JP5156432B2 - Eddy current sample measurement method and eddy current sensor - Google Patents

Eddy current sample measurement method and eddy current sensor Download PDF

Info

Publication number
JP5156432B2
JP5156432B2 JP2008044824A JP2008044824A JP5156432B2 JP 5156432 B2 JP5156432 B2 JP 5156432B2 JP 2008044824 A JP2008044824 A JP 2008044824A JP 2008044824 A JP2008044824 A JP 2008044824A JP 5156432 B2 JP5156432 B2 JP 5156432B2
Authority
JP
Japan
Prior art keywords
eddy current
sample
current sensor
magnetic
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008044824A
Other languages
Japanese (ja)
Other versions
JP2009204342A (en
Inventor
英夫 早乙女
忠信 結城
浩一 田口
賢治 牛込
Original Assignee
国立大学法人 千葉大学
ナプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学, ナプソン株式会社 filed Critical 国立大学法人 千葉大学
Priority to JP2008044824A priority Critical patent/JP5156432B2/en
Publication of JP2009204342A publication Critical patent/JP2009204342A/en
Application granted granted Critical
Publication of JP5156432B2 publication Critical patent/JP5156432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

本発明は、例えば、半導体ウェハやガラス基板等の各種基板上に、スパッタリング法、CVD法、PVD法等の各種方法により形成された金属薄膜(導電膜)などの被測定物(試料)の抵抗率、シート抵抗といった電気特性、膜厚、傷といった物理的状況等を、試料に非接触で測定できる渦電流式試料測定方法と、渦電流型センサに関するものである。   In the present invention, for example, resistance of an object to be measured (sample) such as a metal thin film (conductive film) formed on various substrates such as a semiconductor wafer and a glass substrate by various methods such as sputtering, CVD, and PVD. The present invention relates to an eddy current type sample measuring method and an eddy current type sensor capable of measuring electrical characteristics such as rate and sheet resistance, physical conditions such as film thickness and scratches, etc. without contacting the sample.

渦電流式試料測定方法及びそれに使用される渦電流センサは従来からある。従来の渦電流センサの一例を図24、図25に示す。図24の渦電流センサは片面方式であり、図25の渦電流センサは両面方式である。図24、図25の渦電流センサでは自励発振器Aから発振される交流電流をフェライト製のコアBに巻かれているセンサコイル(励磁コイル)Cに加えると試料Dに渦電流が流れ、渦電流の影響で励磁コイルCに流れる電流が変化することを利用して試料Dの導電膜の物理定数を測定できるものである。この場合、自励発振器Aから発振される交流電流は検波器Eで検波され、検波された電圧と基準電圧発生器Fから発生される基準電圧とが誤差増幅器Gで比較され、誤差増幅器Gの出力で振幅電圧制御器Hが制御されて自励発振器Aから発振される交流電圧が一定にコントロールされる。電流検波器Iでは渦電流の影響による前記電流変化を検出し、検出信号を演算処理して試料Dのシート抵抗、抵抗率、膜厚等を測定することができる。渦電流センサ、渦電流式測定方法はこの他にも各種ある(例えば特許文献1、2参照)。   An eddy current type sample measuring method and an eddy current sensor used for the method are conventionally known. An example of a conventional eddy current sensor is shown in FIGS. The eddy current sensor of FIG. 24 is a single-sided system, and the eddy current sensor of FIG. 25 is a double-sided system. 24 and 25, when an alternating current oscillated from the self-excited oscillator A is applied to a sensor coil (excitation coil) C wound around a ferrite core B, an eddy current flows through the sample D, The physical constant of the conductive film of the sample D can be measured using the fact that the current flowing through the exciting coil C changes due to the influence of the current. In this case, the alternating current oscillated from the self-excited oscillator A is detected by the detector E, and the detected voltage and the reference voltage generated from the reference voltage generator F are compared by the error amplifier G. The amplitude voltage controller H is controlled by the output, and the AC voltage oscillated from the self-excited oscillator A is controlled to be constant. The current detector I can detect the current change due to the influence of the eddy current, and can process the detection signal to measure the sheet resistance, resistivity, film thickness, etc. of the sample D. There are various other eddy current sensors and eddy current measurement methods (see, for example, Patent Documents 1 and 2).

特開2007−333439JP2007-333439A 特開2006−208331JP 2006-208331 A

渦電流方式の測定原理は前記のとおり、励磁コイルCに供給される高周波電圧を一定に制御し、測定する試料Dの抵抗値により変化する電流を検出することにあるが、従来の測定方法では次のような課題があった。
1.試料に印加する交流磁界の発生磁束が磁心全般に広がるため検知される空間分解能(測定分解能)が磁心の磁路断面積の大きさに制約され、磁心の磁路断面積より小さい分解能を得ることができない。
2.実際の測定ではコアBに巻かれた励磁コイルCと自励発振器Aの間に接続用のリード線が必要であり、リード線の長さは測定する試料の大きさにもよるが長い場合は数10cm以上必要となることがあり、その等価回路は図26のようになる。図26のL1は励磁コイルCのインダクタンス、R1は試料Dの等価抵抗、R2は磁心の鉄損に起因する抵抗、L2、L3はリード線のインダクタンス、R3、R4はリード線の抵抗成分、V2は印加電圧、Iは電流検出器である。実際の測定では図24、図25の自励発振器Aの振幅電圧を一定に制御しているため、励起コイルCと直列に存在するリード線のインダクタンスL2、L3及び抵抗成分R3、R4の影響を受けて、励磁コイルCに供給される高周波電圧を一定に保つことが出来ず測定誤差の要因となっている。
As described above, the measurement principle of the eddy current method is to control the high-frequency voltage supplied to the exciting coil C to be constant, and to detect a current that changes depending on the resistance value of the sample D to be measured. There were the following problems.
1. Since the magnetic flux generated by the AC magnetic field applied to the sample spreads throughout the core, the spatial resolution (measurement resolution) detected is limited by the size of the magnetic path cross-sectional area of the magnetic core, and a resolution smaller than that of the magnetic core is obtained. I can't.
2. In actual measurement, a connecting lead wire is required between the exciting coil C wound around the core B and the self-excited oscillator A. The length of the lead wire depends on the size of the sample to be measured, but is long. Several tens of centimeters or more may be required, and an equivalent circuit thereof is as shown in FIG. In FIG. 26, L1 is the inductance of the exciting coil C, R1 is the equivalent resistance of the sample D, R2 is the resistance caused by the iron loss of the magnetic core, L2 and L3 are the lead wire inductances, R3 and R4 are the lead wire resistance components, and V2 Is an applied voltage, and I is a current detector. In actual measurement, since the amplitude voltage of the self-excited oscillator A in FIGS. 24 and 25 is controlled to be constant, the effects of the inductances L2 and L3 of the lead wires and the resistance components R3 and R4 existing in series with the excitation coil C are affected. As a result, the high-frequency voltage supplied to the exciting coil C cannot be kept constant, causing a measurement error.

渦電流センサの磁心材料に、磁気特性に加えて誘電特性が顕著となるMn−Znフェライトなどを使用した場合、例えば、MHz帯の高周波励磁下において、磁心内部の電磁波が定在波となる現象が知られており、これを寸法共鳴と称している。寸法共鳴は磁心の磁路断面積(磁心寸法)に起因した共鳴であるため、共鳴周波数は励磁周波数を一定にして磁心の寸法を変えても、磁路断面積を一定にして励磁周波数を変えても、寸法共鳴又は定在波の状態を制御できる。   When Mn-Zn ferrite, etc., which has a remarkable dielectric property in addition to the magnetic property, is used as the magnetic core material of the eddy current sensor, for example, a phenomenon in which the electromagnetic wave inside the magnetic core becomes a standing wave under high frequency excitation in the MHz band Is known and is referred to as dimensional resonance. Dimensional resonance is resonance caused by the magnetic path cross-sectional area (magnetic core dimension) of the magnetic core. Therefore, even if the resonance frequency is changed with the excitation frequency kept constant, the magnetic path cross-sectional area is made constant and the excitation frequency is changed. However, the state of dimensional resonance or standing wave can be controlled.

本発明の第一の渦電流式試料測定方法は、前記寸法共鳴の原理を応用した測定方法であり、請求項1記載のように、磁心が磁気特性に加えて誘電特性が顕著となる材料製である渦電流センサを使用し、磁気及び誘電特性の複合作用によって生ずる磁心内部の電磁波が定在波となる周波数(寸法共鳴が生ずる周波数)又はその近傍の周波数で前記渦電流センサを作動させて(磁心を励磁して)定在波の山の部分に磁束を集中させて、その山の部分の磁界発生面積(磁束断面積)を磁心の磁路断面積より小さくし、その磁束を試料に与えるようにした測定方法である。 The first eddy current type sample measuring method of the present invention is a measuring method applying the principle of dimensional resonance, and as described in claim 1, the magnetic core is made of a material in which the dielectric characteristics become remarkable in addition to the magnetic characteristics. Using the eddy current sensor, the eddy current sensor is operated at a frequency at which the electromagnetic wave inside the magnetic core generated by the combined action of magnetic and dielectric characteristics becomes a standing wave (frequency at which dimensional resonance occurs) or a frequency in the vicinity thereof. Concentrate the magnetic flux on the peak part of the standing wave (exciting the magnetic core), make the magnetic field generation area (magnetic flux cross-sectional area) of the peak part smaller than the magnetic path cross-sectional area of the magnetic core, and use the magnetic flux as a sample This is the measurement method that is given.

