JP3223991U - Nondestructive inspection equipment - Google Patents

Nondestructive inspection equipment Download PDF

Info

Publication number
JP3223991U
JP3223991U JP2019003357U JP2019003357U JP3223991U JP 3223991 U JP3223991 U JP 3223991U JP 2019003357 U JP2019003357 U JP 2019003357U JP 2019003357 U JP2019003357 U JP 2019003357U JP 3223991 U JP3223991 U JP 3223991U
Authority
JP
Japan
Prior art keywords
resistor
coil
power supply
magnetic core
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019003357U
Other languages
Japanese (ja)
Inventor
茂 北川
茂 北川
Original Assignee
サガワ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サガワ産業株式会社 filed Critical サガワ産業株式会社
Priority to JP2019003357U priority Critical patent/JP3223991U/en
Application granted granted Critical
Publication of JP3223991U publication Critical patent/JP3223991U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

【課題】微弱な磁束密度の変化を検査できる非破壊検査装置を提供する。【解決手段】非破壊検査装置10は、アモルファス磁芯12とコイル14からなる磁気センサ16、コイル14に励磁電流を供給する電源回路18、コイル14から直流化した電圧変化を微分する微分回路22を備える。磁気センサ16は、アモルファス磁芯12の長さ方向が被検査物の表面に対して傾斜している。電源回路18は交流電源36、直流電源38、および増幅器40を備える。第一抵抗R1、第二抵抗R2、第三抵抗R3、第四抵抗R4、コンデンサCおよびオペアンプOPを備え、微分回路22はコンデンサCおよび第四抵抗R4で構成される。【選択図】図1A non-destructive inspection apparatus capable of inspecting a weak change in magnetic flux density is provided. A nondestructive inspection apparatus 10 includes a magnetic sensor 16 comprising an amorphous magnetic core 12 and a coil 14, a power supply circuit 18 for supplying an excitation current to the coil 14, and a differentiation circuit 22 for differentiating a voltage change from the coil 14 into direct current. Is provided. In the magnetic sensor 16, the length direction of the amorphous magnetic core 12 is inclined with respect to the surface of the object to be inspected. The power supply circuit 18 includes an AC power supply 36, a DC power supply 38, and an amplifier 40. A first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, a capacitor C and an operational amplifier OP are provided, and the differentiating circuit 22 includes a capacitor C and a fourth resistor R4. [Selection] Figure 1

Description

本考案は、被検査物の傷および厚み変化などの異常箇所を検査できる非破壊検査装置に関するものである。   The present invention relates to a nondestructive inspection apparatus capable of inspecting abnormal parts such as scratches and thickness changes of an object to be inspected.

従来、種々の非破壊検査装置が開発および開示されている。たとえば下記特許文献1の非破壊検査装置は、磁石と磁気センサを備える。磁石で被検査物を磁化し、被検査物の表面に沿って磁気センサを移動させて表面の磁束密度を測定する。被検査物に傷や減肉などの異常箇所があれば表面の磁束密度が変化する。磁気センサでその磁束密度の変化を検出することで、異常箇所を検出できる。   Conventionally, various nondestructive inspection apparatuses have been developed and disclosed. For example, the nondestructive inspection device of Patent Document 1 below includes a magnet and a magnetic sensor. The inspection object is magnetized with a magnet, and the magnetic sensor is moved along the surface of the inspection object to measure the magnetic flux density on the surface. If there is an abnormal part such as a scratch or thinning in the inspection object, the magnetic flux density on the surface changes. By detecting the change in the magnetic flux density with a magnetic sensor, an abnormal location can be detected.

しかし、鉄は強磁性体であるため、異常箇所から漏れる磁束が小さく、磁束密度の変化を検出しにくい。被検査物の裏面や内部に異常箇所があれば、それらの漏れ磁束も小さいが変化が現れる。その微弱な磁束密度の変化を検出できることが求められている。   However, since iron is a ferromagnetic material, the magnetic flux leaking from the abnormal part is small and it is difficult to detect a change in magnetic flux density. If there is an abnormal part on the back or inside of the inspection object, the leakage flux is small but changes appear. It is required to detect such a weak change in magnetic flux density.

特開2010−151626号公報JP 2010-151626 A

本考案の目的は、微弱な磁束密度の変化を検査できる非破壊検査装置を提供することにある。   The objective of this invention is providing the nondestructive inspection apparatus which can test | inspect the weak change of magnetic flux density.

