JPWO2006059497A1 - Method and device for measuring critical current density of superconductor - Google Patents

Method and device for measuring critical current density of superconductor Download PDF

Info

Publication number
JPWO2006059497A1
JPWO2006059497A1 JP2006547749A JP2006547749A JPWO2006059497A1 JP WO2006059497 A1 JPWO2006059497 A1 JP WO2006059497A1 JP 2006547749 A JP2006547749 A JP 2006547749A JP 2006547749 A JP2006547749 A JP 2006547749A JP WO2006059497 A1 JPWO2006059497 A1 JP WO2006059497A1
Authority
JP
Japan
Prior art keywords
coil
superconductor
measuring
magnetic field
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006547749A
Other languages
Japanese (ja)
Inventor
陽介 福元
陽介 福元
照男 松下
照男 松下
エドモンド 荘司 小田部
エドモンド 荘司 小田部
勝 木内
勝 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Original Assignee
Kyushu Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC filed Critical Kyushu Institute of Technology NUC
Publication of JPWO2006059497A1 publication Critical patent/JPWO2006059497A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1238Measuring superconductive properties
    • G01R33/1246Measuring critical current

Abstract

本発明の課題は、従来提案されている第三高調波電圧解析法を改良した、簡便で精度の高い、超電導体の臨界電流密度測定方法及び装置を提供することにある。本発明は、超電導体の近傍に配置したコイルに交流電流を流し、交流電流及び交流電流によりコイルに誘起される第三高調波誘導電圧を検出することにより、超電導体の臨界電流密度を測定する方法において、独立した二つのコイルを用い、交流磁界の印加と誘導電圧の測定を別々のコイルで行うことを特徴とする超電導体の臨界電流密度測定方法、及びそのための測定装置である。  An object of the present invention is to provide a simple and highly accurate method and apparatus for measuring a critical current density of a superconductor, which is an improvement over the conventionally proposed third harmonic voltage analysis method. The present invention measures the critical current density of a superconductor by applying an alternating current to a coil arranged in the vicinity of the superconductor and detecting an alternating current and a third harmonic induction voltage induced in the coil by the alternating current. In the method, there are provided a method for measuring a critical current density of a superconductor, characterized in that two independent coils are used, and the application of an alternating magnetic field and the measurement of an induced voltage are performed by different coils, and a measuring device therefor.

Description

本発明は、超電導体の臨界電流密度の測定方法に関し、特に第三高調波電圧解析法の改良法とそれに用いる装置に関する。   The present invention relates to a method for measuring the critical current density of a superconductor, and more particularly to an improved method of the third harmonic voltage analysis method and an apparatus used therefor.

超電導体は、臨界温度以下に冷却すると、電気抵抗がゼロの超電導状態になるという性質を有するので、理工学上色々の応用が考えられる。臨界温度としては、出来るだけ高いものが利用し易く、液体窒素下で超電導状態が得られる、いわゆる高温超電導体も見出されてきた。そして、超電導応用機器としては、例えば、超電導磁石、大容量送電ケーブル、変圧器、限流器、高感度磁気センサーがあり、既に実用化されているものもある。   Superconductors have the property of becoming superconducting with zero electric resistance when cooled to a critical temperature or lower, so various applications can be considered in terms of science and engineering. A so-called high-temperature superconductor has also been found, which has a critical temperature that is as high as possible and is easy to use, and a superconducting state can be obtained under liquid nitrogen. The superconducting applied devices include, for example, a superconducting magnet, a large-capacity power transmission cable, a transformer, a current limiter, and a high-sensitivity magnetic sensor, and some of them have already been put to practical use.

超電導体は臨界温度以下の温度で電気抵抗がゼロになるので、通常用いられる銅線や金線と比べて、はるかに大きな電流を流すことが可能ではあるが、しかし、超電導体の素材によって、流せる電流には限界があり、その最大値は臨界電流と呼ばれている。そして、一般的には、臨界電流の高い超電導体の方が工学的には有用である。   Since the electric resistance of superconductors becomes zero at a temperature below the critical temperature, it is possible to pass a much larger current than the commonly used copper wire or gold wire, but depending on the material of the superconductor, There is a limit to the current that can flow, and the maximum value is called the critical current. In general, a superconductor having a high critical current is technically more useful.