本発明の第二の渦電流式試料測定方法は、請求項2記載のように、請求項1記載の渦電流式試料測定方法において、励磁コイルとは別に一又は二以上の検出コイルが巻かれた渦電流センサを使用し、請求項1記載の渦電流式試料測定方法により試料測定し、その試料測定により渦電流の影響を受けた渦電流センサの前記一又は二以上の検出コイルの誘起電圧を、夫々の検出コイルに接続された高入力インピーダンスの検出器で検出する測定方法である。   According to a second eddy current type sample measuring method of the present invention, as described in claim 2, in the eddy current type sample measuring method according to claim 1, one or more detection coils are wound separately from the exciting coil. An eddy current sensor is used to measure the sample by the eddy current type sample measurement method according to claim 1, and the induced voltage of the one or more detection coils of the eddy current sensor affected by the eddy current by the sample measurement Is measured with a detector having a high input impedance connected to each detection coil.

本発明の第三の渦電流式試料測定方法は、請求項3記載のように、請求項2記載の渦電流式試料測定方法において、励磁コイルとは別に一又は二以上の検出コイルが巻かれた渦電流センサを二セット使用し、一方は測定用、他方は非測定用とし、両渦電流センサの検出コイルをそれらの誘起電圧が逆方向となるように直列接続して両渦電流センサに試料がセットされない場合は直列回路に電圧が発生しないようにし、非測定用渦電流センサには試料をセットせず、測定用渦電流センサには試料をセットして両渦電流センサに励磁電圧を印加し、測定用渦電流センサでは請求項1記載の渦電流式試料測定方法により試料測定し、試料測定により渦電流の影響を受けた前記測定用渦電流センサの検出コイルの誘起電圧と非測定用渦電流センサの検出コイルの誘起電圧との電圧差を前記直列回路において高入力インピーダンスの検出器で検出する測定方法である。   According to a third eddy current type sample measuring method of the present invention, as described in claim 3, in the eddy current type sample measuring method according to claim 2, one or more detection coils are wound separately from the exciting coil. Two sets of eddy current sensors are used, one for measurement and the other for non-measurement. The detection coils of both eddy current sensors are connected in series so that their induced voltages are in the opposite direction. When the sample is not set, voltage is not generated in the series circuit, the sample is not set in the non-measurement eddy current sensor, the sample is set in the measurement eddy current sensor, and the excitation voltage is applied to both eddy current sensors. The eddy current sensor for measurement is subjected to sample measurement by the eddy current type sample measurement method according to claim 1, and the induced voltage of the detection coil of the measurement eddy current sensor affected by the eddy current by the sample measurement is not measured. Eddy current sensor The voltage difference between the induced voltage of the coil in the series circuit is a measurement method for detecting by a detector of a high input impedance.

本発明の渦電流型センサは、請求項4記載のように、渦電流センサの磁心を、磁気特性に加えて誘電特性が顕著となる材料製として、励磁時の磁気及び誘電特性の複合作用によって生ずる磁心内部の電磁波が定在波となる周波数又はその近傍の周波数で作動させると、発生磁束が定在波の山の部分に集中してその山の部分の磁界発生面積(磁束断面積)を磁心の磁路断面積より小さくし、その磁束を試料に与えることができるようにしたものである。この場合、請求項5記載のように、前記磁心材料をMn−Znフェライトとすることができる。請求項6記載のように、前記渦電流センサにおいて、渦電流センサの磁心に、交流磁界を発生させる励磁コイルとは別に、試料測定により渦電流の影響を受けた渦電流センサの誘起電圧を検出する検出コイルを一又は二以上設けたものとすることもできる。 According to the eddy current sensor of the present invention, as described in claim 4, the magnetic core of the eddy current sensor is made of a material in which the dielectric characteristics become remarkable in addition to the magnetic characteristics, and the combined action of the magnetic and dielectric characteristics during excitation is used. When the generated electromagnetic wave inside the magnetic core is operated at a frequency where the standing wave becomes a standing wave or a frequency in the vicinity thereof, the generated magnetic flux is concentrated on the peak portion of the standing wave, and the magnetic field generation area (magnetic flux cross section) of the peak portion is reduced. It is made smaller than the magnetic path cross-sectional area of the magnetic core so that the magnetic flux can be given to the sample . In this case, as described in claim 5, the magnetic core material can be Mn-Zn ferrite. 7. The eddy current sensor according to claim 6, wherein an induced voltage of the eddy current sensor affected by the eddy current is detected by a sample measurement separately from the exciting coil that generates an alternating magnetic field in the magnetic core of the eddy current sensor. One or more detection coils may be provided.

本願の請求項1記載の渦電流式測定方法は次のような効果がある。
(1)磁界を磁心の磁路断面積より小さい範囲(定在波の山の部分)に集中発生させ、その山の部分の磁界を試料に与えるので、渦電流センサの磁心の磁路断面積より小さい空間分解能を得ることができ、検出精度が向上する。
(2)従前のNi−Znフェライトコアの巻線への印加電圧と同じ電圧値で、試料の測定導電率の空間分解能を向上させることができる。
The eddy current measurement method according to claim 1 of the present application has the following effects.
(1) Since the magnetic field is concentrated in a range smaller than the magnetic path cross-sectional area of the magnetic core (the peak portion of the standing wave) and the magnetic field of the peak portion is applied to the sample, the magnetic path cross-sectional area of the magnetic core of the eddy current sensor A smaller spatial resolution can be obtained and detection accuracy is improved.
(2) The spatial resolution of the measured conductivity of the sample can be improved with the same voltage value as the voltage applied to the winding of the conventional Ni—Zn ferrite core.

本願の請求項2記載の渦電流式測定方法は、励磁コイルとは別に一又は二以上の検出コイルが巻かれた渦電流センサを使用し、前記試料測定時に、その試料測定により渦電流の影響を受けた渦電流センサの前記一又は二以上の検出コイルの誘起電圧を、夫々の検出コイルに接続された高入力インピーダンスの検出器で検出するので次のような効果がある。
(1)励磁コイルのリード線のインダクタンス、抵抗等の影響を受けることなく励磁コイルの励起電圧を検出でき、試料の抵抗率、シート抵抗、膜厚などを従来方式に比べて高精度、高感度で測定可能となり、励磁コイルの入力端子で励起電圧を検出していた従来の測定方法では検出困難であった試料の潜在的課題を検出することも可能となる。
(2)入力インピーダンスの検出器で検出された検出電圧を、励磁コイルに印加する印加電圧の制御に使用するので、印加電圧の安定化を図ることができる。
The eddy current measurement method according to claim 2 of the present application uses an eddy current sensor in which one or two or more detection coils are wound separately from the excitation coil, and the influence of the eddy current is measured by the sample measurement during the sample measurement. The induced voltage of the one or more detection coils of the eddy current sensor that has been subjected to detection is detected by a high input impedance detector connected to each of the detection coils.
(1) Excitation coil excitation voltage can be detected without being affected by excitation coil lead wire inductance, resistance, etc., and the sample resistivity, sheet resistance, film thickness, etc. are more accurate and sensitive than conventional methods. It becomes possible to detect a potential problem of a sample, which is difficult to detect with the conventional measurement method in which the excitation voltage is detected at the input terminal of the excitation coil.
(2) Since the detection voltage detected by the detector with high input impedance is used to control the applied voltage applied to the exciting coil, the applied voltage can be stabilized.

本願の請求項3記載の渦電流式測定方法は、励磁コイルとは別に一又は二以上の検出コイルが巻かれた渦電流センサを二セット使用して、一方は測定用、他方は非測定用とし、非測定用渦電流センサの検出コイルの誘起電圧と、試料測定により渦電流の影響を受けた測定用渦電流センサの検出コイルの誘起電圧との電圧差を検出する差動方式であるため、渦電流による影響を受けた励磁コイルの印加電圧のみを高精度、高感度で検出できる。   The eddy current measurement method according to claim 3 of the present application uses two sets of eddy current sensors each having one or two or more detection coils wound separately from the exciting coil, one for measurement and the other for non-measurement. Because this is a differential method that detects the voltage difference between the induced voltage of the detection coil of the non-measuring eddy current sensor and the induced voltage of the detection coil of the measuring eddy current sensor affected by the eddy current due to the sample measurement. Only the voltage applied to the exciting coil affected by the eddy current can be detected with high accuracy and high sensitivity.

本発明の請求項4から請求項6記載の渦電流センサは、磁心が磁気特性に加えて誘電特性が顕著となる材料製であるため、磁気及び誘電特性の複合作用によって生ずる磁心内部の電磁波が定在波となる周波数で磁心を作動させると、発生磁束が定在波の山の部分に集中し、山の部分の密度の高い磁界を試料に与えることができるため、その磁心への印加電圧が、従前のNi−Znフェライトコアの巻線への印加電圧と同じ電圧値でも、試料の測定導電率の空間分解能が向上する。 In the eddy current sensor according to the fourth to sixth aspects of the present invention, the magnetic core is made of a material having a remarkable dielectric characteristic in addition to the magnetic characteristic. When the magnetic core is operated at a frequency that becomes a standing wave, the generated magnetic flux concentrates on the peak portion of the standing wave, and a high-density magnetic field can be applied to the sample portion. However, the spatial resolution of the measured conductivity of the sample is improved even with the same voltage value as the voltage applied to the winding of the conventional Ni—Zn ferrite core.

本発明の請求項5記載の渦電流センサは、磁心材料がMn−Znフェライトであるため、Ni−Zn系に比較して、磁気特性に加えて誘電特性が顕著となり、検出感度が向上する。   In the eddy current sensor according to claim 5 of the present invention, since the magnetic core material is Mn—Zn ferrite, the dielectric property becomes remarkable in addition to the magnetic property and the detection sensitivity is improved as compared with the Ni—Zn system.

