ratio X and the residual magnetization Y as variables, and as shown in FIG. 1 (b). The magnetization reference line L is determined by connecting the point P and the origin. Although not shown in FIG. 1, a plurality of measurement data P may be plotted using a plurality of reference green compacts 1, and the magnetization reference line L may be determined by connecting adjacent points P.
[0014]
Next, the measured powder 2 is produced by orienting the same material powder as in the case of the reference green compact 1 in a predetermined direction, and the volume ratio xr and residual magnetization yr of the measured green powder 2 are measured. .
The green compact 2 to be measured is prepared by, for example, kneading a weighed mixture of material powder made of anisotropic magnetic material and rubber powder, and rolling the kneaded magnetic powder-containing rubber at a predetermined reduction rate. The material powder can be produced by mechanical orientation in a rubber sheet.
[0015]
Then, as shown in FIG. 1C, the measurement data R of the green compact 2 to be measured is plotted on the two-dimensional coordinates described above, and the residual magnetization yr of the measurement data R is detached from the magnetization reference line L. The degree of orientation of the green compact 2 to be measured is specified according to the degree to which it is present. The degree of separation from the magnetization reference line L in this case means the residual magnetization yr ′ (complete magnetic field) on the magnetization reference line L when the volume ratio X is the volume ratio xr of the green compact 2 to be measured. This means the ratio yr / yr ′ of the residual magnetization yr of the green compact 2 to be measured with respect to the residual magnetization in the case of orientation, and can be regarded as the degree of orientation of the green compact 2 to be measured by this ratio yr / yr ′.
[0016]
The reason is that, as will be apparent from the experimental examples described later, since the residual magnetization Y of the magnetic anisotropic compact is proportional to the amount of magnetic powder (volume ratio X), it is assumed that the residual magnetization Y is proportional to the degree of orientation. Because it can.
If the orientation degree evaluation method according to the present invention is used, in the anisotropic magnet production line, the crystal orientation of the anisotropic compact immediately after being magnetically or mechanically oriented is evaluated. , It is possible to detect pressure setting mistakes and molding equipment failures in the molding process of magnetic anisotropic compacts at an early stage, which can eliminate defective products, so that defective products flow into subsequent sintering and magnetizing processes. Can be prevented in advance.
[0017]
In addition, an orientation evaluation device using the method of the present invention is arranged between the magnetic anisotropic green compact molding device and the subsequent device, and these devices are connected online, so that the operation status of the molding device is almost the same. It becomes possible to grasp in real time, and the operation of the molding apparatus can be immediately stopped based on the evaluation of the magnetic anisotropic green compact. For this reason, the response time to the malfunction of the molding apparatus is greatly shortened, and the occurrence of defective products can be reduced.
Furthermore, if the evaluation method of the present invention is used, the degree of orientation of the green compact to be measured can be evaluated in a short time without using an expensive apparatus such as an X-ray diffractometer. Therefore, the total number of anisotropic green compacts can be inspected without reducing production efficiency, and the design management of anisotropic magnets can be simplified.
[0018]
On the other hand, with an anisotropic magnet that needs to perform multipolar magnetization, complete demagnetization is difficult even if the magnet is once demagnetized for evaluation of the degree of orientation. For this reason, when multipolar magnetization is finally performed, the degree of magnetization increases in the direction of magnetic field application in the evaluation of the orientation degree, and the symmetry of magnetization cannot be ensured. In this regard, the use of the method of the present invention is particularly effective in evaluating the degree of orientation of the magnetic anisotropic compact when producing a multipolar magnet.
[0019]
The above-described embodiments are all illustrative and not restrictive. The scope of the present invention is defined by the claims, and all modifications within the scope equivalent to the configurations described therein are also included in the present invention.
For example, the method of the present invention can be applied not only to the measured green compact 2 that is mechanically oriented but also to the green compact 2 that is magnetically oriented. However, when an anisotropic compact is compression-molded by magnetic field orientation, it is often produced by applying a sufficiently strong magnetic field, so that almost perfect orientation is often performed. Therefore, it can be said that it is less necessary to evaluate the degree of orientation than in the case of mechanical orientation.
[0020]
【Example】
In order to demonstrate the usefulness of the method of the present invention, an evaluation experiment of the degree of orientation was performed on the actually measured green compact. The specifications of the reference green compact 1 and the green compact 2 to be measured used in this experiment are as follows.
[0021]
[Standard compact]
・ Magnetic powder:
Toda Kogyo Co., Ltd. FH-800 (trade name)
Strontium ferrite for mechanical orientation (SrO · 6Fe2O3)
A mixture of the above magnetic powder and wax was put in a container and heated, and a magnetic field of 22 kOe was applied in a state where the wax was melted, and then cooled and cured in that state.
[0022]
[Measured compact]
・ Magnetic powder:
Same as for standard green compact.
・ Rubber material:
NBR
・ Rolling conditions:
A mixture of the above magnetic powder and rubber powder is kneaded, and the kneaded magnetic powder-containing rubber is set at an initial roll interval of 4.8 mm and a sheet width of about 150 mm, and rolled with various reduction ratios. The magnetic powder was produced by mechanical orientation in a rubber sheet.
[0023]
[Type of specimen]
Four types of specimens having magnetic powder addition amounts (volume ratios) of 38, 45, 54, and 65% by weight (mass%), respectively, were prepared. Rolling was performed while changing the roll interval / initial roll interval to 1.0, 0.62, 0.42, and 0.25, respectively, and the residual magnetization in that case was measured as a vibrating sample magnetometer (VSM-3 manufactured by Toei Kogyo Co., Ltd.). ).
[0024]
The relationship between each variable obtained as a result is shown in FIGS.
Among these, as shown in FIG. 2, when the rolling reduction is 0.25, that is, when a rubber sheet containing magnetic powder is rolled to a thickness of 1/4, the line of the reference green compact that is completely magnetically oriented. In this case, the degree of orientation due to the mechanical orientation is almost perfect. Further, the remanent magnetization decreases as the rolling reduction approaches 1.0 (non-rolled state).
[0025]
On the other hand, as shown in FIG. 3, even if the addition amount (volume ratio) of the magnetic powder is changed, the relationship between the rolling reduction and the degree of orientation is maintained in a substantially constant state. Therefore, it can be seen that the degree of orientation of the green compact can be specified by the ratio of the residual magnetization of the green compact to be measured to the residual magnetization on the magnetization reference line in the case of a certain volume ratio.
[0026]
【The invention's effect】
As described above, according to the present invention, generally, an unmagnetized magnetic material that becomes a raw material of an anisotropic magnet can be used without using a special device other than a device already owned by a magnet manufacturer or developer. Since the degree of orientation of the anisotropic green compact can be easily evaluated in a short time, generation of defective anisotropic magnets can be suppressed, and design management of the magnets can be further simplified.
[Brief description of the drawings]
FIG. 1 is a graph for showing an orientation degree evaluation method according to the present invention in time series.
FIG. 2 is a graph showing the relationship between the volume fraction of magnetic powder and residual magnetization.
FIG. 3 is a graph showing the relationship between the rolling reduction and the degree of orientation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reference green compact 2 Measuring green compact L Magnetization reference line xp Volume ratio yp of standard green compact Residual magnetization xr of standard green compact Volume ratio yr of green compact to measure Residual magnetization P of green compact to be measured Measurement data R Measurement data