実際に超電導体を応用する場合には、さまざまな温度や磁界中での臨界電流特性を知る必要がある。超電導体の臨界電流を測定する方法としては、四端子法、磁化緩和法、Campbell法等色々な方法が知られているが、最も良く用いられている方法の一つが、超電導体に電流端子と電圧端子の四つの電極を付け、通電電流を流して電圧を測定する四端子法である。この方法では、流れる電流が大きくなり臨界電流を超えると、超電導体からは電圧が発生するので、それを測定することによって臨界電流密度の評価が可能となる。しかしながら、この方法は、超電導体を加工する必要があり、その際の超電導特性の劣化が問題となる。
なお、臨界電流密度とは、臨界電流を超電導体の断面積で割った、単位面積当たりの臨界電流のことである。
When actually applying a superconductor, it is necessary to know the critical current characteristics in various temperatures and magnetic fields. Various methods such as four-terminal method, magnetization relaxation method and Campbell method are known as methods for measuring the critical current of a superconductor. This is a four-terminal method in which four electrodes of voltage terminals are attached and a voltage is measured by passing an energizing current. In this method, when the flowing current becomes large and exceeds the critical current, a voltage is generated from the superconductor, so that the critical current density can be evaluated by measuring the voltage. However, this method requires processing of the superconductor, which causes a problem of deterioration of superconducting characteristics.
The critical current density is the critical current per unit area obtained by dividing the critical current by the cross-sectional area of the superconductor.

超電導体の超電導特性を、非破壊的に非接触で評価する方法として、第三高調波電圧解析法が有望視されている。この方法は、超電導体からなる試料の上にコイルを設置し、それに交流電流を流し、そのコイルに誘導される電圧の第三高調波成分を測定・解析し、臨界電流密度を求める方法である。この方法では、試料に直接電流を流す必要がないので、試料を加工する必要がなく、且つ、非接触であるから広い面積にわたって次々と測定することも可能であり、便利な方法である。しかしながら、これまで提案されている第三高調波電圧解析法(特許文献1)では、一つのコイルで交流磁界の印加と誘導電圧の測定を行っているため、感度の点とノイズの点で問題があった。   The third harmonic voltage analysis method is regarded as a promising method for nondestructively and noncontactly evaluating the superconducting characteristics of superconductors. In this method, a coil is placed on a sample made of a superconductor, an alternating current is passed through it, the third harmonic component of the voltage induced in the coil is measured and analyzed, and the critical current density is determined. .. This method is a convenient method because it is not necessary to directly apply a current to the sample, so that it is not necessary to process the sample, and since it is non-contact, it is also possible to measure successively over a wide area. However, in the third harmonic voltage analysis method that has been proposed so far (Patent Document 1), since an AC magnetic field is applied and an induced voltage is measured with one coil, there is a problem in terms of sensitivity and noise. was there.

第三高調波電圧解析法におけるノイズの問題を解決するために、交流磁界の印加と誘導電圧の測定のためのコイルとは別に、キャンセルコイルを用いる方法も提案されている(特許文献2)。しかしながら、この方法では、キャンセルコイルを用いるが故に、測定装置が煩雑となり、また、キャンセルのための測定手順も必要となり不便である。更に、一つのコイルで交流磁界の印加と誘導電圧の測定を行うので、感度が悪くノイズも入りやすいという問題があった。
特開2003−207526号公報 特開2004−69674号公報
In order to solve the problem of noise in the third harmonic voltage analysis method, a method of using a cancel coil in addition to a coil for applying an AC magnetic field and measuring an induced voltage has been proposed (Patent Document 2). However, this method is inconvenient because the measuring device is complicated because a cancel coil is used and a measuring procedure for canceling is required. Further, since the AC magnetic field is applied and the induced voltage is measured with one coil, there is a problem that sensitivity is low and noise is likely to enter.
JP, 2003-207526, A JP, 2004-69674, A

超電導製品を製造する際には、正確な臨界電流密度の測定が必要である。また、その製品の生産性の向上や品質の管理の面からも、簡便で精度の高い臨界電流密度の測定方法及び装置は欠かせないものであり、より良い方法と装置の開発が望まれていた。従って、本発明の課題は、従来提案されている第三高調波電圧解析法を改良した、簡便で精度の高い、超電導体の臨界電流密度測定方法及び装置を提供することにある。   When manufacturing superconducting products, it is necessary to accurately measure the critical current density. Further, from the viewpoint of improving the productivity and controlling the quality of the product, a simple and highly accurate method and apparatus for measuring the critical current density are indispensable, and the development of a better method and apparatus is desired. It was Therefore, an object of the present invention is to provide a simple and highly accurate method and apparatus for measuring the critical current density of a superconductor, which is an improvement over the conventionally proposed third harmonic voltage analysis method.