本発明の請求項6記載の渦電流センサは、交流磁界を発生させる励磁コイルとは別に試料測定により渦電流の影響を受けた渦電流センサの誘起電圧を検出する検出コイルを磁心に設けたので、次のような効果がある。
(1)検出コイルに高入力インピーダンスの検出器を接続して電圧検出することにより、励磁コイルのリード線のインダクタンス、抵抗等の影響を受けることなく励磁コイルの印加電圧を高精度、高感度で検出可能となる。
(2)前記検出電圧を励磁コイルに印加する高周波電圧の制御に利用できるため、励磁コイルに印加する高周波励磁電圧を安定させることができる。
In the eddy current sensor according to claim 6 of the present invention, a detection coil for detecting the induced voltage of the eddy current sensor affected by the eddy current by the sample measurement is provided in the magnetic core separately from the excitation coil for generating the alternating magnetic field. Has the following effects.
(1) By connecting a detector with a high input impedance to the detection coil and detecting the voltage, the applied voltage of the excitation coil can be accurately and highly sensitive without being affected by the inductance, resistance, etc. of the lead wire of the excitation coil. It can be detected.
(2) Since the detection voltage can be used to control the high frequency voltage applied to the excitation coil, the high frequency excitation voltage applied to the excitation coil can be stabilized.

(渦電流式測定方法及び渦電流センサの実施形態1)
本発明の渦電流センサは、図1(d)の形状のコア(磁心)Bを、磁気特性に加えて誘電特性が顕著となる材料製、例えば、Mn−Znフェライト製としてあり、それにセンサコイル(励磁コイル)Cが巻かれ、その励磁コイルCの両端子を交流電圧印加端子としてある。コアBには前記材料以外の材料、例えばNi−Zn系フェライト等を使用することもできる。
(Embodiment 1 of Eddy Current Method and Eddy Current Sensor)
In the eddy current sensor of the present invention, the core (magnetic core) B having the shape shown in FIG. 1 (d) is made of a material that exhibits remarkable dielectric characteristics in addition to magnetic characteristics, for example, made of Mn-Zn ferrite, and a sensor coil. (Excitation coil) C is wound, and both terminals of the excitation coil C are used as AC voltage application terminals. For the core B, materials other than the above materials, for example, Ni—Zn ferrite can be used.

本発明の渦電流式測定方法は図2に示す試料測定システムで試料測定することができる。図2は図1(a)に示す渦電流センサ2を試料Dの一面側に対向配置して片面センサ式とし、その渦電流センサ2のコアBに巻かれている励磁コイルCに、自励発振器Aから発振される交流電圧(高周波電圧)を加えて磁心に磁界を発生させ、その磁界を試料Dに与えて試料Dに渦電流を発生させる方法である。この渦電流がジュール熱となって失われることから高周波電力の試料D内での吸収がおこり、励磁コイルCに流れる電流が変化する。この吸収と導電率とが正の相関を持つことから、非接触で試料Dの抵抗率測定を行うことができる。即ち、前記渦電流の影響による電流変化を利用して試料Dの導電膜を測定することができる。この場合、自励発振器Aから発振される交流電流は検波器Eで検波され、検波された電圧と基準電圧発生器Fから発生される基準電圧とが誤差増幅器Gで比較され、誤差増幅器Gの出力で振幅電圧制御器Hが制御されて自励発振器Aから発振される交流電圧が一定にコントロールされる。電流検出器Iでは渦電流の影響による前記電流変化を検出し、検出信号を演算処理して試料Dのシート抵抗、抵抗率、膜厚等を測定することができる。   The eddy current measurement method of the present invention can measure a sample with the sample measurement system shown in FIG. FIG. 2 shows a single-sided sensor type in which the eddy current sensor 2 shown in FIG. 1A is opposed to one side of the sample D, and the excitation coil C wound around the core B of the eddy current sensor 2 is self-excited. In this method, an alternating voltage (high frequency voltage) oscillated from the oscillator A is applied to generate a magnetic field in the magnetic core, and the magnetic field is applied to the sample D to generate an eddy current in the sample D. Since this eddy current is lost as Joule heat, high-frequency power is absorbed in the sample D, and the current flowing through the exciting coil C changes. Since the absorption and conductivity have a positive correlation, the resistivity of the sample D can be measured without contact. That is, the conductive film of the sample D can be measured using the current change due to the influence of the eddy current. In this case, the alternating current oscillated from the self-excited oscillator A is detected by the detector E, and the detected voltage and the reference voltage generated from the reference voltage generator F are compared by the error amplifier G. The amplitude voltage controller H is controlled by the output, and the AC voltage oscillated from the self-excited oscillator A is controlled to be constant. The current detector I detects the current change due to the influence of the eddy current, and can process the detection signal to measure the sheet resistance, resistivity, film thickness, etc. of the sample D.

本発明の渦電流式測定方法では、前記自励発振器Aから発振される交流電圧(高周波電圧)の周波数を、磁気及び誘電特性の複合作用によって生ずる磁心内部の電磁波が定在波となる周波数にして、磁界をこの定在波の山の部分に集中(収束)させ、この磁界(磁束)の断面積を磁路断面積よりも小さくして試料Dに与える。磁界が定在波の山の部分に集中する周波数では前記電力吸収が増加し、電流損失が急増するので電流損失を確実に検知することができる。この場合、磁束断面積が磁心の磁路断面積よりも小さいので、磁心の磁路断面積よりも小さい空間分解能を得ることができる。   In the eddy current measurement method of the present invention, the frequency of the alternating voltage (high frequency voltage) oscillated from the self-excited oscillator A is set to a frequency at which the electromagnetic wave inside the magnetic core generated by the combined action of magnetic and dielectric characteristics becomes a standing wave. Then, the magnetic field is concentrated (converged) on the peak portion of the standing wave, and the cross-sectional area of the magnetic field (magnetic flux) is made smaller than the magnetic path cross-sectional area and applied to the sample D. At the frequency where the magnetic field is concentrated on the peak portion of the standing wave, the power absorption increases and the current loss increases rapidly, so that the current loss can be detected reliably. In this case, since the magnetic flux cross-sectional area is smaller than the magnetic path cross-sectional area of the magnetic core, a spatial resolution smaller than the magnetic path cross-sectional area of the magnetic core can be obtained.

励磁コイルに印加する高周波電圧の周波数(励磁周波数)と磁心の磁路断面積と磁束密度の関係は、次の計算データから求めることができ、それを図解すると図4から図15のようになる。図4から図15において、グラフの横軸は図1(d)のコアBの中心部bの円形磁路断面の中心からの距離をその外径で正規化したもので、縦軸はその位置における磁束密度の振幅最大値Bmを示す。図1(d)のcはコアBの輪郭部である。

Figure 0005156432
磁界の強さHの単位は〔A/m〕、磁束密度Bの単位は〔T〕又は〔wb/m2〕、磁束φの単位は〔wb〕である。 The relationship between the frequency of the high-frequency voltage (excitation frequency) applied to the exciting coil, the magnetic path cross-sectional area of the magnetic core, and the magnetic flux density can be obtained from the following calculation data, which is illustrated in FIGS. 4 to 15. . 4 to 15, the horizontal axis of the graph is obtained by normalizing the distance from the center of the circular magnetic path cross section of the central portion b of the core B in FIG. Shows the maximum amplitude value B m of the magnetic flux density. In FIG. 1 (d), c is the contour portion of the core B.
Figure 0005156432
The unit of magnetic field strength H is [A / m], the unit of magnetic flux density B is [T] or [wb / m 2 ], and the unit of magnetic flux φ is [wb].

図4は励磁周波数0.4MHz、図5は励磁周波数0.6MHz、図6は励磁周波数0.8MHz、図7は励磁周波数1MHz、図8は励磁周波数1.2MHz、図9は励磁周波数1.4MHz、図10は励磁周波数1.6MHz、図11は励磁周波数1.8MHz、図12は励磁周波数2MHz、図13は励磁周波数3MHz、図14は励磁周波数5MHz、図15は励磁周波数10MHzの場合である。   4 is an excitation frequency of 0.6 MHz, FIG. 6 is an excitation frequency of 0.8 MHz, FIG. 7 is an excitation frequency of 1 MHz, FIG. 8 is an excitation frequency of 1.2 MHz, and FIG. FIG. 10 shows an excitation frequency of 1.6 MHz, FIG. 11 shows an excitation frequency of 1.8 MHz, FIG. 12 shows an excitation frequency of 2 MHz, FIG. 13 shows an excitation frequency of 3 MHz, FIG. 14 shows an excitation frequency of 5 MHz, and FIG. is there.

(計算データ)

Figure 0005156432
(Calculated data)
Figure 0005156432

励磁周波数が100kHz以下では、磁路断面に磁束は均一に分布するが、励磁周波数0.4MHz〜1.4MHz(図4〜図9)では磁路中心部の磁束密度が高く、励磁周波数1.6MHz〜10MHz(図10〜図15)では磁路外周部の磁束密度が高くなっている。このうち、0.4MHz、1MHz、1.2MHz、1.4MHz、2MHz、10MHzの磁束密度分布を円形磁路断面積の直径について表示すると図16のようになる。本発明では磁束密度が集中し易い励磁周波数を選択して、励磁コイルに印加する。   When the excitation frequency is 100 kHz or less, the magnetic flux is uniformly distributed in the magnetic path cross section, but at the excitation frequency of 0.4 MHz to 1.4 MHz (FIGS. 4 to 9), the magnetic flux density at the center of the magnetic path is high. From 6 MHz to 10 MHz (FIGS. 10 to 15), the magnetic flux density at the outer periphery of the magnetic path is high. Among these, the magnetic flux density distributions of 0.4 MHz, 1 MHz, 1.2 MHz, 1.4 MHz, 2 MHz, and 10 MHz are displayed with respect to the diameter of the circular magnetic path cross-sectional area as shown in FIG. In the present invention, an excitation frequency at which the magnetic flux density tends to concentrate is selected and applied to the excitation coil.