本考案の非破壊検査装置は、被検査物を磁化させる磁石と、アモルファス磁芯および該アモルファス磁芯に巻回されたコイルからなり、該アモルファス磁芯の長さ方向が前記被検査物の表面に対して傾斜するように配置された磁気センサと、直流電流と交流電流を重畳した励磁電流を前記コイルに供給する電源回路と、前記コイルにより検出された電圧変化を直流化した出力電圧を微分する微分回路とを備える。   A nondestructive inspection apparatus of the present invention comprises a magnet for magnetizing an object to be inspected, an amorphous magnetic core, and a coil wound around the amorphous magnetic core, and the length direction of the amorphous magnetic core is the surface of the inspection object. A magnetic sensor arranged so as to be inclined with respect to the power source, a power supply circuit for supplying an excitation current superimposed with a direct current and an alternating current to the coil, and differentiating an output voltage obtained by converting the voltage change detected by the coil into a direct current And a differentiating circuit.

前記コイルの出力電圧を受けるために、第一抵抗と、前記第一抵抗に直列接続された第二抵抗と、前記第一抵抗と並列接続された第三抵抗と、前記第三抵抗と並列接続されたコンデンサと、前記第三抵抗が非反転入力端子に接続され、反転入力端子が第一抵抗と第二抵抗の間に接続されたオペアンプと、前記オペアンプの非反転入力端子とアースの間に接続された第四抵抗とを備える。前記第一抵抗と第二抵抗の抵抗値は等しく、第三抵抗と第四抵抗の抵抗値が等しい。この回路の第三抵抗R3に並列にコンデンサを接続すると、コンデンサと第四抵抗R4で微分回路を構成する。   In order to receive the output voltage of the coil, a first resistor, a second resistor connected in series to the first resistor, a third resistor connected in parallel to the first resistor, and a parallel connection to the third resistor And the operational amplifier in which the third resistor is connected to the non-inverting input terminal, the inverting input terminal is connected between the first resistor and the second resistor, and the non-inverting input terminal of the operational amplifier and the ground And a connected fourth resistor. The first resistor and the second resistor have the same resistance value, and the third resistor and the fourth resistor have the same resistance value. When a capacitor is connected in parallel to the third resistor R3 of this circuit, a differential circuit is configured by the capacitor and the fourth resistor R4.

本考案によると、磁気センサが被検査物に対して傾斜していることで、磁気センサの感度が良く、異常箇所が検出しやすい。微分回路にコンデンサを設けていることで、異常箇所によって生じる電圧の変化速度の大きなもののみを出力することができ、異常箇所を検出しやすくなっている。   According to the present invention, since the magnetic sensor is inclined with respect to the object to be inspected, the sensitivity of the magnetic sensor is good and it is easy to detect an abnormal part. By providing a capacitor in the differentiating circuit, it is possible to output only those having a large voltage change rate caused by an abnormal location, and it is easy to detect the abnormal location.

本考案の非破壊検査装置の構成を示す図である。It is a figure which shows the structure of the nondestructive inspection apparatus of this invention. センサで漏れ磁束を検出する様子を示す図である。It is a figure which shows a mode that a magnetic flux leak is detected with a sensor. (a)はコイルの検知電圧とセンサの走査移動させた位置の関係を示すグラフであり、(b)は微分回路の出力とセンサを走査移動させた位置の関係を示すグラフである。(A) is a graph which shows the relationship between the detection voltage of a coil, and the position which carried out the scanning movement of the sensor, (b) is a graph which shows the relationship between the output of a differentiation circuit and the position which carried out the scanning movement of the sensor.

本考案の非破壊検査装置について図面を使用して説明する。   A nondestructive inspection apparatus of the present invention will be described with reference to the drawings.

図1に示す本考案の非破壊検査装置10は、アモルファス磁芯12とコイル14からなる磁気センサ16、コイル14に励磁電流を供給する電源回路18、コイル14の電圧の振幅変化を整流および平滑して直流電圧変化として出力するダイオードDおよび平滑回路20、その直流電圧変化を微分する微分回路22を備える。   A nondestructive inspection apparatus 10 of the present invention shown in FIG. 1 includes a magnetic sensor 16 comprising an amorphous magnetic core 12 and a coil 14, a power supply circuit 18 for supplying an exciting current to the coil 14, and rectifying and smoothing a change in amplitude of the voltage of the coil 14. And a smoothing circuit 20 that outputs a DC voltage change and a differentiation circuit 22 that differentiates the DC voltage change.