本発明は、超電導体の近傍に配置したコイルに交流電流を流し、該交流電流及び該交流電流により該コイルに誘起される第三高調波誘導電圧を検出することにより、該超電導体の臨界電流密度を測定する方法において、独立した二つのコイルを用い、交流磁界の印加と誘導電圧の測定を別々のコイルで行うことを特徴とする超電導体の臨界電流密度測定方法である。   According to the present invention, an alternating current is passed through a coil arranged in the vicinity of a superconductor, and the alternating current and a third harmonic induction voltage induced in the coil by the alternating current are detected to detect a critical current of the superconductor. In the method for measuring the density, a method for measuring the critical current density of a superconductor is characterized in that two independent coils are used, and the application of an alternating magnetic field and the measurement of the induced voltage are performed by separate coils.

本発明の他の態様は、超電導体の近傍に配置されたコイルとそれに交流電流を流す手段と、該交流電流及び該交流電流により該コイルに誘起される第三高調波誘導電圧を検出する手段とからなる、該超電導体の臨界電流密度を測定する装置において、交流磁界印加用のコイルと誘導電圧測定用のコイルを、別々に設けたことを特徴とする超電導体の臨界電流密度測定装置である。   Another aspect of the present invention is a coil arranged in the vicinity of a superconductor, a means for supplying an alternating current to the coil, and a means for detecting the alternating current and a third harmonic induction voltage induced in the coil by the alternating current. In a device for measuring the critical current density of the superconductor, the device for measuring the critical current density of a superconductor, characterized in that a coil for applying an alternating magnetic field and a coil for measuring an induced voltage are separately provided. is there.

本発明によれば、従来提案されている第三高調波電圧解析法を改良した、簡便で精度の高い、超電導体の臨界電流密度測定方法とそのための装置が提供される。そして、従来の方法・製品に比べ、より大きな交流磁界を印加することが可能であるので、より大きな臨界電流密度を測定することができ、試料とコイルの距離を大きく取ることも可能となる。また、誘導電圧の測定がより効果的に行われるので、感度が良くなり、小さな臨界電流密度の測定も可能となる。そして、かかる方法・装置を利用することにより、例えば、超電導線材の生産性の向上、品質の確保が図られる。   According to the present invention, there is provided a simple and highly accurate method for measuring a critical current density of a superconductor, which is an improvement over the conventionally proposed third harmonic voltage analysis method, and an apparatus therefor. Since a larger AC magnetic field can be applied as compared with the conventional methods and products, a larger critical current density can be measured, and a larger distance between the sample and the coil can be obtained. Further, since the induced voltage is measured more effectively, the sensitivity is improved and a small critical current density can be measured. By using such a method/apparatus, for example, the productivity and the quality of the superconducting wire can be improved.

従来の交流磁界の印加と誘導電圧の測定方法の説明図である。It is explanatory drawing of the conventional application method of an alternating magnetic field and the measuring method of an induced voltage. 本発明の交流磁界の印加と誘導電圧の測定方法の説明図である。It is explanatory drawing of the application method of the alternating magnetic field of this invention, and the measuring method of an induced voltage. 従来の測定方法により得られた、第三高調波誘導電圧と電流との関係を示す図である。It is a figure which shows the relationship between a 3rd harmonic induced voltage and a current obtained by the conventional measuring method. 本発明の測定方法により得られた、第三高調波誘導電圧と電流との関係を示す図である。It is a figure which shows the relationship between a 3rd harmonic induced voltage and a current obtained by the measuring method of this invention.

符号の説明Explanation of symbols

1 超電導体
2 コイル
3 誘導電圧測定用のピックアップコイル
4 交流磁界印加用のコイル
1 superconductor 2 coil 3 pickup coil for measuring induced voltage 4 coil for applying AC magnetic field

本発明は、第三高調波電圧解析法によって、超電導体の臨界電流密度を測定するものである。十分広い超電導体薄膜の表面上で小さなコイルにI0cos(ωt)の電流を流し、表面に対して垂直な磁界を加えると、コイルにV3cos(3ωt+θ3)の、第三高調波電圧が誘導されることが知られている。そして、具体的には、超電導体の近傍、例えば、超電導体の上側に小さいコイルを配置し、これに交流電流を流し、該コイルに誘起される電圧の第三高調波成分を測定すると、ある閾値電流から電圧が発生することから、この超電導体の臨界電流密度が評価できる(例えば、前記特許文献1参照)。The present invention is to measure the critical current density of a superconductor by the third harmonic voltage analysis method. When a current of I 0 cos(ωt) is applied to a small coil on the surface of a sufficiently wide superconducting thin film and a magnetic field perpendicular to the surface is applied, the third harmonic voltage of V 3 cos(3ωt+θ 3 ) is applied to the coil. Is known to be induced. Then, specifically, in the vicinity of the superconductor, for example, a small coil is arranged on the upper side of the superconductor, an alternating current is passed through the coil, and the third harmonic component of the voltage induced in the coil is measured. Since the voltage is generated from the threshold current, the critical current density of this superconductor can be evaluated (see, for example, Patent Document 1 above).

コイルに交流電流を流すことによって、コイルから交流磁界が発生して超電導体に印加される。交流磁界が小さいときには、超電導体は、磁界を完全に反射するが、交流磁界が大きくなると遮蔽が完全でなくなり、反対側から交流磁界がもれる。これを同じコイルの両端の電圧で観測すると、その第三高調波成分は、交流磁界が遮蔽されているときにはほとんど信号が無く、遮蔽が破れた時点で信号が発生することになる。この交流磁界の大きさと臨界電流密度は正比例の関係があり、交流磁界の大きさから臨界電流密度を評価することができる。   By passing an alternating current through the coil, an alternating magnetic field is generated from the coil and applied to the superconductor. When the AC magnetic field is small, the superconductor completely reflects the magnetic field, but when the AC magnetic field is large, the shielding is not perfect and the AC magnetic field leaks from the opposite side. Observing this at the voltage across the same coil, the third harmonic component has almost no signal when the AC magnetic field is shielded, and a signal is generated when the shield is broken. The magnitude of this alternating magnetic field and the critical current density have a direct proportional relationship, and the critical current density can be evaluated from the magnitude of the alternating magnetic field.

この技術は、四端子法に比べて、測定が比較的簡便である点と、端子を超電導体に接続する必要が無いので、非破壊的に測定できる点で優れている。また非接触で測定することができるので、例えば、超電導線材を製造する現場で利用しやすい。さらにコイルの大きさ程度の局所的な情報が得られるので、例えば、超電導線材の臨界電流密度が劣化している部分を特定することができる。   This technique is superior to the four-terminal method in that the measurement is relatively simple and that it is not necessary to connect the terminal to the superconductor, so that the measurement can be performed nondestructively. In addition, since the measurement can be performed in a non-contact manner, it can be easily used, for example, in the field of manufacturing a superconducting wire. Furthermore, since local information about the size of the coil can be obtained, for example, a portion where the critical current density of the superconducting wire is deteriorated can be specified.

本発明においては、第三高調波誘導電圧を検出・測定するための手段として、超電導体の近傍に配置され、交流電流を流し超電導体に磁界を印加するための手段であるコイル(交流磁界印加用のコイル)とは独立したコイル(誘導電圧測定用のコイル)を用いることが特徴である。交流磁界印加用のコイルと誘導電圧測定用のコイルは、お互いに近傍に配置されておれば良いが、交流磁界印加用のコイルが同軸の内側に配置され、その外側に誘導電圧測定用のコイルが配置された構成のものが好ましい。あるいは、また、交流磁界印加用のコイルが同軸の外側に配置され、その内側に誘導電圧測定用のコイルが配置された構成のものも好ましい。   In the present invention, as a means for detecting and measuring the third harmonic induced voltage, a coil (AC magnetic field application) which is arranged in the vicinity of the superconductor and is a means for flowing an alternating current and applying a magnetic field to the superconductor. The coil is characterized by using a coil (coil for measuring the induced voltage) independent of the coil (for measurement). The coil for applying an alternating magnetic field and the coil for measuring an induced voltage may be arranged in the vicinity of each other, but the coil for applying an alternating magnetic field is arranged inside the coaxial and the coil for measuring an induced voltage is outside thereof. A configuration in which is arranged is preferable. Alternatively, it is also preferable that the coil for applying an alternating magnetic field is arranged on the outer side of the same axis, and the coil for measuring the induced voltage is arranged on the inner side thereof.