(渦電流式測定方法及び渦電流センサの実施形態2)
本発明の渦電流式測定方法は図3に示す試料測定システムで測定することもできる。図3の測定システムは、図1(a)の渦電流センサ2を対向させ、両渦電流センサ2間のギャップに試料Dを入れる(セットできる)ようにした両面センサ方式である。図3の両渦電流センサ2のコアBに巻かれた励磁コイルCの巻き方向は、両渦電流センサ2の磁束φの発生方向(フレミングの右手の法則に基づく磁力発生方向)が互いに加算される方向になるようにする。磁束φの発生方向は励磁コイルCに流れる高周波電流の変化に応じて反転する。
(Embodiment 2 of Eddy Current Method and Eddy Current Sensor)
The eddy current measurement method of the present invention can also be measured by the sample measurement system shown in FIG. The measurement system of FIG. 3 is a double-sided sensor system in which the eddy current sensor 2 of FIG. 1A is opposed and the sample D is placed (set) in the gap between the two eddy current sensors 2. As for the winding direction of the exciting coil C wound around the core B of the two eddy current sensors 2 in FIG. 3, the generation direction of the magnetic flux φ of the two eddy current sensors 2 (the magnetic force generation direction based on Fleming's right-hand rule) is added to each other. To be in the direction. The direction in which the magnetic flux φ is generated is reversed according to the change in the high-frequency current flowing through the exciting coil C.

図3では、両渦電流センサ2のコアBに巻かれた励磁コイルCに、自励発振器Aから発振される高周波電圧を加えると、ギャップ内にセットした試料Dに渦電流が流れ、渦電流の影響で励磁コイルCに流れる電流が変化する。この場合、自励発振器Aから発振される交流電流は検波器Eで検波され、検波された電圧と基準電圧発生器Fから発生される基準電圧とが誤差増幅器Gで比較され、誤差増幅器Gの出力で振幅電圧制御器Hが制御されて自励発振器Aから発振される交流電圧が一定にコントロールされる。電流検出器Iでは渦電流の影響による前記電流変化を検出し、検出信号を演算処理して試料Dのシート抵抗、抵抗率、膜厚等を測定することができる。前記高周波電圧の周波数は、磁気及び誘電特性の複合作用によって生ずる磁心内部の電磁波が定在波となる周波数である。   In FIG. 3, when a high frequency voltage oscillated from the self-excited oscillator A is applied to the exciting coil C wound around the core B of both eddy current sensors 2, eddy current flows through the sample D set in the gap, and As a result, the current flowing through the exciting coil C changes. In this case, the alternating current oscillated from the self-excited oscillator A is detected by the detector E, and the detected voltage and the reference voltage generated from the reference voltage generator F are compared by the error amplifier G. The amplitude voltage controller H is controlled by the output, and the AC voltage oscillated from the self-excited oscillator A is controlled to be constant. The current detector I detects the current change due to the influence of the eddy current, and can process the detection signal to measure the sheet resistance, resistivity, film thickness, etc. of the sample D. The frequency of the high-frequency voltage is a frequency at which an electromagnetic wave inside the magnetic core generated by the combined action of magnetic and dielectric characteristics becomes a standing wave.

(渦電流式測定方法及び渦電流センサの実施形態3)
本発明の渦電流式測定方法では、渦電流センサとして図1(b)のように、磁心Bに、励磁コイルCとは別に、検出コイル1をも巻き、その両端子を検出端子としたものを使用することもできる。検出コイル1は励磁コイルCの上に重ねて巻くことも、励磁コイルCとは別の箇所に巻くこともできる。励磁コイルCの巻き数と検出コイル1の巻き数は任意に選択することができる。
(Embodiment 3 of Eddy Current Method and Eddy Current Sensor)
In the eddy current measurement method of the present invention, as an eddy current sensor, a detection coil 1 is wound around a magnetic core B separately from an excitation coil C as shown in FIG. Can also be used. The detection coil 1 can be wound over the exciting coil C or can be wound at a different location from the exciting coil C. The number of turns of the exciting coil C and the number of turns of the detection coil 1 can be arbitrarily selected.

本発明の渦電流式測定は図17の試料測定システムで行うこともできる。図17の試料測定システムは図1(b)のように、磁心Bに励磁コイルCとは別に検出コイル1を備えた渦電流センサ2を片面センサ式として使用し、検出コイル1の両端(測定端)に高入力インピーダンス検出器Jを接続してある。この高入力インピーダンス検出器Jのインピーダンスは、検出コイル1のリード線のインダクタンス及び抵抗分(インピーダンス)に対して数倍の高インピーダンスである。図17の測定方法でも、渦電流センサ2の励磁コイルCに自励発振器Aから発振される交流電圧(高周波電圧)を加える。この高周波電圧の周波数(励磁周波数)も、磁気及び誘電特性の複合作用によって生ずる磁心内部の電磁波が定在波となる周波数にして、磁界を定在波の山の部分に集中させ、この磁束断面積を磁心の磁路断面積よりも小さくして試料Dに与えることができるようにする。   The eddy current measurement of the present invention can also be performed by the sample measurement system of FIG. As shown in FIG. 1B, the sample measurement system in FIG. 17 uses an eddy current sensor 2 having a detection coil 1 in addition to the excitation coil C in a magnetic core B as a single-sided sensor type, and both ends of the detection coil 1 (measurement). A high input impedance detector J is connected to the end. The impedance of the high input impedance detector J is several times higher than the inductance and resistance (impedance) of the lead wire of the detection coil 1. Also in the measurement method of FIG. 17, an alternating voltage (high frequency voltage) oscillated from the self-excited oscillator A is applied to the exciting coil C of the eddy current sensor 2. The frequency of this high-frequency voltage (excitation frequency) is also set to a frequency at which the electromagnetic wave inside the magnetic core generated by the combined action of magnetic and dielectric characteristics becomes a standing wave, and the magnetic field is concentrated on the peak portion of the standing wave. The area is made smaller than the magnetic path cross-sectional area of the magnetic core so that it can be given to the sample D.

前記磁界が与えられた試料Dには渦電流が流れ、渦電流の影響で励磁コイルCに流れる電流が変化する。この電流変化に伴う電圧変化が検出コイル1の両端(測定端)に接続された高入力インピーダンス検出器Jで検出され、検波器Eで検波される。この検波電圧と、基準電圧発生器Fから発生される基準電圧とが誤差増幅器Gで比較され、誤差増幅器Gからの出力で振幅電圧制御器Hが制御されて自励発振器Aから発振される交流電圧が一定にコントロールされて励磁コイルCに加えられる。このとき、前記渦電流の影響で励磁コイルCに流れる電流変化が電流検出器Iで検出され、その検出値から、試料Dに渦電流が発生することより生じた消費電力、即ち、試料Dの抵抗率やシート抵抗等を知ることができ、その検知に基づいて導電膜の膜厚、傷等を知ることができる。図17の渦電流式試料測定システムの等価回路は図18のようになる。図18のL1は励磁コイルCのインダクタンス、R1は試料Dの等価抵抗、R2は磁心の鉄損に起因する抵抗、L2、L3はリード線のインダクタンス、R3、R4はリード線の抵抗成分、V2は印加電圧、Iは電流検出器、Vは検出コイル1の測定端の電圧計である。   An eddy current flows through the sample D to which the magnetic field is applied, and the current flowing through the exciting coil C changes under the influence of the eddy current. The voltage change accompanying this current change is detected by the high input impedance detector J connected to both ends (measurement ends) of the detection coil 1 and detected by the detector E. The detected voltage and the reference voltage generated from the reference voltage generator F are compared by the error amplifier G, and the amplitude voltage controller H is controlled by the output from the error amplifier G, and the alternating current oscillated from the self-excited oscillator A. The voltage is controlled to be constant and applied to the exciting coil C. At this time, a change in the current flowing through the exciting coil C due to the influence of the eddy current is detected by the current detector I, and from the detected value, the power consumption caused by the generation of the eddy current in the sample D, that is, the sample D The resistivity, sheet resistance, and the like can be known, and the film thickness and scratches of the conductive film can be known based on the detection. The equivalent circuit of the eddy current sample measurement system of FIG. 17 is as shown in FIG. In FIG. 18, L1 is the inductance of the exciting coil C, R1 is the equivalent resistance of the sample D, R2 is the resistance caused by the iron loss of the magnetic core, L2 and L3 are the lead wire inductances, R3 and R4 are the lead wire resistance components, and V2 Is an applied voltage, I is a current detector, and V is a voltmeter at the measurement end of the detection coil 1.

(渦電流式測定方法及び渦電流センサの実施形態4)
図19は図1(b)の渦電流センサ2を対向させて両面センサ式とした試料測定システムであり、両渦電流センサ2の検出コイル1の測定端に高入力インピーダンス検出器Jを接続してある。この場合も、図19の両渦電流センサ2のコアBに巻かれた励磁コイルCの巻き方向は、両渦電流センサ2の磁束φの発生方向(フレミングの右手の法則に基づく磁力発生方向)が互いに加算される方向になるようにする。この場合も、磁束φの発生方向は励磁コイルCに流れる高周波電流の変化に応じて反転する。
(Embodiment 4 of Eddy Current Method and Eddy Current Sensor)
FIG. 19 shows a sample measurement system in which the eddy current sensor 2 of FIG. 1B is opposed to a double-sided sensor type. A high input impedance detector J is connected to the measurement end of the detection coil 1 of both eddy current sensors 2. It is. Also in this case, the winding direction of the exciting coil C wound around the core B of the eddy current sensor 2 in FIG. 19 is the direction of generation of the magnetic flux φ of the eddy current sensor 2 (the direction of magnetic force generation based on Fleming's right-hand rule). In such a direction that they are added to each other. Also in this case, the direction in which the magnetic flux φ is generated is reversed according to the change of the high-frequency current flowing in the exciting coil C.