被検査物の材料は磁石によって磁化される材料であればよく、たとえば鉄、コバルト、ニッケル、それらを含む合金などの強磁性体を含む。図2に示す被検査物24は板状になっているが、被検査物24は任意の形状でよい。非破壊検査装置10は被検査物24の亀裂や厚さ変化などの異常箇所26を検出する。非破壊検査装置10は、被検査物24の表面にある異常箇所26のみではなく、被検査物24の裏面および内部の異常箇所26も検出する。   The material of the object to be inspected may be a material magnetized by a magnet, and includes, for example, a ferromagnetic material such as iron, cobalt, nickel, and an alloy containing them. The inspection object 24 shown in FIG. 2 has a plate shape, but the inspection object 24 may have an arbitrary shape. The nondestructive inspection apparatus 10 detects an abnormal portion 26 such as a crack or a thickness change of the inspection object 24. The nondestructive inspection apparatus 10 detects not only the abnormal portion 26 on the surface of the inspection object 24 but also the abnormal portion 26 on the back surface and inside of the inspection object 24.

図2に示すように、非破壊検査装置10は磁石28を備える。磁石28はN極とS極が任意の間隔をあけて被検査物24に接触または近づけられる。磁石28は永久磁石と電磁石のいずれであってもよい。磁石28の磁束密度は約1000G以下でよい。磁石28によって被検査物24の中を磁束30が通過し、被検査物24は磁化される。この磁束30によって異常箇所26の両側にN極とS極の磁極が生じ、漏れ磁束32となる。この漏れ磁束32は、異常箇所26が被検査物24の内部および裏面にあっても、被検査物24の表面に微弱ではあるが現れる。   As shown in FIG. 2, the nondestructive inspection apparatus 10 includes a magnet 28. The magnet 28 is brought into contact with or close to the inspection object 24 with an N-pole and S-pole spaced at an arbitrary interval. The magnet 28 may be a permanent magnet or an electromagnet. The magnetic flux density of the magnet 28 may be about 1000 G or less. The magnetic flux 30 passes through the inspection object 24 by the magnet 28, and the inspection object 24 is magnetized. This magnetic flux 30 generates N-pole and S-pole magnetic poles on both sides of the abnormal portion 26, resulting in leakage flux 32. The leakage magnetic flux 32 appears on the surface of the inspection object 24 although it is weak even if the abnormal part 26 is inside and on the back surface of the inspection object 24.

磁石28からの浮遊磁場がコイル14に影響することがある。それを防ぐために図2に示すような磁気シールド34を必要とする場合がある。磁気シールド34は鉄などの強磁性体の板体である。磁気シールド34は少なくともコイル14と磁石28の間に配置される。   A stray magnetic field from the magnet 28 may affect the coil 14. In order to prevent this, a magnetic shield 34 as shown in FIG. 2 may be required. The magnetic shield 34 is a plate made of a ferromagnetic material such as iron. The magnetic shield 34 is disposed at least between the coil 14 and the magnet 28.

磁気センサ16は棒状のアモルファス磁芯12およびこのアモルファス磁芯12にまきまわされたコイル14を備える。アモルファス磁芯12は複数のアモルファス素線を束ねたものである。たとえば、1本のアモルファス素線は直径約0.05〜0.1mm、長さ約15〜20mmのアモルファス素線を約5〜10本束ねてアモルファス磁芯12とする。アモルファス磁芯12の直径が1mm以下になれば局所的な漏れ磁束32の検知も可能になる。コイル14は銅線をアモルファス磁芯12に複数回巻きまわすことで形成される。たとえばアモルファス磁芯12に約0.07mmの銅線が150〜200回巻きまわされている。コイル14の一端が電源回路18から抵抗Raを通して接続され、他端がグランドに接続されている。磁気センサ16は被検査物24の表面に近接されながら移動する。   The magnetic sensor 16 includes a rod-shaped amorphous magnetic core 12 and a coil 14 wound around the amorphous magnetic core 12. The amorphous magnetic core 12 is a bundle of a plurality of amorphous wires. For example, one amorphous strand is bundled with about 5 to 10 amorphous strands having a diameter of about 0.05 to 0.1 mm and a length of about 15 to 20 mm to form an amorphous core 12. If the diameter of the amorphous magnetic core 12 is 1 mm or less, the local leakage magnetic flux 32 can be detected. The coil 14 is formed by winding a copper wire around the amorphous magnetic core 12 a plurality of times. For example, a copper wire of about 0.07 mm is wound around the amorphous magnetic core 12 150 to 200 times. One end of the coil 14 is connected from the power supply circuit 18 through the resistor Ra, and the other end is connected to the ground. The magnetic sensor 16 moves while being close to the surface of the inspection object 24.