一般的に、交流磁界印加用のコイルとしては、太い電線を用いた巻き数が少ないコイル(マグネット)が用いられ、誘導電圧測定用のコイルとしては、細い線を用いた巻き数が多いコイル(ピックアップコイル)が用いられる。そして、ピックアップコイルに誘導された電圧は、基本波成分と第三高調波成分から成っているので、第三高調波成分のみを、例えば、ロックインアンプを用いて分離し計測する。   Generally, a coil using a thick electric wire and having a small number of turns is used as a coil for applying an alternating magnetic field, and a coil having a large number of turns using a thin wire is used as a coil for measuring an induced voltage ( Pickup coil) is used. Since the voltage induced in the pickup coil is composed of the fundamental wave component and the third harmonic component, only the third harmonic component is separated and measured using, for example, a lock-in amplifier.

以下、図面を用いて説明する。従来は、図1(説明のための断面図)に示すように、超電導体1の上にコイル2が配置されており、一つのコイルで交流磁界の印加と誘導電圧の測定をしていた。また、基本波成分を誘導電圧から減少させることと、ノイズを減らすために、キャンセルコイルを別に設けており(図示せず)、構造が煩雑になっていた。更に、従来のものでは、基本波成分を誘導電圧から差動させる、というキャンセルの手順が必要となるという煩雑さがあった。実際に測定を行ってみると、交流電流を通電させるための電源のノイズの影響を直接受け、従って、ノイズが大きいという問題点がある。   Hereinafter, description will be given with reference to the drawings. Conventionally, as shown in FIG. 1 (a cross-sectional view for explanation), a coil 2 is arranged on a superconductor 1, and one coil is used to apply an AC magnetic field and measure an induced voltage. Further, in order to reduce the fundamental wave component from the induced voltage and reduce the noise, a cancel coil is separately provided (not shown), which makes the structure complicated. Further, the conventional device has a complicated procedure that requires a canceling procedure in which the fundamental wave component is differentiated from the induced voltage. In actual measurement, there is a problem that the noise is directly affected by the noise of the power supply for passing the alternating current, and thus the noise is large.

本発明では、従来、交流磁界を発生させるコイルと誘導電圧を測定するコイルが一つだったものを、独立に準備する。例えば、図2(説明のための断面図)に示すように超電導体1の上方にコイル群を配置する。コイルの形状を工夫して、同軸の外側に誘導電圧測定用のピックアップコイル3を、内側に交流磁界印加用のコイル4を配置する。このようにすることにより、装置が簡便となり、感度が向上する。また、本発明の方法・装置では、従来用いていたキャンセルコイルを必要としなくなるので、構造が簡便になる。更に、キャンセルのための測定手順は不要となる。そして、また、感度が向上するので、従来のものよりも超電導体と測定コイルとの距離を離すことができ、高速で線材の特性評価を行うことができるようになる。   According to the present invention, conventionally, a coil for generating an alternating magnetic field and a coil for measuring an induced voltage are provided separately, respectively. For example, as shown in FIG. 2 (cross-sectional view for explanation), a coil group is arranged above the superconductor 1. By devising the shape of the coil, the pickup coil 3 for measuring the induced voltage is arranged on the outer side of the coaxial, and the coil 4 for applying the alternating magnetic field is arranged on the inner side. By doing so, the device becomes simple and the sensitivity is improved. Further, the method and apparatus of the present invention do not require the canceling coil which has been conventionally used, so that the structure is simple. Furthermore, the measurement procedure for canceling is unnecessary. Further, since the sensitivity is improved, the distance between the superconductor and the measuring coil can be increased as compared with the conventional one, and the characteristic evaluation of the wire can be performed at high speed.

図1に示した様に、超電導体1の上にコイル2が配置されており、コイル2で交流磁界の印加と誘導電圧の測定を行う従来型の測定方法・装置を用いる実験と、図2に示した様に、超電導体1の上方に、同軸の外側に誘導電圧測定用のピックアップコイル3を、内側に交流磁界印加用のコイル4を配置したコイル群を用いる本発明の測定方法・装置を用いた実験を行った。   As shown in FIG. 1, a coil 2 is arranged on a superconductor 1, and an experiment using a conventional measuring method/apparatus for applying an alternating magnetic field and measuring an induced voltage with the coil 2 is performed. As shown in FIG. 3, a measuring method and apparatus of the present invention using a coil group in which a pickup coil 3 for measuring an induced voltage is coaxially arranged outside the superconductor 1 and a coil 4 for applying an alternating magnetic field is arranged inside the superconductor 1. Experiments using

測定は次のようにして行われた。ファンクションシンセサイザーからの信号を、バイポーラ電源により増幅して交流電流を発生させる。この交流電流を、図2に示した内側交流磁界印加用のコイル4に通電して、交流磁界を発生させる。このとき、外側に配置している誘導電圧測定用のピックアップコイル3に誘起される電圧の測定を、ロックインアンプにより行う。なお、第三高調波誘導電圧を測定するために、ファンクションシンセサイザーの周波数fの3倍の3fを、参照信号としてロックインアンプに入力している。これにより、ロックインアンプでは、印加交流磁界の3倍高調波の成分を測定できるようになる。最近のファンクションシンセサイザーは、このように高調波成分を測定可能にするように、二つの周波数を同時に出力できるようになっているものもあり、測定は簡便に行うことができる。   The measurement was performed as follows. A signal from the function synthesizer is amplified by a bipolar power supply to generate an alternating current. This alternating current is passed through the coil 4 for applying the inner alternating magnetic field shown in FIG. 2 to generate an alternating magnetic field. At this time, the voltage induced in the pickup coil 3 for measuring the induced voltage arranged outside is measured by the lock-in amplifier. In order to measure the third harmonic induction voltage, 3f, which is three times the frequency f of the function synthesizer, is input to the lock-in amplifier as a reference signal. This allows the lock-in amplifier to measure the third harmonic component of the applied AC magnetic field. Some recent function synthesizers are capable of outputting two frequencies at the same time so that the harmonic components can be measured, and the measurement can be performed easily.

この測定を、交流磁界の小さいところから大きいところまで行った。図3は、従来の測定方法(図1の方法・装置)により得られた、第三高調波誘導電圧と電流との関係を示しており、原理的には、低い磁界のところでは電圧が出てこないはずであるが、ノイズの影響を受けるために、微小ではあるが電圧が測定されており、更に一定になっていない。これに対して、図4は、本発明方法によるものであり、原理的に電圧が測定されないところでは、ノイズの影響を受けにくく、図3に比べて格段に精度が増すことを確認することができる。また、交流磁界が大きくなり、超電導体の反対側まで磁界が達すると電圧が急激に大きくなるところでも、スムーズに電圧が立ち上がっていることがわかる。このことから、実際に本発明の方式を使って測定を行うことにより、閾値を正確に定めることが可能であることがわかる。   This measurement was performed from a place with a small alternating magnetic field to a place with a large alternating magnetic field. FIG. 3 shows the relationship between the third harmonic induction voltage and the current obtained by the conventional measurement method (method/apparatus of FIG. 1). In principle, the voltage is not generated at a low magnetic field. It should not come, but because it is affected by noise, the voltage is measured though it is minute, and it is not constant. On the other hand, FIG. 4 is based on the method of the present invention, and it can be confirmed that, in principle, in a place where the voltage is not measured, it is less susceptible to noise and the accuracy is remarkably increased as compared with FIG. it can. Also, it can be seen that the voltage rises smoothly even in a place where the voltage suddenly increases when the alternating magnetic field increases and the magnetic field reaches the opposite side of the superconductor. From this, it can be understood that the threshold value can be accurately determined by actually performing the measurement using the method of the present invention.

以上の結果、本発明の場合は、従来型に比べて測定の際のノイズが軽減され、臨界電流密度の測定において精度が増すことが確認された。   As a result of the above, it was confirmed that the present invention reduces noise during measurement and improves accuracy in measuring the critical current density as compared with the conventional type.

本発明によれば、従来提案されている第三高調波電圧解析法を改良した、簡便で精度の高い、超電導体の臨界電流密度測定方法とそのための装置が提供される。かかる方法・装置は、超電導体を利用した各種の製品、例えば、超電導線材の、生産性の向上や品質の管理のために有効に用いることができる。   According to the present invention, there is provided a simple and highly accurate method for measuring a critical current density of a superconductor, which is an improvement over the conventionally proposed third harmonic voltage analysis method, and an apparatus therefor. The method/apparatus can be effectively used for improving the productivity and controlling the quality of various products using superconductors, for example, superconducting wire.

Claims (6)

超電導体の近傍に配置したコイルに交流電流を流し、該交流電流及び該交流電流により該コイルに誘起される第三高調波誘導電圧を検出することにより、該超電導体の臨界電流密度を測定する方法において、独立した二つのコイルを用い、交流磁界の印加と誘導電圧の測定を別々のコイルで行うことを特徴とする超電導体の臨界電流密度測定方法。   The critical current density of the superconductor is measured by passing an alternating current through a coil arranged in the vicinity of the superconductor and detecting the alternating current and the third harmonic induced voltage induced in the coil by the alternating current. In the method, two independent coils are used, and the application of an alternating magnetic field and the measurement of the induced voltage are performed by separate coils. A method for measuring a critical current density of a superconductor. 独立した二つのコイルが、同軸の内側に配置された交流磁界印加用のコイルと、外側に配置された誘導電圧測定用のコイルとから構成されている請求項1記載の超電導体の臨界電流密度測定方法。   2. The critical current density of a superconductor according to claim 1, wherein the two independent coils are composed of a coil for applying an AC magnetic field arranged inside the coaxial and a coil for measuring an induced voltage arranged outside. Measuring method. 独立した二つのコイルが、同軸の外側に配置された交流磁界印加用のコイルと、内側に配置された誘導電圧測定用のコイルとから構成されている請求項1記載の超電導体の臨界電流密度測定方法。   2. The critical current density of a superconductor according to claim 1, wherein the two independent coils are composed of a coil for applying an alternating magnetic field arranged on the outer side of the coaxial and a coil for measuring an induced voltage arranged on the inner side. Measuring method. 超電導体の近傍に配置されたコイルとそれに交流電流を流す手段と、該交流電流及び該交流電流により該コイルに誘起される第三高調波誘導電圧を検出する手段とからなる、該超電導体の臨界電流密度を測定する装置において、交流磁界印加用のコイルと誘導電圧測定用のコイルを、別々に設けたことを特徴とする超電導体の臨界電流密度測定装置。   A coil disposed in the vicinity of the superconductor, means for passing an alternating current through the coil, and means for detecting the alternating current and a third harmonic induction voltage induced in the coil by the alternating current, A device for measuring a critical current density, wherein a coil for applying an alternating magnetic field and a coil for measuring an induced voltage are separately provided, and a device for measuring a critical current density of a superconductor. 交流磁界印加用のコイルが同軸の内側に配置され、誘導電圧測定用のコイルが同軸の外側に配置されている請求項4記載の超電導体の臨界電流密度測定装置。   The critical current density measuring device for a superconductor according to claim 4, wherein the coil for applying the alternating magnetic field is arranged inside the coaxial, and the coil for measuring the induced voltage is arranged outside the coaxial. 交流磁界印加用のコイルが同軸の外側に配置され、誘導電圧測定用のコイルが同軸の内側に配置されている請求項4記載の超電導体の臨界電流密度測定装置。   The critical current density measuring device for a superconductor according to claim 4, wherein the coil for applying the alternating magnetic field is arranged on the outer side of the coaxial, and the coil for measuring the induced voltage is arranged on the inner side of the coaxial.
JP2006547749A 2004-12-01 2005-11-18 Method and device for measuring critical current density of superconductor Pending JPWO2006059497A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004348612 2004-12-01
JP2004348612 2004-12-01
PCT/JP2005/021221 WO2006059497A1 (en) 2004-12-01 2005-11-18 Method and device for measuring critical current density of superconductor

Publications (1)

Publication Number Publication Date
JPWO2006059497A1 true JPWO2006059497A1 (en) 2008-08-07

Family

ID=36564932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006547749A Pending JPWO2006059497A1 (en) 2004-12-01 2005-11-18 Method and device for measuring critical current density of superconductor

Country Status (2)

Country Link
JP (1) JPWO2006059497A1 (en)
WO (1) WO2006059497A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433426A (en) * 2021-08-30 2021-09-24 国网江西省电力有限公司电力科学研究院 Method and device for calculating critical fault position of converter bus of direct-current transmission system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101446612B (en) * 2008-11-25 2011-09-14 中国电力科学研究院 Measurement method of critical current properties of high-temperature superconducting tape
CN103926454A (en) * 2014-03-21 2014-07-16 河南师范大学 Device for measuring electric current density of superconductor with Campbell method
CN108982950B (en) * 2018-07-02 2021-10-22 东北大学 Sensor for testing YBCO film superconducting loop voltage signal and manufacturing method thereof
CN116148007A (en) * 2022-03-08 2023-05-23 上海超导科技股份有限公司 Sample placement method for microstructure of superconducting tape

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115155A (en) * 1990-09-05 1992-04-16 Tokyo Kogyo Kk Noncontact current density measuring probe
JPH04168384A (en) * 1990-10-31 1992-06-16 Furukawa Electric Co Ltd:The Measurement of magnetic characteristic of superconductive body
JPH05142204A (en) * 1991-11-21 1993-06-08 Kaisei Enjinia Kk Electromagnetic-induction type inspecting apparatus
JPH0545184B2 (en) * 1986-05-22 1993-07-08 Kansai Electric Power Co
JPH07198770A (en) * 1993-12-28 1995-08-01 Tokyo Kogyo Kk Improved probe device and method for measuring critical superconducting current in non-contacting state
JP2003207526A (en) * 2001-11-07 2003-07-25 National Institute Of Advanced Industrial & Technology Method and device for measuring critical current density of semiconductor
JP2004069674A (en) * 2002-06-10 2004-03-04 National Institute Of Advanced Industrial & Technology Measuring method and device for current-voltage characteristics of superconductor
JP2004212168A (en) * 2002-12-27 2004-07-29 National Institute Of Advanced Industrial & Technology Method for evaluating superconductivity property of superconductive film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545184B2 (en) * 1986-05-22 1993-07-08 Kansai Electric Power Co
JPH04115155A (en) * 1990-09-05 1992-04-16 Tokyo Kogyo Kk Noncontact current density measuring probe
JPH04168384A (en) * 1990-10-31 1992-06-16 Furukawa Electric Co Ltd:The Measurement of magnetic characteristic of superconductive body
JPH05142204A (en) * 1991-11-21 1993-06-08 Kaisei Enjinia Kk Electromagnetic-induction type inspecting apparatus
JPH07198770A (en) * 1993-12-28 1995-08-01 Tokyo Kogyo Kk Improved probe device and method for measuring critical superconducting current in non-contacting state
JP2003207526A (en) * 2001-11-07 2003-07-25 National Institute Of Advanced Industrial & Technology Method and device for measuring critical current density of semiconductor
JP2004069674A (en) * 2002-06-10 2004-03-04 National Institute Of Advanced Industrial & Technology Measuring method and device for current-voltage characteristics of superconductor
JP2004212168A (en) * 2002-12-27 2004-07-29 National Institute Of Advanced Industrial & Technology Method for evaluating superconductivity property of superconductive film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3.2.1 励磁方法および検出方法による分類", 鉄鋼製品の渦流探傷法, JPN6008002065, 28 February 2001 (2001-02-28), pages 54 - 55, ISSN: 0000964629 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113433426A (en) * 2021-08-30 2021-09-24 国网江西省电力有限公司电力科学研究院 Method and device for calculating critical fault position of converter bus of direct-current transmission system
CN113433426B (en) * 2021-08-30 2021-12-31 国网江西省电力有限公司电力科学研究院 Method and device for calculating critical fault position of converter bus of direct-current transmission system

Also Published As

Publication number Publication date
WO2006059497A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
US4528856A (en) Eddy current stress-strain gauge
US7759931B2 (en) Device for measuring magnetic impedance
Silva et al. High sensitivity giant magnetoimpedance (GMI) magnetic transducer: magnitude versus phase sensing
Espina-Hernandez et al. Rapid estimation of artificial near-side crack dimensions in aluminium using a GMR-based eddy current sensor
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
JPWO2006059497A1 (en) Method and device for measuring critical current density of superconductor
Loisos et al. Critical evaluation and limitations of localized flux density measurements in electrical steels
US5218296A (en) Method and apparatus for determining at least one characteristic of a superconductive film
JP2007078500A (en) Method and apparatus for measuring critical current density of superconductive film
JPH02262026A (en) Method and apparatus for nondestructive inspection
Ramirez-Pacheco et al. Defect detection in aluminium with an eddy currents sensor
Asfour et al. Practical use of the gmi effect to make a current sensor
JP3572452B2 (en) Eddy current probe
JPH0545184B2 (en)
JPH07198770A (en) Improved probe device and method for measuring critical superconducting current in non-contacting state
JP3845729B2 (en) Method and apparatus for measuring current and voltage characteristics of superconductors
Touil et al. Simple Giant Magnetoresistance Probe Based Eddy Current System of Defect Characterization for Non-Destructive Testing
Moses et al. AC Barkhausen noise in electrical steels: Influence of sensing technique on interpretation of measurements
JP2012112868A (en) Internal defective measuring method and internal defective measuring device
Artetxe et al. A new technique to obtain an equivalent indirect hysteresis loop from the distortion of the voltage measured in the excitation coil
JPH01119756A (en) Inspecting apparatus for deterioration of metal material
JP4310431B2 (en) Method and apparatus for measuring critical current density and current / voltage characteristics of superconducting thick film
JPH01269049A (en) Method of inspecting deterioration of metallic material
Dziczkowski Effect of eddy current frequency on measuring properties of devices used in non-destructive measurements of non-ferromagnetic metal plates
Sonoda et al. Measurement of fluctuations of magnetized loop in amorphous cores

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212