図19の両渦電流センサ2の励磁コイルCに、自励発振器Aから発振される交流電圧(高周波電圧)を加えると、ギャップ内にセットした試料Dに渦電流が流れ、渦電流の影響で励磁コイルCに流れる電流が変化する。この電流変化に伴う電圧変化が検出コイル1の両端(測定端)に接続された高入力インピーダンス検出器Jで検出される。その検出電圧は検波器Eで検波され、その検波電圧と基準電圧発生器Fから発生される基準電圧とが誤差増幅器Gで比較され、誤差増幅器Gからの出力で振幅電圧制御器Hが制御されて自励発振器Aから発振される交流電圧が一定にコントロールされて励磁コイルCに加えられるようにしてある。このときも、前記渦電流の影響で励磁コイルCに流れる電流変化が電流検出器Iで検出され、その検出値から、試料Dに渦電流が発生することより生じた消費電力、即ち、試料Dの抵抗率やシート抵抗等を知ることができ、その検知に基づいて導電膜の膜厚、傷等を知ることができる。この場合の励磁周波数も磁気及び誘電特性の複合作用によって生ずる磁心内部の電磁波が定在波となる周波数にして、磁界を定在波の山の部分に集中させて磁束断面積を磁心の磁路断面積よりも小さくして試料Dに与えることができるようにする。   When an alternating voltage (high-frequency voltage) oscillated from the self-excited oscillator A is applied to the exciting coil C of both the eddy current sensors 2 in FIG. 19, an eddy current flows through the sample D set in the gap. The current flowing through the exciting coil C changes. A voltage change accompanying this current change is detected by a high input impedance detector J connected to both ends (measurement ends) of the detection coil 1. The detected voltage is detected by the detector E, the detected voltage and the reference voltage generated from the reference voltage generator F are compared by the error amplifier G, and the amplitude voltage controller H is controlled by the output from the error amplifier G. Thus, the AC voltage oscillated from the self-excited oscillator A is controlled to be constant and applied to the exciting coil C. Also at this time, a change in the current flowing through the exciting coil C due to the influence of the eddy current is detected by the current detector I, and from the detected value, the power consumption caused by the generation of the eddy current in the sample D, that is, the sample D It is possible to know the resistivity, sheet resistance, etc., and to know the film thickness, scratches, etc. of the conductive film based on the detection. In this case, the excitation frequency is also a frequency at which the electromagnetic wave inside the magnetic core generated by the combined action of the magnetic and dielectric characteristics becomes a standing wave, and the magnetic field is concentrated on the peak portion of the standing wave so that the magnetic flux cross-sectional area is the magnetic path of the magnetic core. It is made smaller than the cross-sectional area so that it can be applied to the sample D.

(渦電流式試料測定方法及び渦電流センサの実施形態5)
本発明の渦電流式試料測定方法の他の例を図20に示す。図20は片面式の渦電流センサ2を2セット使用した片面センサ差動方式であり、第一渦電流センサ2はその励磁コイルCに励磁電流を流して試料Dを測定する測定用センサとし、第二渦電流センサ2は試料をセットせずに励磁コイルCに励磁電流を流すだけの非測定用としてあり、両渦電流センサ2の検出コイル1は夫々の誘起電圧が逆方向となるように直列接続して、試料がない場合は励磁コイルCに励磁電圧を印加してもこの直列回路に誘起電圧が発生しないようにしてある。
(Embodiment 5 of Eddy Current Type Sample Measuring Method and Eddy Current Sensor)
Another example of the eddy current type sample measuring method of the present invention is shown in FIG. FIG. 20 shows a single-sided sensor differential method using two sets of single-sided eddy current sensors 2. The first eddy current sensor 2 is a measurement sensor that measures sample D by passing an exciting current through the exciting coil C. The second eddy current sensor 2 is used for non-measuring only by passing an exciting current through the exciting coil C without setting a sample, and the detection coils 1 of both eddy current sensors 2 have their induced voltages in opposite directions. When there is no sample in series connection, an induced voltage is not generated in the series circuit even if an excitation voltage is applied to the excitation coil C.

図20において、両渦電流センサ2の励磁コイルCに自励発振器Gから発振される交流電圧を加えると、測定用渦電流センサ(第一渦電流センサ)2のギャップ内にセットした試料Dに渦電流が流れ、渦電流の影響で励磁コイルCに流れる電流が変化するが、非測定用渦電流センサ(第二渦電流センサ)2のギャップ内には試料がセットされていないので渦電流損が発生しない。このとき両渦電流センサ2の検出コイル1に電圧が誘起されるが、前記直列接続された両検出コイル1の両端(測定端)電圧は両誘起電圧の差分電圧となる。この差分電圧が高入力インピーダンス検出器Jで検出される。高入力インピーダンス検出器Jのインピーダンスは両検出コイル1のリード線のインダクタンス及び抵抗分(インピーダンス)に対して数倍の高インピーダンスであるため前記差分電圧は測定用渦電流センサで試料測定されたときの渦電流の影響による電圧のみとなり、両検出コイル1と高入力インピーダンス検出器Jの間のリード線のインピーダンスは無視できる値(相殺された値)となる。   In FIG. 20, when an AC voltage oscillated from the self-excited oscillator G is applied to the excitation coil C of both eddy current sensors 2, the sample D set in the gap of the measurement eddy current sensor (first eddy current sensor) 2 is applied. An eddy current flows and the current flowing through the exciting coil C changes due to the eddy current. However, since no sample is set in the gap of the non-measuring eddy current sensor (second eddy current sensor) 2, the eddy current loss is reduced. Does not occur. At this time, a voltage is induced in the detection coils 1 of the two eddy current sensors 2, but the voltage at both ends (measurement ends) of the two detection coils 1 connected in series becomes a differential voltage between the two induced voltages. This differential voltage is detected by the high input impedance detector J. The impedance of the high input impedance detector J is several times higher than the inductance and resistance (impedance) of the lead wires of both detection coils 1, so that the differential voltage is measured by the eddy current sensor for measurement. Only the voltage due to the influence of the eddy current of the lead wire, and the impedance of the lead wire between the detection coils 1 and the high input impedance detector J becomes a negligible value (cancelled value).

図20の渦電流式試料測定方法では、励磁コイルCに印加される交流電圧が変動しても、高入力インピーダンス検出器Jで検出される出力は、前記のように差分電圧、即ち、測定用渦電流センサ2の試料Dに渦電流が発生することより生じた消費電力、即ち、試料Dの抵抗率やシート抵抗等だけとなる。この出力は試料の導電膜の膜厚、傷等の演算処理に使用し、振幅電圧制御器Hの制御には使用しない。図20では、振幅電圧制御器Hの制御には基準電圧発生器Fから発生される基準電圧と、自励発振器Aから検波した検波電圧とを誤差増幅器Gで比較し、誤差増幅器Gからの出力で振幅電圧制御器Hを制御して、自励発振器Aから発振される交流電圧を一定にコントロールして励磁コイルCに加えるようにしてある。この場合の励磁周波数も磁気及び誘電特性の複合作用によって生ずる磁心内部の電磁波が定在波となる周波数にして、磁界を定在波の山の部分に集中させて磁束断面積を磁心の磁路断面積よりも小さくして試料Dに与えることができるようにする。   In the eddy current type sample measurement method of FIG. 20, even if the AC voltage applied to the exciting coil C fluctuates, the output detected by the high input impedance detector J is the differential voltage, that is, for measurement as described above. Only the power consumption caused by the generation of eddy current in the sample D of the eddy current sensor 2, that is, the resistivity of the sample D, the sheet resistance, and the like. This output is used for calculation processing of the film thickness, scratches, etc. of the conductive film of the sample, and is not used for control of the amplitude voltage controller H. In FIG. 20, the amplitude voltage controller H controls the reference voltage generated from the reference voltage generator F and the detected voltage detected from the self-excited oscillator A by the error amplifier G, and outputs from the error amplifier G. Thus, the amplitude voltage controller H is controlled so that the AC voltage oscillated from the self-excited oscillator A is controlled to be constant and applied to the exciting coil C. In this case, the excitation frequency is also a frequency at which the electromagnetic wave inside the magnetic core generated by the combined action of the magnetic and dielectric characteristics becomes a standing wave, and the magnetic field is concentrated on the peak portion of the standing wave so that the magnetic flux cross-sectional area is the magnetic path of the magnetic core. It is made smaller than the cross-sectional area so that it can be applied to the sample D.

(渦電流式試料測定方法及び渦電流センサの実施形態6)
本発明の渦電流式試料測定方法の他の例を図21に示す。図21に示すものは両面式の渦電流センサ2を2セット使用した両面センサ差動方式である。図21の両渦電流センサ2のコアBに巻かれた励磁コイルCの巻き方向も、両渦電流センサ2の磁束φの発生方向が図6のように互いに加算される方向になるようにしてある。この磁束φも励磁コイルCに流れる高周波電流の変化に対応して発生方向が反転する。
(Embodiment 6 of Eddy Current Type Sample Measuring Method and Eddy Current Sensor)
Another example of the eddy current type sample measuring method of the present invention is shown in FIG. FIG. 21 shows a double-sided sensor differential system using two sets of double-sided eddy current sensors 2. The winding direction of the exciting coil C wound around the core B of both the eddy current sensors 2 in FIG. 21 is also set so that the direction of generation of the magnetic flux φ of the both eddy current sensors 2 is the direction in which they are added together as shown in FIG. is there. The direction of generation of this magnetic flux φ is also reversed in response to a change in the high-frequency current flowing through the exciting coil C.