Claims (3)

次の各ステップ(a)〜(d)を備えた異方性磁性材料の配向度評価方法。
(a) 異方性磁性材料よりなる材料粉末を所定方向に完全に磁場配向してなる少なくとも一つの基準圧粉体(1)の体積率(xp)と残留磁化(yp)を測定する第一ステップ
(b) 体積率(X)と残留磁化(Y)を変数とする二次元座標に前記基準圧粉体(1)の測定データ(P)をプロットし、その点(P)と原点あるいは複数の点(P)同士を結んで磁化基準線(L)を決定する第二ステップ
(c) 前記材料粉末を所定方向に配向してなる被測定圧粉体(2)の体積率(xr)と残留磁化(yr)を測定する第三ステップ
(d) 前記被測定圧粉体(2)の測定データ(R)を前記二次元座標にプロットし、その測定データ(R)の残留磁化(yr)が前記磁化基準線(L)から離脱している程度から当該被測定圧粉体(2)の配向度を特定する第四ステップ
A method for evaluating the degree of orientation of an anisotropic magnetic material comprising the following steps (a) to (d).
(A) First to measure the volume fraction (xp) and the residual magnetization (yp) of at least one reference green compact (1) obtained by completely magnetically orienting a material powder made of an anisotropic magnetic material in a predetermined direction. Step (b) The measurement data (P) of the reference green compact (1) is plotted on two-dimensional coordinates with the volume fraction (X) and the residual magnetization (Y) as variables, and the point (P) and the origin or plural A second step (c) for determining the magnetization reference line (L) by connecting the points (P) to the volume ratio (xr) of the green compact (2) to be measured formed by orienting the material powder in a predetermined direction; Third step (d) of measuring the residual magnetization (yr) Plotting the measurement data (R) of the green compact (2) to be measured on the two-dimensional coordinates, and the residual magnetization (yr) of the measurement data (R) Degree of orientation of the green compact (2) to be measured from the extent to which it is separated from the magnetization reference line (L) The fourth step to identify
残留磁化の測定を振動試料型磁力計によって行う請求項1に記載の異方性磁性材料の配向度評価方法。The method for evaluating the degree of orientation of an anisotropic magnetic material according to claim 1, wherein the residual magnetization is measured with a vibrating sample magnetometer. 体積率の測定を熱分析装置によって行う請求項1又は2に記載の異方性磁性材料の配向度評価方法。The method for evaluating the degree of orientation of an anisotropic magnetic material according to claim 1 or 2, wherein the volume ratio is measured by a thermal analyzer.
JP2003051606A 2003-02-27 2003-02-27 Method for evaluating the degree of orientation of anisotropic magnetic materials Expired - Fee Related JP3985695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051606A JP3985695B2 (en) 2003-02-27 2003-02-27 Method for evaluating the degree of orientation of anisotropic magnetic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051606A JP3985695B2 (en) 2003-02-27 2003-02-27 Method for evaluating the degree of orientation of anisotropic magnetic materials