磁気センサ16は磁石28のS極とN極の間に配置される。磁気センサ16は、アモルファス磁芯12の長さ方向が被検査物24の表面に対して傾斜している(図2)。傾斜角度は約10〜20°である。被検査物24の表面にある異常箇所26からの漏れ磁束32は比較的大きいが、裏面や内部の異常箇所26による漏れ磁束32は弱いので、効率よくその漏れ磁束32を検出するためには、そのコイル14を漏れ磁束32に平行な方向に近づける必要がある。なお、アモルファス磁芯12の長さ方向が被検査物24の表面と平行な方向になっていれば、アモルファス磁芯12の両側から漏れ磁束32の影響を受けるため、異常を見分けにくくなる。アモルファス磁芯12の長さ方向が被検査物24の表面に対して傾斜していれば、アモルファス磁芯12の被検査物24に近い方から漏れ磁束32の影響を受け、磁気センサ16の感度が良くなる。この磁気センサ16を被検査物24の表面に沿って、ある一定の速さ(約10〜20cm/sec)で前後、左右に走査する。この時異常箇所26の上で漏れ磁束32を検出する。遅すぎると被検査物24の残留磁気の不均一によるノイズとの区別がつけにくくなり、早すぎると電気的ノイズを軽減するための回路で信号が弱くなる。これらを考慮して走査速度や回路設計をする。時定数τ=C×Rより速いステップ状の入力に対する応答を表す。   The magnetic sensor 16 is disposed between the south pole and the north pole of the magnet 28. In the magnetic sensor 16, the length direction of the amorphous magnetic core 12 is inclined with respect to the surface of the inspection object 24 (FIG. 2). The inclination angle is about 10 to 20 °. The leakage magnetic flux 32 from the abnormal portion 26 on the surface of the inspection object 24 is relatively large, but the leakage magnetic flux 32 due to the abnormal portion 26 on the back surface or inside is weak, so in order to detect the leakage magnetic flux 32 efficiently, It is necessary to bring the coil 14 close to a direction parallel to the leakage magnetic flux 32. Note that if the length direction of the amorphous magnetic core 12 is parallel to the surface of the inspection object 24, the leakage magnetic flux 32 influences the both sides of the amorphous magnetic core 12, making it difficult to distinguish the abnormality. If the length direction of the amorphous magnetic core 12 is inclined with respect to the surface of the inspection object 24, the amorphous magnetic core 12 is affected by the leakage magnetic flux 32 from the side closer to the inspection object 24 and the sensitivity of the magnetic sensor 16. Will be better. The magnetic sensor 16 is scanned along the surface of the inspection object 24 back and forth, and left and right at a certain speed (about 10 to 20 cm / sec). At this time, the leakage magnetic flux 32 is detected on the abnormal part 26. If it is too late, it will be difficult to distinguish it from noise due to non-uniform remanence of the inspection object 24, and if it is too early, the signal will be weakened by a circuit for reducing electrical noise. Considering these, the scanning speed and circuit design are performed. It represents the response to a step-like input faster than the time constant τ = C × R.

電源回路18は交流電源36、直流電源38、および増幅器40を備える。交流電源36は周波数可変および電流量可変の交流電流を発生する電源である。直流電源38は一定電圧を可変的に分圧して直流電流を発生する電源である。増幅器40は、上記交流電流と直流電流が同時に入力され、電流量を増幅して励磁電流を出力する。以上から、電源回路18は直流電流と交流電流を重畳した励磁電流を生成する。   The power supply circuit 18 includes an AC power supply 36, a DC power supply 38, and an amplifier 40. The AC power source 36 is a power source that generates an AC current having a variable frequency and a variable amount of current. The DC power source 38 is a power source that variably divides a constant voltage to generate a DC current. The amplifier 40 receives the alternating current and the direct current simultaneously, amplifies the amount of current, and outputs an exciting current. From the above, the power supply circuit 18 generates an excitation current in which a direct current and an alternating current are superimposed.

電源回路18とコイル14の間に抵抗Raを備える。励磁電流は抵抗Raを通してコイル14に流される。抵抗Raによってコイル14の電圧の振幅変化が現れる。コイル14の電圧の振幅変化は増幅器42で増幅され、ダイオードDと平滑回路20で整流および平滑されて直流電圧変化となる。平滑回路20は抵抗RbとコンデンサCaから構成される。   A resistor Ra is provided between the power supply circuit 18 and the coil 14. The exciting current is passed through the coil 14 through the resistor Ra. A change in the amplitude of the voltage of the coil 14 appears due to the resistor Ra. The change in the amplitude of the voltage of the coil 14 is amplified by the amplifier 42, and is rectified and smoothed by the diode D and the smoothing circuit 20 to become a DC voltage change. The smoothing circuit 20 includes a resistor Rb and a capacitor Ca.

コイル14の電圧を増幅して、コイル14を被検査面に沿って移動するときの、その電圧の振幅に比例して直流化した電圧の変化から異常箇所26の有無を判定できる。コイル14の電圧の振幅変化をそのまま利用しても、被検査物24の異常箇所26を判別できるが、異常箇所26が亀裂の場合には電圧変化が急峻であるため、更に電圧の変化速度に比例した電圧を出力する微分回路22を追加することにより、鮮明な信号として判別できる。   When the voltage of the coil 14 is amplified and the coil 14 is moved along the surface to be inspected, the presence / absence of the abnormal portion 26 can be determined from the change in the voltage converted to direct current in proportion to the amplitude of the voltage. Even if the change in the amplitude of the voltage of the coil 14 is used as it is, the abnormal part 26 of the inspection object 24 can be determined. However, when the abnormal part 26 is cracked, the voltage change is steep, so that the voltage change rate is further increased. By adding a differentiating circuit 22 that outputs a proportional voltage, it can be determined as a clear signal.

コイル14の出力電圧を受けるために、第一抵抗R1、第二抵抗R2、第三抵抗R3、第四抵抗R4、コンデンサCおよびオペアンプOPを備える。第一抵抗R1と第二抵抗R2は直列接続されており、第一抵抗R1は反転入力に、第三抵抗R3およびコンデンサCが並列接続されて非反転入力に接続されている。オペアンプOPの反転入力端子が第一抵抗R1と第二抵抗R2の間に接続され、オペアンプOPの非反転入力端子は第三抵抗R3に接続されている。オペアンプOPの非反転入力端子とグランドの間に第四抵抗R4が接続されている。オペアンプOPの出力は第二抵抗R2に接続されている。これらの抵抗R1、R2、R3、R4による回路では入力側の電圧変化に対して、出力側の電圧は変化しない。この中の第三抵抗R3に並列にコンデンサCを接続することによってそのコンデンサCと第四抵抗R4が微分回路22になっており、微分時定数τ(=CR4)より短い周期の変化または短時間の変化の電圧を入力したとき、その変化速度に応じた出力電圧を生じる。つまり、ゆっくりした変化は殆ど打ち消して出力しないで、前記亀裂による速い電圧変化のみを出力する。   In order to receive the output voltage of the coil 14, a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, a capacitor C, and an operational amplifier OP are provided. The first resistor R1 and the second resistor R2 are connected in series. The first resistor R1 is connected to the inverting input, and the third resistor R3 and the capacitor C are connected in parallel and connected to the non-inverting input. The inverting input terminal of the operational amplifier OP is connected between the first resistor R1 and the second resistor R2, and the non-inverting input terminal of the operational amplifier OP is connected to the third resistor R3. A fourth resistor R4 is connected between the non-inverting input terminal of the operational amplifier OP and the ground. The output of the operational amplifier OP is connected to the second resistor R2. In the circuit including these resistors R1, R2, R3, and R4, the output side voltage does not change with respect to the input side voltage change. By connecting a capacitor C in parallel to the third resistor R3, the capacitor C and the fourth resistor R4 become the differentiating circuit 22, and the change of the cycle shorter than the differentiation time constant τ (= CR4) or a short time. When a change voltage is input, an output voltage corresponding to the change speed is generated. That is, almost no slow change is canceled and output, and only a rapid voltage change due to the crack is output.

第一抵抗R1と第二抵抗R2の抵抗値は等しく、第三抵抗R3と第四抵抗R4の抵抗値は等しい。このように抵抗値を設定することで電圧変化出力はゼロになるが、第三抵抗R3に並列に付けられたコンデンサCによって、コンデンサCと抵抗R4とからなる微分回路22は入力された電圧を微分した変化速度に比例した電圧を出力する。時定数τ=CR4より短時間の速い変化の電圧を出力する。(図3(a))、そのため、微分回路22はコイル14の検出電圧の変化が速いときのみ、図3(b)のような急峻な山となって出力される。コイル14の検出電圧の変化が小さい又は遅い場合および直流成分について、微分回路22の出力は0になる。   The resistance values of the first resistor R1 and the second resistor R2 are equal, and the resistance values of the third resistor R3 and the fourth resistor R4 are equal. Although the voltage change output becomes zero by setting the resistance value in this way, the differentiation circuit 22 composed of the capacitor C and the resistor R4 causes the input voltage to be changed by the capacitor C connected in parallel to the third resistor R3. Outputs a voltage proportional to the differentiated rate of change. A voltage with a fast change in a shorter time than the time constant τ = CR4 is output. Therefore, only when the change in the detection voltage of the coil 14 is fast, the differentiating circuit 22 outputs a steep mountain as shown in FIG. 3B. When the change in the detection voltage of the coil 14 is small or slow and the DC component, the output of the differentiation circuit 22 becomes zero.

非破壊検査装置10は微分回路22の出力を表示するモニターを備えてもよい。モニターに図3(b)のような表示をすることで、異常箇所26が分かるようにする。   The nondestructive inspection apparatus 10 may include a monitor that displays the output of the differentiation circuit 22. By displaying as shown in FIG. 3B on the monitor, the abnormal part 26 can be recognized.

以上のように、本願は磁気センサ16を被検査物24に対して傾斜させることで磁気センサ16の感度が良くなり、異常箇所26を検出しやすくなっている。微分回路20にコンデンサCを設けていることで、異常箇所26によって生じる電圧変化の速いもののみを出力することができ、異常箇所26を検出しやすくなっている。   As described above, in the present application, the sensitivity of the magnetic sensor 16 is improved by tilting the magnetic sensor 16 with respect to the inspection object 24, and the abnormal portion 26 is easily detected. By providing the capacitor C in the differentiating circuit 20, it is possible to output only those having a fast voltage change caused by the abnormal part 26, and it is easy to detect the abnormal part 26.

その他、本考案は、その主旨を逸脱しない範囲で当業者の知識に基づき種々の改良、修正、変更を加えた態様で実施できるものである。   In addition, the present invention can be implemented in a mode in which various improvements, modifications, and changes are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

10:非破壊検査装置
12:アモルファス磁芯
14:コイル
16:磁気センサ
18:電源回路
20:平滑回路
22:微分回路
24:被検査物
26:異常箇所
28:磁石
30:磁束
32:漏れ磁束
34:シールド
36:交流電源
38:直流電源
40、42:増幅器
抵抗:R1、R2、R3、R4、R1、R2
コンデンサ:C、Ca
ダイオード:D
オペアンプ:OP
10: Non-destructive inspection device 12: Amorphous magnetic core 14: Coil 16: Magnetic sensor 18: Power supply circuit 20: Smoothing circuit 22: Differentiation circuit 24: Inspected object 26: Abnormal point 28: Magnet 30: Magnetic flux 32: Leakage magnetic flux 34 : Shield 36: AC power supply 38: DC power supply 40, 42: Amplifier resistance: R1, R2, R3, R4, R1, R2
Capacitors: C, Ca
Diode: D
Operational amplifier: OP

Claims (4)

被検査物に対する非破壊検査装置であって、
前記被検査物を磁化させる磁石と、
アモルファス磁芯および該アモルファス磁芯に巻回されたコイルからなり、該アモルファス磁芯の長さ方向が前記被検査物の表面に対して傾斜するように配置された磁気センサと、
直流電流と交流電流を重畳した励磁電流を前記コイルに供給する電源回路と、
前記コイルの出力電圧を微分する微分回路と、
を備えた非破壊検査装置。
A non-destructive inspection device for an inspection object,
A magnet for magnetizing the object to be inspected;
A magnetic sensor comprising an amorphous magnetic core and a coil wound around the amorphous magnetic core, the magnetic sensor being arranged such that the length direction of the amorphous magnetic core is inclined with respect to the surface of the inspection object;
A power supply circuit for supplying the coil with an exciting current in which a direct current and an alternating current are superimposed;
A differentiating circuit for differentiating the output voltage of the coil;
Non-destructive inspection device with
前記コイルの出力電圧を受けるために、
第一抵抗と、
前記第一抵抗に直列接続された第二抵抗と、
前記第一抵抗と並列接続された第三抵抗と、
前記第三抵抗と並列接続されたコンデンサと、
前記第三抵抗が非反転入力端子に接続され、反転入力端子が第一抵抗と第二抵抗の間に接続されたオペアンプと、
前記オペアンプの非反転入力端子とアースの間に接続された第四抵抗と、
を備えた請求項1の非破壊検査装置。
In order to receive the output voltage of the coil,
The first resistor,
A second resistor connected in series to the first resistor;
A third resistor connected in parallel with the first resistor;
A capacitor connected in parallel with the third resistor;
An operational amplifier in which the third resistor is connected to a non-inverting input terminal, and the inverting input terminal is connected between a first resistor and a second resistor;
A fourth resistor connected between the non-inverting input terminal of the operational amplifier and ground;
The nondestructive inspection apparatus of Claim 1 provided with.
前記第一抵抗と第二抵抗の抵抗値が等しく、第三抵抗と第四抵抗の抵抗値が等しい請求項2の非破壊検査装置。 The nondestructive inspection apparatus according to claim 2, wherein the first resistance and the second resistance have the same resistance value, and the third resistance and the fourth resistance have the same resistance value. 前記微分回路が前記コンデンサおよび第四抵抗で構成される請求項2または3の非破壊検査装置。 The nondestructive inspection apparatus according to claim 2 or 3, wherein the differentiating circuit includes the capacitor and a fourth resistor.
JP2019003357U 2019-09-05 2019-09-05 Nondestructive inspection equipment Active JP3223991U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019003357U JP3223991U (en) 2019-09-05 2019-09-05 Nondestructive inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019003357U JP3223991U (en) 2019-09-05 2019-09-05 Nondestructive inspection equipment

Publications (1)

Publication Number Publication Date
JP3223991U true JP3223991U (en) 2019-11-14

Family

ID=68532153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019003357U Active JP3223991U (en) 2019-09-05 2019-09-05 Nondestructive inspection equipment

Country Status (1)

Country Link
JP (1) JP3223991U (en)

Similar Documents

Publication Publication Date Title
Jomdecha et al. Design of modified electromagnetic main-flux for steel wire rope inspection
KR100218653B1 (en) Electronic induced type test apparatus
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
CN106290553A (en) A kind of electromagnetic transducer system of novel detection defect in rope
JP2013205024A (en) Detector for non-destructive examination employing alternating field
US5391988A (en) Method and apparatus for detecting flaws within a conductive object while cancelling the effects of variation in distance between the detection apparatus and the conductive object
WO2017082770A1 (en) Method for eddy-current testing of electrically conductive objects and device for realizing said method
Cheng Magnetic flux leakage testing of reverse side wall-thinning by using very low strength magnetization
JP6452880B1 (en) Method and apparatus for inspecting flaws or defects in tubular body
CN112444219B (en) Non-contact ultrasonic electromagnetic coating thickness measuring method and detection device thereof
US2964699A (en) Probe device for flaw detection
Wei et al. A transducer made up of fluxgate sensors for testing wire rope defects
JP3223991U (en) Nondestructive inspection equipment
JP2016057225A (en) Eddy current flaw detection sensor device
JP2003232776A (en) Eddy current flaw detecting apparatus and method
JP2013101129A (en) Eddy current sensor and detection object discrimination circuit
KR100523686B1 (en) The Nondestructive Testing Apparatus for Wire Rope
Singh et al. Thickness evaluation of aluminium plate using pulsed eddy current technique
JP7185340B2 (en) Nondestructive inspection equipment
JP2004354282A (en) Magnetic flux leakage flaw detection apparatus
JP3230608U (en) Non-destructive inspection equipment
EP0381406A2 (en) Apparatus for and method of measuring magnetic flux density
JP2012078349A (en) Pulse excitation type inspection device, and pulse excitation type inspection method
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
JPS6014162A (en) Measuring device for measuring defect on surface and under surface of metallic body at temperature higher than curie temperature

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3223991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250