図21の2つの渦電流センサ2の検出コイル1は夫々の誘起電圧が逆方向となるように直列接続されており、第一渦電流センサ2は励磁コイルCに励磁電流を流して試料Dを測定する測定用センサ、第二渦電流センサ2は試料をセットせずに励磁コイルCに励磁電流を流すだけの非測定用渦電流センサとしてある。両渦電流センサ2の夫々の励磁コイルCに励磁電流が流れることにより両渦電流センサ2の夫々の検出コイル1には誘起電圧が誘起される。図21では両検出コイル1は誘起電圧が逆方向になるように直列接続されている。   The detection coils 1 of the two eddy current sensors 2 in FIG. 21 are connected in series so that the induced voltages thereof are in opposite directions, and the first eddy current sensor 2 applies an excitation current to the excitation coil C to pass the sample D. The measuring sensor to be measured, the second eddy current sensor 2, is a non-measuring eddy current sensor in which an exciting current is simply passed through the exciting coil C without setting a sample. When excitation current flows through the respective excitation coils C of both eddy current sensors 2, an induced voltage is induced in each detection coil 1 of both eddy current sensors 2. In FIG. 21, both detection coils 1 are connected in series so that the induced voltage is in the reverse direction.

図21において、両渦電流センサ2の励磁コイルCに自励発振器Gから発振される交流電圧を加えると、測定用渦電流センサ(第一渦電流センサ)2のギャップ内にセットした試料Dには渦電流が流れ、渦電流の影響で励磁コイルCに流れる電流が変化するが、非測定用渦電流センサ(第二渦電流センサ)2のギャップ内には試料がセットされていないので渦電流損が発生しない。このとき両検出コイル1に誘起電圧が誘起されるが、前記直列接続された両検出コイル1の両端(測定端)の電圧は両誘起電圧の差分電圧となる。この差分電圧が高入力インピーダンス検出器Jで検出される。検出される出力は図5の場合と同様に差分電圧、即ち、測定用渦電流センサ2の試料Dに渦電流が発生することより生じた消費電力、即ち、試料の抵抗率やシート抵抗等だけとなるため、振幅電圧制御器Hの制御には利用せず、試料の導電膜の膜厚、傷等の演算処理に使用する。図6でも基準電圧発生器Fから発生される基準電圧と、自励発振器Aから検波した検波電圧とが誤差増幅器Gで比較され、誤差増幅器Gからの出力で振幅電圧制御器Hが制御されて、自励発振器Aから発振される交流電圧が一定にコントロールされて励磁コイルCに加えられるようにしてある。この場合の励磁周波数も磁気及び誘電特性の複合作用によって生ずる磁心内部の電磁波が定在波となる周波数にして、磁界を定在波の山の部分に集中させて磁束断面積を磁心の磁路断面積よりも小さくして試料Dに与えることができるようにする。   In FIG. 21, when an AC voltage oscillated from the self-excited oscillator G is applied to the excitation coil C of both eddy current sensors 2, the sample D set in the gap of the measurement eddy current sensor (first eddy current sensor) 2 is applied. Eddy current flows, and the current flowing in the exciting coil C changes due to the eddy current, but since no sample is set in the gap of the non-measuring eddy current sensor (second eddy current sensor) 2, There is no loss. At this time, an induced voltage is induced in both detection coils 1, but the voltage at both ends (measurement ends) of the two detection coils 1 connected in series becomes a differential voltage between the two induced voltages. This differential voltage is detected by the high input impedance detector J. As in the case of FIG. 5, the detected output is only the differential voltage, that is, the power consumption caused by the generation of eddy current in the sample D of the eddy current sensor 2 for measurement, that is, only the resistivity and sheet resistance of the sample. Therefore, it is not used for the control of the amplitude voltage controller H, but is used for arithmetic processing such as the film thickness and scratches of the conductive film of the sample. In FIG. 6, the reference voltage generated from the reference voltage generator F and the detected voltage detected from the self-excited oscillator A are compared by the error amplifier G, and the amplitude voltage controller H is controlled by the output from the error amplifier G. The AC voltage oscillated from the self-excited oscillator A is controlled to be constant and applied to the exciting coil C. In this case, the excitation frequency is also a frequency at which the electromagnetic wave inside the magnetic core generated by the combined action of the magnetic and dielectric characteristics becomes a standing wave, and the magnetic field is concentrated on the peak portion of the standing wave so that the magnetic flux cross-sectional area is the magnetic path of the magnetic core. It is made smaller than the cross-sectional area so that it can be applied to the sample D.

(渦電流式試料測定方法及び渦電流センサの実施形態7)
本発明の渦電流式試料測定方法の他の例を図22に示す。図22に示すものは図1(c)のように励磁コイルC、検出コイル1の他に第二検出コイル3を設けた渦電流センサ2を2セット使用した両面センサ差動方式であり、2セットの渦電流センサ2に第二検出コイル3を巻き、2セットの渦電流センサ2の第二検出コイル3を夫々の誘起電圧が同方向となるように直列接続してある。図22の両渦電流センサ2の励磁コイルCの巻き方向も、両渦電流センサ2の磁束φの発生方向が互いに加算される方向になるようにしてある。この磁束φも励磁コイルCに流れる高周波電流の変化に対応して発生方向が反転する。
(Embodiment 7 of Eddy Current Type Sample Measuring Method and Eddy Current Sensor)
Another example of the eddy current type sample measuring method of the present invention is shown in FIG. FIG. 22 shows a double-sided sensor differential system using two sets of eddy current sensors 2 provided with a second detection coil 3 in addition to the excitation coil C and the detection coil 1 as shown in FIG. The second detection coil 3 is wound around the set of eddy current sensors 2, and the second detection coils 3 of the two sets of eddy current sensors 2 are connected in series so that the induced voltages thereof are in the same direction. The winding direction of the exciting coil C of both the eddy current sensors 2 in FIG. 22 is also set so that the generation directions of the magnetic flux φ of both the eddy current sensors 2 are added to each other. The direction of generation of this magnetic flux φ is also reversed in response to a change in the high-frequency current flowing through the exciting coil C.

図22でも第一渦電流センサ2は励磁コイルCに励磁電流を流して試料Dを測定する測定用センサとし、第二渦電流センサ2は試料をセットせずに励磁コイルCに励磁電流を流すだけの非測定用渦電流センサとしてある。図22の非測定用渦電流センサ(第二渦電流センサ)2に試料をセットせず、測定用渦電流センサ(第一渦電流センサ)2には試料Dをセットして両渦電流センサ2に励磁電圧を印加すると、非測定用渦電流センサ2の第一検出コイル1の誘起電圧と測定用渦電流センサ2の第一検出コイル1の誘起電圧の差が高入力インピーダンス検出器Jで検出される。このとき、試料測定により渦電流の影響を受けた測定用渦電流センサの第二検出コイル3の誘起電圧が第二の高入力インピーダンス検出器K(図22)で検出され、その検出電圧が検波器Eで検波され、誤差増幅器Gに入力されて、振幅電圧制御器Hの制御に使用できるようにしてある。この場合の励磁周波数も磁気及び誘電特性の複合作用によって生ずる磁心内部の電磁波が定在波となる周波数にして、磁界を定在波の山の部分に集中させて磁束断面積を磁心の磁路断面積よりも小さくして試料Dに与えることができるようにする。   In FIG. 22, the first eddy current sensor 2 is a measurement sensor that measures the sample D by flowing an exciting current through the exciting coil C, and the second eddy current sensor 2 allows the exciting current to flow through the exciting coil C without setting the sample. It is only a non-measuring eddy current sensor. A sample is not set in the non-measuring eddy current sensor (second eddy current sensor) 2 in FIG. 22, but a sample D is set in the measuring eddy current sensor (first eddy current sensor) 2 and both eddy current sensors 2 are used. When an excitation voltage is applied to the sensor, a high input impedance detector J detects the difference between the induced voltage of the first detection coil 1 of the non-measurement eddy current sensor 2 and the induced voltage of the first detection coil 1 of the measurement eddy current sensor 2. Is done. At this time, the induced voltage of the second detection coil 3 of the measurement eddy current sensor affected by the eddy current by the sample measurement is detected by the second high input impedance detector K (FIG. 22), and the detected voltage is detected. The signal is detected by the device E and inputted to the error amplifier G so that it can be used for controlling the amplitude voltage controller H. In this case, the excitation frequency is also a frequency at which the electromagnetic wave inside the magnetic core generated by the combined action of the magnetic and dielectric characteristics becomes a standing wave, and the magnetic field is concentrated on the peak portion of the standing wave so that the magnetic flux cross-sectional area is the magnetic path of the magnetic core. It is made smaller than the cross-sectional area so that it can be applied to the sample D.

(渦電流式試料測定方法及び渦電流センサの実施形態8)
本発明の渦電流式試料測定方法の他の例を図23に示す。これは第二検出コイル3を測定用渦電流センサ2のコアのみに巻いて、非測定用渦電流センサ2のコアには巻かない方式である。この場合も、非測定用渦電流センサ2に試料をセットせず、測定用渦電流センサ2には試料Dをセットして両渦電流センサ2に励磁電圧を印加すると、非測定用渦電流センサ2の第一検出コイル1の誘起電圧と測定用渦電流センサ2の第一検出コイルの誘起電圧の差が高入力インピーダンス検出器Jで検出され、同時に、試料測定により渦電流の影響を受けた測定用渦電流センサ2の第二検出コイル3の誘起電圧が第二の高入力インピーダンス検出器K(図23)で検出される。この検出電圧を検波器Eで検波し、誤差増幅器Gに入力して、振幅電圧制御器Hの制御に使用することができる。
(Embodiment 8 of Eddy Current Type Sample Measuring Method and Eddy Current Sensor)
Another example of the eddy current type sample measuring method of the present invention is shown in FIG. This is a system in which the second detection coil 3 is wound only around the core of the measurement eddy current sensor 2 and not around the core of the non-measurement eddy current sensor 2. Also in this case, if a sample is not set in the non-measuring eddy current sensor 2 but a sample D is set in the measuring eddy current sensor 2 and an excitation voltage is applied to both eddy current sensors 2, the non-measuring eddy current sensor 2 The difference between the induced voltage of the first detection coil 1 and the induced voltage of the first detection coil of the measurement eddy current sensor 2 was detected by the high input impedance detector J, and at the same time, the sample measurement was affected by the eddy current. The induced voltage of the second detection coil 3 of the measurement eddy current sensor 2 is detected by the second high input impedance detector K (FIG. 23). This detected voltage can be detected by the detector E, input to the error amplifier G, and used for controlling the amplitude voltage controller H.

(a)〜(c)は本発明の検出コイル付き渦電流センサの異なる巻線例を示す概要図、(d)は渦電流センサのコアの斜視図。(A)-(c) is a schematic diagram which shows the example of a different winding of the eddy current sensor with a detection coil of this invention, (d) is a perspective view of the core of an eddy current sensor. 本発明の片面センサ方式の渦電流式試料測定方法の一例の説明図。Explanatory drawing of an example of the eddy current type sample measuring method of the single-sided sensor system of this invention. 本発明の両面センサ方式の渦電流式試料測定方法の一例の説明図。Explanatory drawing of an example of the eddy current type sample measuring method of the double-sided sensor system of this invention. 本発明の渦電流式測定方法における励磁周波数0.4MHzのときの磁束密度と磁路断面積の関係を示す説明図。Explanatory drawing which shows the relationship between the magnetic flux density in the case of the excitation frequency of 0.4 MHz in the eddy current type measuring method of this invention, and a magnetic path cross-sectional area. 本発明の渦電流式測定方法における励磁周波数0.6MHzのときの磁束密度と磁路断面積の関係を示す説明図。Explanatory drawing which shows the relationship between the magnetic flux density in the case of the excitation frequency 0.6MHz in the eddy current type measuring method of this invention, and a magnetic path cross-sectional area. 本発明の渦電流式測定方法における励磁周波数0.8MHzのときの磁束密度と磁路断面積の関係を示す説明図。Explanatory drawing which shows the relationship between the magnetic flux density and magnetic path cross-sectional area at the excitation frequency of 0.8 MHz in the eddy current measurement method of the present invention. 本発明の渦電流式測定方法における励磁周波数1MHzのときの磁束密度と磁路断面積の関係を示す説明図。Explanatory drawing which shows the relationship between the magnetic flux density at the time of the excitation frequency of 1 MHz in the eddy current type measuring method of this invention, and a magnetic path cross-sectional area. 本発明の渦電流式測定方法における励磁周波数1.2MHzのときの磁束密度と磁路断面積の関係を示す説明図。Explanatory drawing which shows the relationship between the magnetic flux density at the time of the excitation frequency of 1.2 MHz in the eddy current type measuring method of this invention, and a magnetic path cross-sectional area. 本発明の渦電流式測定方法における励磁周波数1.4MHzのときの磁束密度と磁路断面積の関係を示す説明図。Explanatory drawing which shows the relationship between the magnetic flux density in the case of the excitation frequency of 1.4 MHz in the eddy current type measuring method of this invention, and a magnetic path cross-sectional area. 本発明の渦電流式測定方法における励磁周波数1.6MHzのときの磁束密度と磁路断面積の関係を示す説明図。Explanatory drawing which shows the relationship between the magnetic flux density at the time of the excitation frequency of 1.6 MHz in the eddy current type measuring method of this invention, and a magnetic path cross-sectional area. 本発明の渦電流式測定方法における励磁周波数1.8MHzのときの磁束密度と磁路断面積の関係を示す説明図。Explanatory drawing which shows the relationship between the magnetic flux density and magnetic path cross-sectional area at the excitation frequency of 1.8 MHz in the eddy current measurement method of the present invention. 本発明の渦電流式測定方法における励磁周波数2MHzのときの磁束密度と磁路断面積の関係を示す説明図。Explanatory drawing which shows the relationship between the magnetic flux density at the time of the excitation frequency of 2 MHz in the eddy current type measuring method of this invention, and a magnetic path cross-sectional area. 本発明の渦電流式測定方法における励磁周波数3MHzのときの磁束密度と磁路断面積の関係を示す説明図。Explanatory drawing which shows the relationship between the magnetic flux density at the time of the excitation frequency of 3 MHz in the eddy current type measuring method of this invention, and a magnetic path cross-sectional area. 本発明の渦電流式測定方法における励磁周波数5MHzのときの磁束密度と磁路断面積の関係を示す説明図。Explanatory drawing which shows the relationship between the magnetic flux density at the time of the excitation frequency of 5 MHz in the eddy current type measuring method of this invention, and a magnetic path cross-sectional area. 本発明の渦電流式測定方法における励磁周波数10MHzのときの磁束密度と磁路断面積の関係を示す説明図。Explanatory drawing which shows the relationship between the magnetic flux density at the time of the excitation frequency of 10 MHz in the eddy current type measuring method of this invention, and a magnetic path cross-sectional area. 本発明の渦電流式測定方法における励磁周波数と磁束密度と磁路断面積(直径)の関係を示す説明図。Explanatory drawing which shows the relationship between the excitation frequency in the eddy current type measuring method of this invention, magnetic flux density, and a magnetic path cross-sectional area (diameter). 検出コイルを備えた磁心を片面センサ方式にした本発明の渦電流式試料測定方法の一例の説明図。Explanatory drawing of an example of the eddy current type sample measuring method of this invention which made the magnetic core provided with the detection coil into the single-sided sensor system. 図17の渦電流式測定用システムの等価回路図。FIG. 18 is an equivalent circuit diagram of the eddy current measurement system of FIG. 17. 検出コイルを備えた磁心を両面センサ方式にした本発明の渦電流式試料測定方法の一例の説明図。Explanatory drawing of an example of the eddy current type sample measuring method of this invention which made the magnetic core provided with the detection coil into the double-sided sensor system. 検出コイルを備えた磁心を片面センサ差動方式にした本発明の渦電流式試料測定方法の一例の説明図。Explanatory drawing of an example of the eddy current type sample measuring method of this invention which made the magnetic core provided with the detection coil the single-sided sensor differential system. 検出コイルを備えた磁心を両面センサ差動方式にした本発明の渦電流式試料測定方法の一例の説明図。Explanatory drawing of an example of the eddy current type sample measuring method of this invention which made the magnetic core provided with the detection coil into the double-sided sensor differential system. 第一検出コイル、第二検出コイルを備えた磁心を両面センサ差動方式にした本発明の渦電流式試料測定方法の一例の説明図。Explanatory drawing of an example of the eddy current type sample measuring method of this invention which made the magnetic core provided with the 1st detection coil and the 2nd detection coil into the double-sided sensor differential system. 測定用渦電流センサに第一検出コイル、第二検出コイルを備えた渦電流センサを、測定用渦電流センサに第一検出コイルを備えた渦電流センサを使用し、それら渦電流センサを両面センサ差動方式にした本発明の渦電流式測定システムの一例の説明図。An eddy current sensor with a first detection coil and a second detection coil is used for the eddy current sensor for measurement, and an eddy current sensor with the first detection coil is used for the eddy current sensor for measurement. Explanatory drawing of an example of the eddy current type measurement system of this invention made into the differential system. 従来の片面センサ方式の渦電流式試料測定方法の説明図。Explanatory drawing of the conventional eddy current type sample measuring method of a single-sided sensor system. 従来の両面センサ方式の渦電流式試料測定方法の説明図。Explanatory drawing of the eddy current type sample measuring method of the conventional double-sided sensor system. 従来の片面センサ方式の渦電流式試料測定方法の等価回路図。The equivalent circuit diagram of the eddy current type sample measuring method of the conventional single-sided sensor system.

1 検出コイル(第一検出コイル)
2 渦電流センサ
3 第二検出コイル
A 自励発信器
B コア(磁心)
C センサコイル(励磁コイル)
D 試料
E 検波器
F 基準電圧発生器
G 誤差増幅器
H 振幅電圧制御器
I 電流検出器
J 高入力インピーダンス検出器
K 第二の高入力インピーダンス検出器
L1 励磁コイルのインダクタンス
L2、L3 リード線のインダクタンス
R1 試料の等価抵抗
R2 磁心の鉄損に起因する抵抗
R3、R4 リード線の抵抗成分
V2 印加電圧

1 Detection coil (first detection coil)
2 Eddy current sensor 3 Second detection coil A Self-excited transmitter B Core (magnetic core)
C Sensor coil (excitation coil)
D Sample E Detector F Reference voltage generator G Error amplifier H Amplitude voltage controller I Current detector J High input impedance detector K Second high input impedance detector L1 Excitation coil inductance L2, L3 Lead wire inductance R1 Equivalent resistance of sample R2 Resistance due to core loss of magnetic core R3, R4 Resistance component of lead wire V2 Applied voltage

Claims (6)

試料に交流磁界を印加して渦電流を発生させ、その渦電流による電力吸収を検出して試料の抵抗率、シート抵抗、膜厚といった各種測定を行う渦電流式試料測定方法において、その測定に、磁気特性に加えて誘電特性が顕著となる磁心材料製の渦電流センサを使用し、渦電流センサの磁心内部に電磁波の寸法共鳴を発生させること、又は、その渦電流センサを磁気及び誘電特性の複合作用によって生ずる磁心内部の電磁波が定在波となる周波数又はその近傍の周波数で磁心を励磁して、定在波の山の部分に集中した磁束を発生させることにより前記山の部分の磁束断面積を磁心の磁路断面積より小さくし、その磁束を試料に与えて試料に渦電流を生じさせることを特徴とする渦電流式試料測定方法。 In an eddy current sample measurement method that applies an alternating magnetic field to a sample to generate eddy currents, detects power absorption due to the eddy currents, and performs various measurements such as resistivity, sheet resistance, and film thickness of the sample. Using an eddy current sensor made of a magnetic core material that exhibits remarkable dielectric characteristics in addition to magnetic characteristics, and generating dimensional resonance of electromagnetic waves inside the magnetic core of the eddy current sensor, or making the eddy current sensor magnetic and dielectric characteristics core inside the electromagnetic waves caused by the combined action by exciting the core at a frequency of or near a standing wave of the magnetic flux part of the mountain by generating magnetic flux concentrated in the mountain portion of the standing wave An eddy current type sample measurement method characterized in that a cross-sectional area is made smaller than a magnetic path cross-sectional area of a magnetic core, and the magnetic flux is applied to the sample to generate an eddy current in the sample. 請求項1記載の渦電流式試料測定方法において、励磁コイルとは別に一又は二以上の検出コイルが巻かれた渦電流センサを使用し、請求項1記載の渦電流式試料測定方法により試料測定し、その試料測定により渦電流の影響を受けた渦電流センサの前記一又は二以上の検出コイルの誘起電圧を、夫々の検出コイルに接続された高入力インピーダンスの検出器で検出することを特徴とする渦電流式試料測定方法。   The eddy current type sample measurement method according to claim 1, wherein an eddy current sensor in which one or more detection coils are wound is used separately from the exciting coil, and the sample measurement is performed by the eddy current type sample measurement method according to claim 1. Then, the induced voltage of the one or more detection coils of the eddy current sensor affected by the eddy current by the sample measurement is detected by a detector with high input impedance connected to each detection coil. An eddy current sample measurement method. 請求項2記載の渦電流式試料測定方法において、励磁コイルとは別に一又は二以上の検出コイルが巻かれた渦電流センサを二セット使用し、一方は測定用、他方は非測定用とし、両渦電流センサの検出コイルをそれらの誘起電圧が逆方向となるように直列接続して両渦電流センサに試料がセットされない場合は直列回路に電圧が発生しないようにし、非測定用渦電流センサには試料をセットせず、測定用渦電流センサには試料をセットして両渦電流センサに励磁電圧を印加し、測定用渦電流センサでは請求項1記載の渦電流式試料測定方法により試料測定し、試料測定により渦電流の影響を受けた前記測定用渦電流センサの検出コイルの誘起電圧と非測定用渦電流センサの検出コイルの誘起電圧との電圧差を前記直列回路において高入力インピーダンスの検出器で検出することを特徴とする渦電流式試料測定方法。   In the eddy current type sample measurement method according to claim 2, two sets of eddy current sensors each having one or two or more detection coils wound are used separately from the excitation coil, one for measurement and the other for non-measurement. The eddy current sensor for non-measurement is configured so that the detection coils of both eddy current sensors are connected in series so that their induced voltages are in the opposite direction, and no sample is set in both eddy current sensors so that no voltage is generated in the series circuit. A sample is not set in the eddy current sensor, a sample is set in the eddy current sensor for measurement, and an excitation voltage is applied to both eddy current sensors. The voltage difference between the induced voltage of the detecting coil of the measuring eddy current sensor and the induced voltage of the detecting coil of the non-measuring eddy current sensor that is affected by the eddy current due to the sample measurement is measured in the series circuit. Eddy current sample measurement method characterized by detecting in-impedance of the detector. 試料に交流磁界を印加して渦電流を発生させ、その渦電流による電力吸収を検出して試料の抵抗率、シート抵抗、膜厚といった各種測定に使用される渦電流センサにおいて、渦電流センサは磁気特性に加えて誘電特性が顕著となる磁心材料製であり、磁気及び誘電特性の複合作用によって生ずる磁心内部の電磁波が定在波となる周波数又はその近傍の周波数で励磁コイルを励磁すると、磁心に発生する磁界が定在波の山の部分に集中して、その山の部分の磁束断面積が磁心の磁路断面積より小さくなるようにしたことを特徴とする渦電流センサ。 An eddy current sensor is used to generate an eddy current by applying an alternating magnetic field to a sample, detect power absorption due to the eddy current, and use it for various measurements such as resistivity, sheet resistance, and film thickness of the sample. When the excitation coil is excited at a frequency where the electromagnetic wave inside the magnetic core generated by the combined action of the magnetic and dielectric characteristics becomes a standing wave or a frequency in the vicinity thereof, the magnetic core The eddy current sensor is characterized in that the magnetic field generated in the center is concentrated on the peak portion of the standing wave so that the magnetic flux cross-sectional area of the peak portion is smaller than the magnetic path cross-sectional area of the magnetic core. 請求項4記載の渦電流センサにおいて、磁心材料がMn−Znフェライトであることを特徴とする渦電流センサ。   5. The eddy current sensor according to claim 4, wherein the magnetic core material is Mn-Zn ferrite. 請求項4又は請求項5記載の渦電流センサにおいて、渦電流センサの磁心に、交流磁界を発生させる励磁コイルとは別に、試料測定により渦電流の影響を受けた渦電流センサの誘起電圧を検出する検出コイルを一又は二以上設けたことを特徴とする渦電流式試料測定方法。   6. The eddy current sensor according to claim 4, wherein an induced voltage of the eddy current sensor affected by the eddy current is detected by a sample measurement separately from the exciting coil that generates an alternating magnetic field in the magnetic core of the eddy current sensor. An eddy current type sample measuring method, wherein one or more detection coils are provided.
JP2008044824A 2008-02-26 2008-02-26 Eddy current sample measurement method and eddy current sensor Active JP5156432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008044824A JP5156432B2 (en) 2008-02-26 2008-02-26 Eddy current sample measurement method and eddy current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044824A JP5156432B2 (en) 2008-02-26 2008-02-26 Eddy current sample measurement method and eddy current sensor

Publications (2)

Publication Number Publication Date
JP2009204342A JP2009204342A (en) 2009-09-10
JP5156432B2 true JP5156432B2 (en) 2013-03-06

Family

ID=41146786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044824A Active JP5156432B2 (en) 2008-02-26 2008-02-26 Eddy current sample measurement method and eddy current sensor

Country Status (1)

Country Link
JP (1) JP5156432B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095432A (en) * 2010-12-07 2011-06-15 四川达宇特种车辆制造厂 Miniature integrated eddy current sensor
JP6590612B2 (en) * 2015-09-16 2019-10-16 株式会社荏原製作所 Eddy current sensor
TW201710029A (en) * 2015-09-01 2017-03-16 Ebara Corp Eddy current sensor
CN106524892A (en) * 2016-10-11 2017-03-22 武汉华宇目检测装备有限公司 Steel pipe wall thickness measuring method based on eddy current permeability measurement
CN108459077A (en) * 2017-12-14 2018-08-28 科瑞工业自动化系统(苏州)有限公司 A kind of current vortex sensor using Ⅴ-permandur alloy
CN108535329A (en) * 2018-03-26 2018-09-14 哈尔滨工业大学 The test device of thin layer of conductive material, the test method of sheet resistance, the test method of damage information
JP7301506B2 (en) * 2018-08-06 2023-07-03 東芝エネルギーシステムズ株式会社 Eddy current flaw detector and eddy current flaw detection method
CN112285431B (en) * 2020-10-14 2023-06-23 武汉钢铁有限公司 Single-frame iron core loss measuring device and method for three-dimensional wound iron core transformer
CN114918820A (en) * 2022-05-31 2022-08-19 北京烁科精微电子装备有限公司 CMP (chemical mechanical polishing) end point detection device and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331004Y2 (en) * 1981-05-13 1988-08-18

Also Published As

Publication number Publication date
JP2009204342A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
US20090206830A1 (en) Sensor for detecting surface defects of metal tube using eddy current method
EP3376216B1 (en) Method for eddy-current testing of electrically conductive objects and device for realizing said method
JP4003975B2 (en) Metal inspection method and metal inspection apparatus
US7574924B1 (en) Magnetic flow meter
KR20120052394A (en) Method for inspecting an austenitic stainless steel weld
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
Ramirez-Pacheco et al. Defect detection in aluminium with an eddy currents sensor
JP2013101129A (en) Eddy current sensor and detection object discrimination circuit
KR101259432B1 (en) Orthogonal fluxgate sensor using amorphous magnetic substance wire
JPWO2006059497A1 (en) Method and device for measuring critical current density of superconductor
JP2013090237A (en) Electromagnetic ultrasonic probe and electromagnetic ultrasonic flaw detection apparatus
JP2005031014A (en) Magnetic sensor
JP5209994B2 (en) Eddy current sensor
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP2005315732A (en) Instrument for measuring displacement of ferromagnetic body
WO2020049883A1 (en) Electric current measurement apparatus and electric current measurement method
JP2009145056A (en) Electromagnetic ultrasonic probe and electromagnetic ultrasonic flaw detector
JP2011053160A (en) Magnetic detection sensor
JP5373541B2 (en) Metal part magnetic field detection sensor and metal part pass / fail judgment method
JP3223991U (en) Nondestructive inspection equipment
JP2016133459A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP2003344362A (en) Eddy current flaw detection probe and eddy current flaw detector
JPH0815229A (en) High resolution eddy current flaw detector
JP4476746B2 (en) Corrosion / thinning inspection method for the back of steel walls

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5156432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250