Publications (2)

Publication Number Publication Date
JP2004257984A JP2004257984A (en) 2004-09-16
JP3985695B2 true JP3985695B2 (en) 2007-10-03

Family

ID=33116709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051606A Expired - Fee Related JP3985695B2 (en) 2003-02-27 2003-02-27 Method for evaluating the degree of orientation of anisotropic magnetic materials

Country Status (1)

Country Link
JP (1) JP3985695B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582062B2 (en) * 2011-02-21 2014-09-03 新日鐵住金株式会社 Magnetic property prediction apparatus, magnetic property prediction method, and computer program
JP6446304B2 (en) * 2015-03-23 2018-12-26 大同特殊鋼株式会社 Magnetic characteristic evaluation method and magnetic characteristic evaluation apparatus

Also Published As

Publication number Publication date
JP2004257984A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
Liu et al. Microstructural evolution and its influence on the magnetic properties of CoFe 2 O 4 powders during mechanical milling
Zhou et al. Site preference for Co/sup 2+/and Ti/sup 4+/in Co-Ti substituted barium ferrite
CN103605089B (en) The fast non-destructive detection method of permanent magnetic material room temperature and high temperature substandard product
CN103149544A (en) Epstein frame-based electrical sheet specific total loss measurement method
Malyshev et al. Defects level evaluation of LiTiZn ferrite ceramics using temperature dependence of initial permeability
JP3985695B2 (en) Method for evaluating the degree of orientation of anisotropic magnetic materials
JP6053644B2 (en) Permanent magnet inspection method and inspection apparatus
Zhu Numerical modelling of magnetic materials for computer aided design of electromagnetic devices
Higuchi et al. Modeling of two-dimensional magnetic properties based on one-dimensional magnetic measurements
CN113066623B (en) 3D printing magnet and preparation method thereof
Pop et al. Using the Jiles Atherton model to analyze the magnetic properties of magnetoelectric materials:(BaTiO 3) x (CoFe 2 O 4) 1− x
Tumański Modern methods of electrical steel testing—A review
Christopoulos et al. Strain sensing capabilities of iron/epoxy composites
JP2008039736A (en) Method for evaluating magnetic characteristics of permanent magnet
CN100374855C (en) In-plane mono-axial anisotropy test method for magnetic film material
JP6091312B2 (en) Permanent magnet characteristic inspection method and permanent magnet characteristic inspection apparatus
CN111077488A (en) Magnetic moment correction method
DE112010005803B4 (en) Coercivity Determination Device for Distributed Coercivity Magnets
Das et al. Characterization of samarium-cobalt TWT magnets
CN109324074A (en) The method of x-ray fluorescence spectrometry strontium permanent-magnet ferrite component content
US20220234963A1 (en) Method for Making Moldable and Cuttable Composite Material for Magnetic Moment Calibration of Samples with Specific Shapes
CN117990163B (en) Automatic performance detection system and method for NdFeB (neodymium iron boron) thin sheet
TWI706151B (en) Magnetic evaluation method of permanent magnetic ferrite magnet
Ionita et al. Correction of measured magnetization curves using finite element method
Möwius et al. Measurement technologies for permanent magnets

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees