JPH02262026A - Method and apparatus for nondestructive inspection - Google Patents

Method and apparatus for nondestructive inspection

Info

Publication number
JPH02262026A
JPH02262026A JP8301789A JP8301789A JPH02262026A JP H02262026 A JPH02262026 A JP H02262026A JP 8301789 A JP8301789 A JP 8301789A JP 8301789 A JP8301789 A JP 8301789A JP H02262026 A JPH02262026 A JP H02262026A
Authority
JP
Japan
Prior art keywords
magnetic
subject
stress
measuring means
internal stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8301789A
Other languages
Japanese (ja)
Other versions
JP2766929B2 (en
Inventor
Toshihiko Yoshimura
敏彦 吉村
Yuichi Ishikawa
雄一 石川
Masahiro Otaka
大高 正広
Tasuku Shimizu
翼 清水
Kunio Hasegawa
長谷川 邦夫
Yuko Oguchi
小口 優子
Akihiko Hirano
明彦 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1083017A priority Critical patent/JP2766929B2/en
Publication of JPH02262026A publication Critical patent/JPH02262026A/en
Application granted granted Critical
Publication of JP2766929B2 publication Critical patent/JP2766929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To measure internal stress and to make it possible to measure mechanical property highly accurately without destruction by providing a fluxmeter which measures the intrinsic magnetic characteristics of a body under test and the change in characteristics in a stress measuring means. CONSTITUTION:When a measuring probe 22 is brought into contact with a body under test 23, a magnetic circuit 24 is formed. When a current is made to flow through a coil 25, magnetic flux is generated in the magnetic circuit 24. When internal stress is present in the body under test, permeability is changed in response to the magnitude of the internal stress, and the magnitude of the magnetic flux is changed. The difference in magnetic fluxes is obtained by measuring the unbalanced current in a specified bridge circuit. Thus, the internal stress is obtained. Meanwhile, an exciting coil 28 and a fluxmeter 21 provided with a pickup coil 29 are provided in the measuring probe 22. Magnetomotive forces having the different values are sequentially imparted. A magnetic hysteresis curve in an internal-stress measuring region is obtained. The magnetic characteristics are obtained from the curve. The mechanical property can be obtained based on the characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属材料の表面に存在する内部応力を測定する
非破壊検査方法および装置に係り、特に、金属材料内部
の応力の影響を受けることなく機械的性質を測定できる
非破壊検査方法および装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a non-destructive testing method and apparatus for measuring internal stress existing on the surface of a metal material, and in particular to a non-destructive testing method and apparatus for measuring internal stress existing on the surface of a metal material. The present invention relates to a non-destructive testing method and device capable of measuring mechanical properties without any problems.

〔従来の技術〕[Conventional technology]

高温環境下で使用されるボイラ配管やタービンロータは
、その使用状況に応じてそれを構成する金属材料の引張
強さ等の機械的性質が徐々に変化するため、使用時間が
長時間に及んだものについて材料試験が行われる。この
材料試験は被検体が稼動中の配管やロータ等の実機部材
であるため、通常行われるように試験片を採取して行う
ことができない。このような事情から一般に、試験片を
採取せずに実機部材を据え付けたままの状態で行える硬
さ測定のみが材料試験として実施され、得られた硬さデ
ータから引張強さ等を推定することが行われている。配
管内壁やロータ中心孔内面の硬さ測定装置として、特公
昭57−84336号公報記載の硬度測定装置が提案さ
れている。材料の硬さは、当該材料が他の物体によって
変形を与えられるときに呈する抵抗の大小を示す尺度で
あり、これらを定量的に測定する種々の試験方法と試験
機が考案されている。(例えば、機械の研究第37巻、
第10号(1985)、P25)一方、特開昭62−2
40851号公報には被検体に加圧器を有する圧子等で
塑性変形を与え、被検体の透磁率の変化を2重コイルで
検出する手段を備えた材料試験装置が記載されている。
Boiler piping and turbine rotors used in high-temperature environments gradually change their mechanical properties, such as the tensile strength of the metal materials that make up them, depending on the usage conditions, so they cannot be used for long periods of time. A material test will be conducted on the product. This material test cannot be performed by collecting test pieces, as is normally done, because the test objects are actual machine parts such as piping and rotors that are in operation. For these reasons, generally only hardness measurements that can be performed with the actual machine parts installed without taking test pieces are carried out as material tests, and tensile strength etc. can be estimated from the obtained hardness data. is being carried out. A hardness measuring device described in Japanese Patent Publication No. 57-84336 has been proposed as a hardness measuring device for the inner wall of a pipe or the inner surface of a rotor center hole. The hardness of a material is a measure of the resistance it exhibits when it is deformed by another object, and various testing methods and testing machines have been devised to quantitatively measure this. (For example, Mechanical Research Vol. 37,
No. 10 (1985), P25) On the other hand, JP-A-62-2
Japanese Patent No. 40851 describes a material testing device equipped with means for applying plastic deformation to a test object with an indenter having a pressurizer or the like and detecting a change in magnetic permeability of the test object using a double coil.

これは被検体の初透磁率μ、を測定し、該被検体に塑性
変形を与えたのち該塑性変形部分の初透磁率μ2を測定
し、これら初透磁率μm及びμ2の差に基づいて被検体
の機械的性質を求める材料試験方法である。この方法で
は、被検体の初透磁率は磁気ひずみ効果によって内部応
力の影響を受ける。
This measures the initial magnetic permeability μ of the specimen, applies plastic deformation to the specimen, then measures the initial magnetic permeability μ2 of the plastically deformed portion, and then calculates the initial magnetic permeability μm and μ2 of the specimen. This is a material testing method that determines the mechanical properties of a specimen. In this method, the initial permeability of the object is influenced by internal stress due to magnetostrictive effects.

磁気ひずみ効果を利用した応力測定装置に関しては非破
壊検査第37巻第9号(1988)PP730〜736
に記載されている。
Regarding stress measurement devices using magnetostrictive effects, see Nondestructive Testing Vol. 37, No. 9 (1988) PP730-736.
It is described in.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、被検体が測定時にうける塑性変形の影
響についての配慮がされておらず、材料を非破壊(塑性
変形なしで)検査することができなかった。したがって
原子力プラントの実機材のように、非破壊検査が望まれ
る被検体の機械的特性を測定するのに適していなかった
The above-mentioned conventional technology does not take into consideration the influence of plastic deformation that the test object undergoes during measurement, and is unable to non-destructively (without plastic deformation) inspect the material. Therefore, it is not suitable for measuring the mechanical properties of objects that require non-destructive testing, such as actual equipment in nuclear power plants.

また、特開昭62−240851号公報に記載の技術で
は、初透磁率が実機部材の内部に存在する残留応力の影
響を受けるため、残留応力による初透磁率への影響を測
定できないかぎり、初透磁率の変化から実機部材の機械
的特性を測定することができなかった。
In addition, in the technology described in JP-A No. 62-240851, the initial magnetic permeability is affected by the residual stress existing inside the actual machine member, so unless the influence of the residual stress on the initial magnetic permeability can be measured, the initial magnetic permeability cannot be measured. It was not possible to measure the mechanical properties of the actual components based on changes in magnetic permeability.

本発明の課題は、被検体に局在する内部応力を非破壊で
測定し、さらに被検体の機械的性質の変化を非破壊でか
つ高精度に計測するにある。
An object of the present invention is to non-destructively measure the internal stress localized in an object to be examined, and also to measure changes in the mechanical properties of the object non-destructively and with high precision.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、被検体の内部応力を磁気を用いて検知す
る応力測定手段を備えた非破壊検査装置において、前記
応力測定手段に前記被検体固有の磁気特性およびその変
化を測定する磁束計を具備することにより達成される。
The above problem is solved by a non-destructive inspection apparatus equipped with a stress measuring means that uses magnetism to detect the internal stress of a test object, and a magnetometer that measures magnetic properties specific to the test object and changes thereof. This can be achieved by having the following.

被検体に接触し、該被検体の内部応力を検知する応力測
定手段と、該応力測定手段と同心状に設けられ前記被検
体に接触して該被検体固有の磁気特性及びその変化を測
定する磁束計と、を備えた非破壊検査装置としてもよい
a stress measuring means that comes into contact with the subject and detects the internal stress of the subject; and a stress measuring means that is provided concentrically with the stress measuring means and that comes into contact with the subject and measures magnetic properties specific to the subject and changes thereof. It is also possible to use a non-destructive testing device equipped with a magnetometer.

また、被検体に接触し、該被検体の内部応力を検知する
応力測定手段と、該応力測定手段と前記被検体との間に
設けられ前記被検体に接触して該被検体固有の磁気特性
及びその変化を測定する磁束計と、を備えた非破壊検査
装置としてもよい。
Further, a stress measuring means that contacts the subject and detects the internal stress of the subject, and a stress measuring means that is provided between the stress measuring means and the subject and that contacts the subject and detects the internal stress of the subject, and a magnetic property unique to the subject. and a magnetometer that measures the change thereof.

また、被検体に接触して該被検体固有の磁気特性及びそ
の変化を測定する磁束計と、該磁束計と前記被検体との
間に設けられ前記被検体に接触して該被検体の内部応力
を検知する応力測定手段と、を備えた非破壊検査装置と
してもよい。
Further, a magnetometer is provided between the magnetometer and the test object to contact the test object to measure magnetic properties specific to the test object and changes thereof, and a magnetometer is installed between the magnetometer and the test object to contact the test object and measure the internal magnetic properties of the test object. A non-destructive testing device may also be provided, including stress measuring means for detecting stress.

また、応力測定手段が、高透磁率材料または軟磁性材を
コアとし励磁用のコイルを有して被検体に接触する測定
用プローブと、前記測定用プローブと同一仕様の補償用
プローブと、前記測定用プローブと補償用プローブとを
含んで構成されるブリッジ回路と、該ブリッジ回路の不
平衡電流値を測定する不平衡電流測定手段と、測定され
た不平衡電流値に基づいて前記被検体の内部応力を演算
する演−手段と、を備えている請求項2乃至4に記載の
非破壊検査装置としてもよい。
Further, the stress measuring means includes a measurement probe that has a core made of a high magnetic permeability material or a soft magnetic material and has an excitation coil and contacts the subject, a compensation probe that has the same specifications as the measurement probe, and a compensation probe that has the same specifications as the measurement probe. a bridge circuit including a measurement probe and a compensation probe; unbalanced current measuring means for measuring an unbalanced current value of the bridge circuit; The non-destructive testing apparatus according to any one of claims 2 to 4, further comprising: calculation means for calculating internal stress.

また、プローブがコの字型に形成され、該コの字型の両
端部が被検体に接触する磁極である請求項5に記載の非
破壊検査装置としてもよい。
Further, the non-destructive testing apparatus according to claim 5, wherein the probe is formed in a U-shape, and both ends of the U-shape are magnetic poles that contact the subject.

また、演算手段から出力される内部応力値、被検体の保
磁力及び残留磁束密度を、被検体の測定位置を一方の座
標軸にとってグラフ化するコンピュータと、該コンピュ
ータに接続されて前記グラフを表示する表示手段と、を
備えている請求項5または6に記載の非破壊検査装置と
してもよい。
The computer also includes a computer that graphs the internal stress value, the coercive force, and the residual magnetic flux density of the object outputted from the calculation means, with the measurement position of the object as one coordinate axis, and a computer that is connected to the computer and displays the graph. The non-destructive inspection apparatus according to claim 5 or 6 may be provided with a display means.

また、磁極間の中心に磁束計が配置されている請求項6
に記載の非破壊検査装置としてもよい。
Claim 6 further characterized in that a magnetometer is disposed at the center between the magnetic poles.
It is also possible to use the non-destructive testing device described in .

゛また、測定プローブの被検体との接触面が、該接触面
内で、前記接触面に垂直な測定プローブ中心線を軸とし
て回転可能である請求項5,6及び8に記載の非破壊検
査装置としてもよい。
9. The non-destructive testing according to claims 5, 6 and 8, wherein the contact surface of the measurement probe with the subject is rotatable within the contact surface about a center line of the measurement probe perpendicular to the contact surface. It may also be used as a device.

また、被検体が、化学プラント、火力発電プラント、原
子力プラントのうちのいずれかの機器材料及び実機部材
である請求項1乃至9に記載の非破壊検査装置としても
よい。
The non-destructive inspection apparatus according to any one of claims 1 to 9, wherein the test object is an equipment material or an actual machine member of any one of a chemical plant, a thermal power plant, and a nuclear power plant.

また、被検体に接触し、該被検体の内部応力を検知する
応力測定手段と、該応力測定手段と同心状に設けられ前
記被検体固有の渦電流を測定する磁化コイル及び検出コ
イルと、を備えた非破壊検査装置としてもよい。
The present invention also includes a stress measuring means that contacts the subject and detects the internal stress of the subject, and a magnetizing coil and a detection coil that are provided concentrically with the stress measuring means and measure eddy currents specific to the subject. It is also possible to use a non-destructive inspection device equipped with the following.

また、被検体に接触し、該被検体の内部応力を検知する
応力測定手段と、該応力測定手段と前記被検体との間に
設けられ前記被検体に接触して該被検体固有のバルクハ
ウゼンノイズを測定する励磁コイル及び検出コイルと、
該励磁コイルに低周波電圧を供給する発振器と、を備え
た非破壊検査装置としてもよい。
Further, a stress measuring means that contacts the subject and detects the internal stress of the subject; an excitation coil and a detection coil for measuring noise;
The non-destructive testing device may include an oscillator that supplies a low frequency voltage to the excitation coil.

また、磁束計が、被検体に起磁力を与える励磁手段と、
与えられた起磁力によって前記被検体から誘起される磁
束を検知するホール素子と、を備えている請求項1乃至
1oに記載の非破壊検査装置としてもよい。
Further, the magnetometer includes an excitation means for applying a magnetomotive force to the subject;
The non-destructive testing apparatus according to any one of claims 1 to 1o, further comprising a Hall element that detects magnetic flux induced from the subject by a given magnetomotive force.

また、磁束計が、被検体に起磁力を与える超電導コイル
と、与えられた起磁力によって前記被検体から誘起され
る磁束を検知する超電導ピックアップコイルと、を備え
ている請求項1乃至1oに記載の非破壊検査装置として
もよい。
Further, the magnetometer includes a superconducting coil that applies magnetomotive force to the subject, and a superconducting pickup coil that detects magnetic flux induced from the subject by the applied magnetomotive force. It may also be used as a non-destructive testing device.

また、上記課題は、被検体に順次異なる値の起磁力を与
え、該起磁力によって被検体から誘起される磁力線を検
知して磁気ヒステテリシスヵーブを求め、該磁気ヒステ
テリシスヵーブに基づいて前記被検体の磁気特性を求め
、得られた磁気特性に基づいて前記被検体の機械的性質
を判定する非破壊検査方法によっても達成される。
In addition, the above problem is to sequentially apply different values of magnetomotive force to the test object, detect magnetic lines of force induced from the test object by the magnetomotive force, obtain a magnetic hysteresis curve, and calculate the magnetic hysteresis curve. This can also be achieved by a non-destructive testing method that determines the magnetic properties of the object based on the magnetic properties and determines the mechanical properties of the object based on the obtained magnetic properties.

さらに、内部応力が被検体の磁気特性に及ぼす影響を予
めデータ化しておき、被検体と測定プローブを通る閉じ
た磁気回路と、基準検体と補償プローブを通る磁気回路
とをを形成し、両磁気回路の磁気抵抗の差に基づいて被
検体の内部応力を検知する手順と、該被検体に順次異な
る値の起磁力を与え、該起磁力によって被検体から誘起
される磁力線を検知して磁気ヒステテリシスカーブを求
め、該磁気ヒステテリシスカーブに基づいて前記被検体
の磁気特性を得る手順と、先の手順によって得られた内
部応力を用いて前記磁気特性を補正し、補正された磁気
特性に基づいて前記被検体の機械的性質を判定する非破
壊検査方法としてもよい。
Furthermore, the influence of internal stress on the magnetic properties of the specimen is converted into data in advance, and a closed magnetic circuit passing through the specimen and the measurement probe, and a magnetic circuit passing through the reference specimen and the compensation probe are formed. There is a procedure for detecting the internal stress of a test object based on the difference in magnetic resistance of the circuit, and a magnetic hysteresis method by sequentially applying different values of magnetomotive force to the test object and detecting the lines of magnetic force induced from the test object by the magnetomotive force. a step of obtaining a hysteresis curve and obtaining the magnetic properties of the object based on the magnetic hysteresis curve; correcting the magnetic properties using the internal stress obtained in the previous step; and correcting the magnetic properties based on the corrected magnetic properties. The method may also be a non-destructive testing method for determining the mechanical properties of the object.

〔作用〕[Effect]

被検体の表面に、測定用プローブを当てると閉じた磁気
回路が形成される。該測定用プローブに巻装されたコイ
ルに電流を流すと、前記磁気回路に磁束が生ずる。被検
体に内部応力が存在すると。
When a measurement probe is applied to the surface of a subject, a closed magnetic circuit is formed. When a current is passed through a coil wound around the measurement probe, a magnetic flux is generated in the magnetic circuit. When internal stress exists in the object.

磁気ひずみ現象によって該内部応力の大きさに伴って被
検体の透磁率が変化し、これに伴って前記磁束の大きさ
が変る。内部応力のない基準検体に接触して磁気回路を
形成する補償用プローブに生ずる磁束の大きさと前記測
定用プローブに生ずる磁束の大きさに差ができ、測定用
プローブと補償用プローブとを含んで形成されるブリッ
ジ回路に不平衡電流が生ずる。この不平衡電流が、被検
体の内部応力の大きさに対応するので、前記不平衡電流
を測定して内部応力が得られる。
Due to the magnetostrictive phenomenon, the magnetic permeability of the object changes in accordance with the magnitude of the internal stress, and the magnitude of the magnetic flux changes accordingly. There is a difference in the magnitude of the magnetic flux generated in the compensation probe that contacts a reference specimen with no internal stress to form a magnetic circuit and the magnitude of the magnetic flux generated in the measurement probe, and the magnetic flux generated in the measurement probe is different from that in the measurement probe. Unbalanced currents occur in the bridge circuit formed. Since this unbalanced current corresponds to the magnitude of the internal stress of the subject, the internal stress can be obtained by measuring the unbalanced current.

測定用プローブの磁極間中心に励磁コイルとピックアッ
プコイルを備えた磁束計が設けられ、被検体に順次異る
値の起磁力が与えられて、前記内部応力が測定された領
域の磁気ヒステリシスカーブ(B−Hカーブ)が求めら
れる。この磁気ヒステリシスカーブから得られる被検体
の磁気特性に、先に測定された内部応力による磁気ひず
み効果の補正が行われ、内部応力の影響を除外した磁気
特性が得られる。この磁気特性は、被検体の機械的性質
と対応づけられるので、補正された磁気特性に基づいて
、被検体の機械的性質が得られる。
A magnetometer equipped with an excitation coil and a pickup coil is installed at the center between the magnetic poles of the measurement probe, and magnetomotive force of different values is sequentially applied to the subject, and the magnetic hysteresis curve ( BH curve) is determined. The magnetic properties of the object obtained from this magnetic hysteresis curve are corrected for the magnetostrictive effect due to the previously measured internal stress, thereby obtaining magnetic properties that exclude the effects of internal stress. Since this magnetic property is correlated with the mechanical property of the subject, the mechanical property of the subject can be obtained based on the corrected magnetic property.

被検体の磁気特性を得る方法としては、渦電流による方
法、バルクハウゼンノイズを用いる方法があり、同様の
効果が得られる。
Methods for obtaining the magnetic properties of the object include a method using eddy current and a method using Barkhausen noise, and similar effects can be obtained.

応力測定手段である測定用プローブと、磁気特性を測定
する磁束計(渦電流検出コイル、バルクハウゼンノイズ
検出コイル)は同心状に配置されているので、内部応力
の検出位置と磁気特性の検吊位置は一致しており、位置
的な精度も高い。
The measurement probe, which is the stress measurement means, and the magnetometer (eddy current detection coil, Barkhausen noise detection coil), which measures the magnetic properties, are arranged concentrically, so it is easy to detect the internal stress detection position and the magnetic properties. The positions match and the positional accuracy is high.

〔実施例〕〔Example〕

以下、本発明の実施例を、図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例である非破壊検査装置により
被検体であるタービンロータ1を検査する状態を示して
いる。図に示す非破壊検査装置は、タービンロータ1に
設けられた中心孔2に装着された応力測定装置3と、該
応力測定装置3に連結されてそれを前記中心孔2の内周
面上を移動させる操作ロッド5と、該操作ロッド5を軸
方向に動かすとともに軸の周囲に回転させる送り装置4
と。
FIG. 1 shows a state in which a turbine rotor 1, which is an object to be inspected, is inspected by a nondestructive inspection apparatus that is an embodiment of the present invention. The nondestructive testing device shown in the figure includes a stress measuring device 3 attached to a center hole 2 provided in a turbine rotor 1, and a stress measuring device 3 connected to the stress measuring device 3 to measure the stress on the inner circumferential surface of the center hole 2. An operating rod 5 to be moved, and a feeding device 4 to move the operating rod 5 in the axial direction and rotate it around the axis.
and.

応力測定装置3に接続されたケーブル6と、該ケーブル
の他端に接続されたデータ変換装置7および演算制御器
8とを備えている。
It includes a cable 6 connected to the stress measuring device 3, and a data conversion device 7 and an arithmetic controller 8 connected to the other end of the cable.

第2図は、本発明に係る非破壊検査装置を原子炉圧力容
器の検査に適用した例を示している。図に示した実施例
である非破壊検査装置は、原子炉圧力容器11の内壁に
装着された応力測定装置3と、該応力測定装置3を支持
するクレーン17と、前記応力測定装置3に接続された
制御器18と、を備えている。被検体は化学プラントに
用いられる厚肉の各種容器であってもよい。
FIG. 2 shows an example in which the non-destructive inspection apparatus according to the present invention is applied to the inspection of a nuclear reactor pressure vessel. The non-destructive testing device shown in the figure includes a stress measuring device 3 mounted on the inner wall of a reactor pressure vessel 11, a crane 17 supporting the stress measuring device 3, and a crane 17 connected to the stress measuring device 3. and a controller 18. The specimen may be various thick-walled containers used in chemical plants.

第3図は、第1図、第2図に示した応力測定装置の要部
断面図である。図に示す応力測定装置は、被検体23の
磁気特性を測定する高感度の磁束計21と、該磁束計2
1の周囲に、前記被検体23に接触可能に設けられた、
高透磁率材料からなるコの字形のプローブ22と、該プ
ローブ22に巻装されたコイル25と、前記磁束計21
の被検体23に対向する面に設けられ該磁束計に接続さ
れたピックアップコイル26と、前記磁束計に付属して
設けられた励磁コイル28と、を備えている。
FIG. 3 is a sectional view of a main part of the stress measuring device shown in FIGS. 1 and 2. FIG. The stress measurement device shown in the figure includes a highly sensitive magnetometer 21 that measures the magnetic properties of a subject 23, and a
1, provided so as to be able to contact the subject 23.
A U-shaped probe 22 made of a high magnetic permeability material, a coil 25 wound around the probe 22, and the magnetometer 21.
A pickup coil 26 is provided on a surface facing the subject 23 and connected to the magnetometer, and an excitation coil 28 is provided attached to the magnetometer.

磁束計21は、プローブ22のコの字型の中心に配置さ
れている。プローブ22と該プローブ22に巻装された
コイル25が、コの字型の端部を被検体に接触させて該
被検体の内部応力を測定する測定用プローブを構成し、
同様の構成のものが。
The magnetometer 21 is placed at the center of the U-shape of the probe 22 . The probe 22 and the coil 25 wound around the probe 22 constitute a measurement probe that measures the internal stress of the test object by bringing its U-shaped end into contact with the test object,
Something with a similar configuration.

補償用プローブとして備えられている。この測定用プロ
ーブと補償用プローブとが定電圧回路46゜スライダッ
ク47.ブリッジ電流測定用検流計45、不平fIij
!電流測定用検流計44とともに、ブリッジ回路を形成
して、応力針1定手段をなしている。
It is provided as a compensation probe. The measurement probe and the compensation probe are connected to a constant voltage circuit 46° slideac 47. Galvanometer for bridge current measurement 45, complaint fIij
! Together with the galvanometer 44 for current measurement, a bridge circuit is formed to constitute stress needle 1 constant means.

上記構成の応力測定装置による測定を行うには、まず、
プローブ22がそのコの字型の端部22Aを被検体23
の表面に接触させて配置され、補償用プローブは、その
端部を内部応力を有しない基準検体の表面に接触させて
配置される。被検体23とプローブ22とで、閉じた磁
気回路24が形成され、同様に、補償用プローブと基準
検体も閉じた磁気回路を形成する。コイル25および補
償用プローブのコイルに電流が流され、両者の磁気回路
にそれぞれ磁束が生じるが、被検体23の応力測定領域
26内に内部応力27が存在すると、磁気ひずみ現象に
よって、内部応力の大きさに従って、該応力測定領域2
6内の透磁率が変化する。
To perform measurement using the stress measuring device with the above configuration, first,
The probe 22 connects its U-shaped end 22A to the subject 23.
The compensating probe is placed with its end in contact with the surface of a reference specimen having no internal stress. The subject 23 and the probe 22 form a closed magnetic circuit 24, and similarly, the compensation probe and the reference sample also form a closed magnetic circuit. Current is passed through the coil 25 and the coil of the compensation probe, and magnetic flux is generated in the magnetic circuits of both. However, if internal stress 27 exists within the stress measurement region 26 of the subject 23, the internal stress will be reduced due to the magnetostrictive phenomenon. According to the size, the stress measurement area 2
6 changes in magnetic permeability.

このため、磁気回路24の磁気抵抗と、内部応力のない
基準検体に接する補償用プローブの磁気回路の磁気抵抗
との間に差が生ずる。この磁気抵抗の差に基く磁束密度
の差が、第5図に示されるブリッジ回路を用いた測定回
路で電気信号に変換され、あらかじめデータ化されてい
る内部応力と透磁率の関係に基いて、応力測定領域26
内の内部応力が演算出力される。プローブ22を被検体
23の表面に沿って移動させ、複数の個所で応力を測定
することにより、被検体23の応力分布が得られる。
Therefore, a difference occurs between the magnetic reluctance of the magnetic circuit 24 and the magnetic reluctance of the magnetic circuit of the compensation probe that is in contact with the reference specimen free of internal stress. The difference in magnetic flux density based on this difference in magnetic resistance is converted into an electric signal by a measurement circuit using a bridge circuit shown in Figure 5, and based on the relationship between internal stress and magnetic permeability that has been converted into data in advance, Stress measurement area 26
The internal stress within is calculated and output. By moving the probe 22 along the surface of the subject 23 and measuring stress at a plurality of locations, the stress distribution of the subject 23 can be obtained.

次に励磁コイル28に通電して、被検体23の応力測定
領域26に起磁力を与える。応力測定領域26の被検体
23は該起磁力に基いて磁力線30を生ずるが、被検体
23の磁気特性2例えば初磁化率、最大磁化率は残留応
力による磁気ひずみ効果の影響を受け、残留磁束密度や
保磁力は該磁気ひずみ効果の影響を受けるだけでなく、
被検体内部の析出物や異相によって変化する。被検体の
材料としての機械的性質は、前記析出物や異相によって
変化するから、与えられた起磁力に基いて生ずる磁力線
の強さは、被検体の内部応力および機械的性質の変化に
ともなって変化する。前記磁力線30は、ピックアップ
コイル29により取りこまれ、磁束計21によりその値
が測定され、その値に基づいて、被検体の磁気特性を示
す値が求まる。求められた値に、先に測定された内部応
力の値に基いてあらかじめデータ化されている残留応力
(内部応力)による磁気ひずみ効果の影響の補正が行わ
れ、内部応力の影響が除外された、磁気特性の変化量が
得られる。この磁気特性は被検体の機械的性質と関連し
ているものであるから、あらかじめ、この磁気特性と機
械的性質の関係をデータ化しておくことにより、測定さ
れた磁気特性に基づいて被検体23の機械的性質が判定
される。
Next, the excitation coil 28 is energized to apply a magnetomotive force to the stress measurement region 26 of the subject 23 . The test object 23 in the stress measurement area 26 generates magnetic lines of force 30 based on the magnetomotive force, but the magnetic properties 2 of the test object 23, such as initial magnetic susceptibility and maximum magnetic susceptibility, are affected by the magnetostrictive effect due to residual stress, and the residual magnetic flux Density and coercive force are not only affected by the magnetostrictive effect, but also
It changes depending on precipitates and foreign phases inside the specimen. The mechanical properties of the material to be tested change depending on the precipitates and different phases, so the strength of the magnetic lines of force generated based on a given magnetomotive force changes with changes in the internal stress and mechanical properties of the test piece. Change. The magnetic lines of force 30 are taken in by the pickup coil 29, their values are measured by the magnetometer 21, and based on the values, values indicating the magnetic properties of the subject are determined. The obtained value was corrected for the influence of the magnetostrictive effect due to residual stress (internal stress), which had been converted into data based on the previously measured internal stress value, and the influence of internal stress was excluded. , the amount of change in magnetic properties can be obtained. Since this magnetic property is related to the mechanical property of the subject, by converting the relationship between the magnetic property and mechanical property into data in advance, the subject 23 can be identified based on the measured magnetic property. The mechanical properties of are determined.

第4図は、本発明に係る応力測定装置の他の実施例を示
す。図に示す実施例は、実機部材の磁気特性を測定する
ためのピックアップコイル31および励磁コイル24を
有する磁束計32をプローブ33の外部に配置したもの
である。プローブ33に磁束を生じさせるコイル36は
コの字型のプローブ33の脚部に巻装されており、該プ
ローブ33の中央部に、プローブ33の被検体に接する
面に垂直な中心線をもつセンター孔34が設けられてい
る。前記磁束計32は前記センター穴34の外側にピッ
クアップコイル31を位置させて該センター穴34と同
心状に設けられており、応力測定用領域26が発する磁
力線35を、前記センター穴34の外側のピックアップ
コイル31で取り込むことを可能にしたので、プローブ
33の小型化が可能である。
FIG. 4 shows another embodiment of the stress measuring device according to the present invention. In the embodiment shown in the figure, a magnetometer 32 having a pickup coil 31 and an excitation coil 24 for measuring the magnetic properties of an actual component is placed outside a probe 33. A coil 36 that generates magnetic flux in the probe 33 is wound around the legs of the U-shaped probe 33, and has a center line in the center of the probe 33 that is perpendicular to the surface of the probe 33 that contacts the subject. A center hole 34 is provided. The magnetometer 32 is provided concentrically with the center hole 34 with a pickup coil 31 located outside the center hole 34, and the magnetic flux meter 32 is arranged concentrically with the center hole 34, and directs the magnetic field lines 35 emitted by the stress measurement area 26 to the outside of the center hole 34. Since the pickup coil 31 can take in the probe 33, the probe 33 can be made smaller.

本実施例においては、被検体21の応力測定領域26か
らの磁力線35が、前記センター穴34を通して、ピッ
クアップコイル31に導入される。
In this embodiment, magnetic lines of force 35 from the stress measurement region 26 of the subject 21 are introduced into the pickup coil 31 through the center hole 34 .

また、プローブ33は、前記センター穴34の中心線の
周囲に回転可能に形成されており、該中心線の周囲に回
転させながら、複数位置で応力を測定してその値を比較
することにより、応力測定領域26内の応力の作用方向
も検出される。
Further, the probe 33 is formed to be rotatable around the center line of the center hole 34, and while rotating around the center line, the stress can be measured at multiple positions and the values compared. The direction of stress action within the stress measurement region 26 is also detected.

尚、第3図、第4図に示す実施例では、応力測定領域2
6からの磁力線検出のためにピックアップコイルを設け
ているが、この代りにホール素子を用いてもよい。
In addition, in the embodiment shown in FIGS. 3 and 4, the stress measurement area 2
Although a pickup coil is provided to detect lines of magnetic force from 6, a Hall element may be used instead.

第5図に応力測定用の回路構成の例を示す。図に示す回
路は、測定用プローブ(磁気ひずみ管)41および補償
用プローブ42、前記測定用プローブ41および補償用
プローブ42に接続されたダイオードを用いた整流回路
48、該整流回路48に測定回路43で接続された不平
衡電流測定用検流計44、前記整流回路48に接続され
た抵抗γ0.γ2.および可変抵抗γ1、前記測定用プ
ローブ41および補償用プローブ42に接続されたブリ
ッジ電流測定用検流計45、該検流計45および前記可
変抵抗γ、にスライダック47を介して接続された定電
圧装置46、を備え、該定電圧装置46には、50Hz
、100Vの電力が供給される。ここでいう測定用プロ
ーブ41は、第3図に示されるプローブ22(コイル2
5を含む)。
FIG. 5 shows an example of a circuit configuration for stress measurement. The circuit shown in the figure includes a measurement probe (magnetostrictive tube) 41, a compensation probe 42, a rectification circuit 48 using diodes connected to the measurement probe 41 and the compensation probe 42, and a measurement circuit connected to the rectification circuit 48. 43, a galvanometer 44 for measuring unbalanced current, and a resistor γ0 connected to the rectifier circuit 48. γ2. and a variable resistor γ1, a galvanometer 45 for bridge current measurement connected to the measurement probe 41 and the compensation probe 42, and a constant voltage connected to the galvanometer 45 and the variable resistor γ via a slide duck 47. device 46, the constant voltage device 46 has a 50Hz
, 100V power is supplied. The measurement probe 41 referred to here is the probe 22 (coil 2
(including 5).

第4図に示されるプローブ33(コイル36を含む)に
相当し、ストレステスタとも呼ばれる。
This corresponds to the probe 33 (including the coil 36) shown in FIG. 4, and is also called a stress tester.

測定用プローブ41は補償用プローブ42とともにブリ
ッジ回路を形成していて、このブリッジ回路に、補償用
プローブと測定用プローブとが検出する磁気の差、すな
わち内在する応力の差に基く不平衡電流が生じ、これが
、不平衡電流測定用検流計44により測定され、応力の
差が求まる。
The measurement probe 41 forms a bridge circuit together with the compensation probe 42, and an unbalanced current based on the difference in magnetism detected by the compensation probe and the measurement probe, that is, the difference in inherent stress, is generated in this bridge circuit. This is measured by the unbalanced current measuring galvanometer 44, and the difference in stress is determined.

被検体に対向する面52Aが全体として長方形をなすス
トレステスタ52によって生ずる磁束分布は、第6図に
示されるような形状となる。第6図は、応力測定時に被
検体表面に生ずる磁束分布を示し、使用するストレステ
スタ52の磁極間距離が5cnの場合のものである。図
において、ストレステスタ磁極の中間点(図の原点)か
ら5G離れた位置の磁束密度は磁極周囲に比べ、115
〜1/6に減少している。第6図は、被検体が無応力の
場合であるが、応力を受けている場合も磁場はひずむが
磁束分布の場所による強弱の割合は無応力の場合と大き
く変らない。したがって、ストレステスタ52で計測さ
れる応力は、第6図の原点、つまり、磁束計51が設置
され、ストレステスタ52の磁極中間となる点を中心と
して、半径50(磁極間の距離)以内の円内の被検体の
応力の平均を表している。このように本発明によれば。
The magnetic flux distribution generated by the stress tester 52, whose surface 52A facing the subject is rectangular as a whole, has a shape as shown in FIG. FIG. 6 shows the magnetic flux distribution generated on the surface of the test object during stress measurement, when the distance between the magnetic poles of the stress tester 52 used is 5 cn. In the figure, the magnetic flux density at a position 5G away from the midpoint of the stress tester magnetic pole (the origin of the figure) is 115
It has decreased to ~1/6. FIG. 6 shows a case where the object under test is stress-free, but even when it is under stress, the magnetic field is distorted, but the ratio of strength and weakness depending on the location of the magnetic flux distribution does not differ greatly from the case without stress. Therefore, the stress measured by the stress tester 52 is within a radius of 50 (distance between magnetic poles) centered on the origin in FIG. It represents the average stress of the subject within the circle. Thus according to the invention.

応力測定範囲を限定することができる。The stress measurement range can be limited.

第7図は、磁束計21により測定されたタービンロータ
内壁の磁気特性の一例である。第3図に示される励磁コ
イルにより、タービンロータ内壁に起磁力Hを与えてピ
ックアップコイルにより磁束密度Bを計測する。与える
起磁力の値を順次変えると、計測される値は、初期磁化
曲線61を経て、磁気ヒステリシスループ62を描く。
FIG. 7 is an example of the magnetic characteristics of the turbine rotor inner wall measured by the magnetometer 21. The excitation coil shown in FIG. 3 applies a magnetomotive force H to the inner wall of the turbine rotor, and the pickup coil measures the magnetic flux density B. When the value of the applied magnetomotive force is sequentially changed, the measured value passes through an initial magnetization curve 61 and draws a magnetic hysteresis loop 62.

ここでロータ内壁に残留応力が存在すると、磁場がひず
み、いわゆる磁気ひずみ効果によって、応力がない場合
と比較して、初磁化率63や最大磁化率64が変化する
。また、ロータ内部の析出物や、異相によって変化する
残留磁束密度65.保磁力66も磁気ひずみ効果によっ
て影響を受ける。
If residual stress exists on the inner wall of the rotor, the magnetic field is distorted, and due to the so-called magnetostriction effect, the initial magnetic susceptibility 63 and the maximum magnetic susceptibility 64 change compared to the case where there is no stress. In addition, residual magnetic flux density 65. Coercive force 66 is also affected by magnetostrictive effects.

第8図は、タービンロータ1の中心孔内壁の軸方向複数
位置において、応力測定装置3で応力と磁気特性を求め
て、横軸に軸方向測定位置、縦軸に出力値をとって描い
た、応力分布71.保磁力分布72及び残留磁束密度分
布73を示す図である。タービンロータと同一材料の未
使用材を用いて、内部応力の変化に伴う磁気特性値の変
化量を求めておけば、磁気ひずみ効果を除外した、ロー
タ内部の材質変化に伴って変化した保磁力分布や、残留
磁束密度分布が求められる。
In Figure 8, the stress and magnetic characteristics were determined using the stress measuring device 3 at multiple axial positions on the inner wall of the center hole of the turbine rotor 1, and the horizontal axis represents the axial measurement positions and the vertical axis represents the output value. , stress distribution 71. 7 is a diagram showing a coercive force distribution 72 and a residual magnetic flux density distribution 73. FIG. If you use an unused material of the same material as the turbine rotor to determine the amount of change in magnetic property values due to changes in internal stress, you can calculate the coercive force that has changed due to changes in the material inside the rotor, excluding the magnetostrictive effect. distribution and residual magnetic flux density distribution.

第9図は、原子炉圧力容器11の内壁に局在する応力分
布81を、第2図に示す装置により、補償用プローブに
無負荷の試料を装着して求めたもので、横軸に原子炉圧
力容器11の軸方向位置を、縦軸に計測された値をとっ
て描いである。また、応力測定装置3に備えられた磁束
計を用い、複数の場所で励磁・計測を行うことで、保磁
力分布83、残留磁束密度分布84が求められる。さら
に、第10図のごとく、原子炉稼動時は、原子炉圧力容
器蓋91が、原子炉圧力容器11の上部に装着されるの
で、原子炉圧力容器用蓋91が装置される前後の軸応力
τe、半径方向応力τ、及び円周応力で、の増加分のベ
クトル和において、ストレステスタの測定方向の成分を
、第9図の応力分布81に加算すると、応力分布の補正
値85が求まり、原子炉稼動開始(低温)状態時の応力
分布推定も可能である。
FIG. 9 shows the stress distribution 81 localized on the inner wall of the reactor pressure vessel 11, which was obtained using the device shown in FIG. 2 by attaching an unloaded sample to the compensation probe. The axial position of the reactor pressure vessel 11 is plotted with measured values on the vertical axis. In addition, the coercive force distribution 83 and the residual magnetic flux density distribution 84 are determined by excitation and measurement at a plurality of locations using a magnetometer provided in the stress measuring device 3. Furthermore, as shown in FIG. 10, when the reactor is operating, the reactor pressure vessel lid 91 is attached to the upper part of the reactor pressure vessel 11, so the axial stress before and after the reactor pressure vessel lid 91 is installed is In the vector sum of the increments of τe, radial stress τ, and circumferential stress, if the component in the measurement direction of the stress tester is added to the stress distribution 81 in FIG. 9, the stress distribution correction value 85 is found, It is also possible to estimate the stress distribution at the start of reactor operation (low temperature).

第11図は、第8図、第9図に示した測定値の表示方法
の一例である。第1図に示したデータ変換装置7と、演
算制御器8とが、コンピュータ100に接続され、該コ
ンピュータ100は表示手段であるデイスプレー101
を備えている。デイスプレー101の表示画面下部に被
検体の測定位置を表わす断面図102が表示され、その
上方に、測定個所の被検体軸方向位置を表すX軸が、前
記断面図の軸線と平行に表示されている。該X軸に垂直
に測定された出力値を表すY軸が設定され、前記断面図
の表示位置に対応したX軸上に、測定された応力分布7
1や保磁力分布72が描かれる。さらに、コンピュータ
100にX−Yプロッタ105が接続され、デイスプレ
ー101の表示画面に描かれた図が、X−Yプロッタ1
05によりハードコピーとして出力される。このように
本実施例では、応力測定装置で測定した応力分布や磁気
特性分布が、被検体の部位と対応させながら可視化され
るという効果がある。
FIG. 11 is an example of a method of displaying the measured values shown in FIGS. 8 and 9. The data conversion device 7 and the arithmetic controller 8 shown in FIG. 1 are connected to a computer 100, which has a display 101 as a display means.
It is equipped with A sectional view 102 representing the measurement position of the object is displayed at the bottom of the display screen of the display 101, and above it, an X-axis representing the position of the measurement point in the axial direction of the object is displayed parallel to the axis of the sectional view. ing. A Y-axis representing the output value measured perpendicular to the X-axis is set, and the measured stress distribution 7 is placed on the X-axis corresponding to the display position of the cross-sectional view.
1 and coercive force distribution 72 are drawn. Furthermore, an X-Y plotter 105 is connected to the computer 100, and the diagram drawn on the display screen of the display 101 is displayed on the X-Y plotter 105.
05, it is output as a hard copy. In this way, this embodiment has the effect that the stress distribution and magnetic property distribution measured by the stress measuring device are visualized in correspondence with the parts of the subject.

第12図は、応力測定手段にバルクハウゼンノイズ測定
用検出コイルを装着した実施例を示す。
FIG. 12 shows an embodiment in which a detection coil for Barkhausen noise measurement is attached to the stress measurement means.

バルクハウゼンノイズは、応力(載荷応力+残留応力)
と材料のミクロ組織に密接な関係があり、応力がわかれ
ばミクロ組織の変化を、バルクハウゼンノイズにより横
比できる。
Barkhausen noise is stress (loaded stress + residual stress)
There is a close relationship between the stress and the microstructure of the material, and if the stress is known, changes in the microstructure can be horizontally compared using Barkhausen noise.

本実施例の装置は、ストレステスタ120の磁極の中心
にセンサ100を配置し、ストレステスタ120の外部
にセンサ100に接続された計、■1装置本体104を
備えている。ストレステスタ120および付属するブリ
ッジ回路や演算装置等は、前記第3〜5図の実施例と同
一なので、図示、および説明を省略する。センサ100
は、ヨーク101に励磁コイル102を巻いた励磁部と
、高透磁率材料に巻かれた検出コイル103とを備えて
いる。また、センサ100は、計測装置本体104と信
号ケーブル105で接続され、計測装置本体104は、
センサ100の入力側に接続された発振器106と、セ
ンサ100の出方側に接続された帯域フィルタ107と
、該帯域フィルタ107に整流器108を介して接続さ
れた表示器109とを備えている。
The device of this embodiment has a sensor 100 arranged at the center of the magnetic pole of a stress tester 120, and a device body 104 connected to the sensor 100 outside the stress tester 120. The stress tester 120 and the attached bridge circuit, arithmetic unit, etc. are the same as those in the embodiments shown in FIGS. 3 to 5, so illustration and description thereof will be omitted. sensor 100
includes an excitation section in which an excitation coil 102 is wound around a yoke 101, and a detection coil 103 wound in a high magnetic permeability material. Further, the sensor 100 is connected to the measuring device main body 104 by a signal cable 105, and the measuring device main body 104
It includes an oscillator 106 connected to the input side of the sensor 100, a bandpass filter 107 connected to the output side of the sensor 100, and a display 109 connected to the bandpass filter 107 via a rectifier 108.

発振器106は、正弦波または三角波の低周波(数七〜
数十Hz)を発振し、これが電力増幅されてセンサ10
0の励磁コイル102に供給される。
The oscillator 106 generates a low frequency sine wave or triangular wave (several 7 to
oscillates at a frequency of several tens of Hz), which is power amplified and sent to the sensor 10.
0 to the excitation coil 102.

検出コイル103で受信された被検体110のバルクハ
ウゼンノイズは帯域フィルタ107を通り、整流されて
表示器109に表示される。受信されたバルクハウゼン
ノイズの原波形からは、その最大振幅、平均振幅、パル
ス波高分析2周波数スペクトルなどのパラメータが抽出
される。第13図は、ミクロ組織パラメータの代表例と
して、被検体の硬さと、バルクハウゼンノイズの関係を
示す。
Barkhausen noise from the subject 110 received by the detection coil 103 passes through the bandpass filter 107, is rectified, and is displayed on the display 109. Parameters such as the maximum amplitude, average amplitude, and pulse height analysis two-frequency spectrum are extracted from the original waveform of the received Barkhausen noise. FIG. 13 shows the relationship between the hardness of the object and Barkhausen noise as a representative example of microstructural parameters.

第14図に、応力測定手段に渦電流測定用検出コイルを
設けた実施例を示す。本実施例においても、ストレステ
スタは第3図〜第5図に述べたものと同一であるので、
説明および図示は省略する。
FIG. 14 shows an embodiment in which the stress measuring means is provided with a detection coil for measuring eddy current. In this embodiment as well, the stress tester is the same as that described in FIGS. 3 to 5, so
Description and illustration will be omitted.

図において、ストレステスタの磁極間の中心に、磁化コ
イル111が、その中心線を被検体表面に垂直になる方
向にして配置され、該磁化コイル111と同心状に、検
出コイル112が配置されている。磁化コイル111に
一定振幅の交流電圧を印加して被検体113に磁界11
4を作用させると、該被検体113に渦電流115が生
ずる。
In the figure, a magnetizing coil 111 is placed at the center between the magnetic poles of the stress tester with its center line perpendicular to the surface of the test object, and a detection coil 112 is placed concentrically with the magnetizing coil 111. There is. An alternating current voltage of a constant amplitude is applied to the magnetizing coil 111 to apply a magnetic field 11 to the subject 113.
4, an eddy current 115 is generated in the subject 113.

この渦電流115により検出コイル112に誘起される
電圧が、検出コイル112により検出される。この電圧
は、第15図に示されるように、被検体113の初透磁
率と比例関係にあるから、検出コイル112で検出され
る電圧指令値から、初透磁率が求められる。得られた初
透磁率をストレステスタで測定した内部応力で補正し、
被検体と同一材料の基準検体を用いて、あらかじめ作成
されている初透磁率と機械的性質のデータにより、被検
体の機械的性質が判定される。
A voltage induced in the detection coil 112 by this eddy current 115 is detected by the detection coil 112 . As shown in FIG. 15, this voltage is in a proportional relationship with the initial magnetic permeability of the subject 113, so the initial magnetic permeability can be determined from the voltage command value detected by the detection coil 112. The obtained initial magnetic permeability is corrected by the internal stress measured with a stress tester,
Using a reference specimen made of the same material as the specimen, the mechanical properties of the specimen are determined based on the initial magnetic permeability and mechanical property data created in advance.

また、被検体113に小量の塑性変形を加えることが許
容される場合、上述の磁化コイル111と検出コイルの
中心線上に、前記両コイル内を通って上下動可能な圧子
116を備えておき、被検体の初透磁率が測定された後
、圧子116を、例えば油圧により押しさげて被検体表
面に圧痕を形成させる。その後、再び圧子116を上昇
させた後、同様の手順で被検体の初透磁率を測定する。
In addition, if it is permissible to apply a small amount of plastic deformation to the subject 113, an indenter 116 that can move up and down through the inside of both coils is provided on the center line of the magnetization coil 111 and the detection coil. After the initial magnetic permeability of the subject is measured, the indenter 116 is pressed down, for example, by hydraulic pressure to form an indentation on the surface of the subject. Thereafter, the indenter 116 is raised again, and the initial magnetic permeability of the subject is measured in the same manner.

このようにして測定された初透磁率の変化量と硬度の間
には、第16図に示される関係がある。つまり上記の方
法で初透磁率の変化量を求めることにより、被測定体1
13の硬度を知ることができる。第16図に示すグラフ
は、あらかじめ被検体と同一組成成分、同一処理の材料
について求めておけばよい。内部応力測定と渦電流測定
が被検体の同一場所について行われるから、同様にして
、被検体の引張り強さと内部応力の関係を調べることも
できる。
There is a relationship shown in FIG. 16 between the amount of change in the initial magnetic permeability measured in this way and the hardness. In other words, by determining the amount of change in initial magnetic permeability using the above method,
You can know the hardness of 13. The graph shown in FIG. 16 may be obtained in advance for materials having the same composition and the same treatment as the subject. Since internal stress measurement and eddy current measurement are performed at the same location on the test object, the relationship between the tensile strength and internal stress of the test object can also be investigated in the same way.

また、第3図に示す実施例において、磁束計(ピックア
ップコイルを含む)−の代りに、超電導コイルを励磁コ
イルとし、超電導ピックアップコイルを配置した超電導
量子干渉素子磁気センサを設けても、第3図に示す実施
例と同様の効果が得られる。
Furthermore, in the embodiment shown in FIG. 3, a superconducting quantum interference element magnetic sensor in which a superconducting coil is used as an excitation coil and a superconducting pickup coil is disposed may be provided instead of the magnetometer (including a pickup coil). The same effects as the embodiment shown in the figure can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、被測定体の応力測定領域を限定し、同
一領域からの他の磁気特性値や電気的特性値を検出する
ことができるので、発電機のタービンロータの孔内面や
原子力圧力容器内壁等の内部応力が局在する機器におい
て、応力測定位置の上述したその他の特性値をIn−8
ituで計測できるという効果がある。
According to the present invention, it is possible to limit the stress measurement area of the object to be measured and to detect other magnetic property values and electrical property values from the same area. In equipment where internal stress is localized such as on the inner wall of a container, the other characteristic values mentioned above at the stress measurement position are
This has the effect of being able to be measured using itu.

また上記の応力と他特性のIn−8itu計算により、
被測定体の欠陥検査や強度評価の信頼性が高まるという
効果がある。
Also, according to the In-8 itu calculation of the stress and other properties mentioned above,
This has the effect of increasing the reliability of defect inspection and strength evaluation of the object to be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る非破壊検査装置の一実施例をター
ビンロータに適用した状態を示す側面図、第2図は本発
明に係る非破壊検査装置の一実施例を原子炉圧力容器に
適用した例を示す側面図、第3図は第1図、第2図に示
す応力測定装置の主要構成を示す断面図、第4図は第3
図の応力測定装置の他の例を示す断面図、第5図は本発
明に係る応力測定装置の回路構成例を示す回路図、第6
図は第3図又は第4図の応力測定装置により応力測定を
行うときの磁束分布の例を示す平面図0、第7図は被検
体の磁気特性を示す概念図、第8図、第9図は第3図又
は第4図の応力測定装置で計測された被検体の磁気特性
と応力の分布の例を示す概念図、第10図は被検体の応
力の変化を示す正面図、第11図は測定値の表示例を示
す斜視図、第12図は応力測定装置にバルクハウゼンノ
イズの検出コイルおよび励磁コイルを装着した実施例を
示す断面図、第13図はバルクハウゼンノイズの表示例
を示す概念図、第14図は渦電流検出コイルの構成を説
明する斜視図、第15図は初透磁率と渦電流検出コイル
に誘起される電圧の関係の一例を示すグラフで、第16
図は被検体の硬度と初透磁率の変化量との関係の一例を
示すグラフである。 3・・・磁束計を具備した応力測定手段(応力測定装置
)、21.32・・・磁束計、22.33・・・プロー
ブ、23・・・被検体、24・・・磁気回路、25・・
・コイル、27・・・内部応力、28.36・・・励磁
コイル、29.31・・・ピックアップコイル、30.
35・・・磁力線、41・・・測定用プローブ、42・
・・補償用プローブ、44・・・不平衡電流測定手段、
62・・・磁気ヒステリシスループ、71・・・応力分
布、72・・。 保磁力分布、73・・・残留磁束密度分布、85・・・
応力分布の補正値、100・・・コンピュータ、101
・・・表示手段、102・・・励磁コイル、103・・
・検出コイル、106・・・発振器、111・・・磁気
コイル、112・・・検出コイル。
FIG. 1 is a side view showing an embodiment of the non-destructive inspection device according to the present invention applied to a turbine rotor, and FIG. 2 is a side view showing an embodiment of the non-destructive inspection device according to the present invention applied to a reactor pressure vessel. A side view showing an applied example, FIG. 3 is a sectional view showing the main structure of the stress measuring device shown in FIGS. 1 and 2, and FIG.
5 is a sectional view showing another example of the stress measuring device shown in the figure; FIG. 5 is a circuit diagram showing an example of the circuit configuration of the stress measuring device according to the present invention;
0 is a plan view showing an example of magnetic flux distribution when stress is measured using the stress measuring device shown in FIG. 3 or 4. FIG. The figure is a conceptual diagram showing an example of the magnetic properties and stress distribution of the test object measured by the stress measuring device shown in Fig. 3 or 4. Fig. 10 is a front view showing changes in stress of the test object. The figure is a perspective view showing an example of displaying measured values, Fig. 12 is a sectional view showing an embodiment in which a detection coil and an excitation coil for Barkhausen noise are attached to a stress measuring device, and Fig. 13 is an example of displaying Barkhausen noise. FIG. 14 is a perspective view illustrating the configuration of the eddy current detection coil, FIG. 15 is a graph showing an example of the relationship between the initial permeability and the voltage induced in the eddy current detection coil, and FIG.
The figure is a graph showing an example of the relationship between the hardness of the object and the amount of change in initial magnetic permeability. 3... Stress measuring means (stress measuring device) equipped with a magnetometer, 21.32... Magnetometer, 22.33... Probe, 23... Subject, 24... Magnetic circuit, 25・・・
- Coil, 27... Internal stress, 28.36... Excitation coil, 29.31... Pick-up coil, 30.
35... Lines of magnetic force, 41... Measurement probe, 42.
... Compensation probe, 44... Unbalanced current measuring means,
62...Magnetic hysteresis loop, 71...Stress distribution, 72... Coercive force distribution, 73...Residual magnetic flux density distribution, 85...
Stress distribution correction value, 100...computer, 101
...Display means, 102... Excitation coil, 103...
- Detection coil, 106... Oscillator, 111... Magnetic coil, 112... Detection coil.

Claims (1)

【特許請求の範囲】 1、被検体の内部応力を磁気を用いて検知する応力測定
手段を備えた非破壊検査装置において、前記応力測定手
段に前記被検体固有の磁気特性およびその変化を測定す
る磁束計を具備したことを特徴とする非破壊検査装置。 2、被検体に接触し、該被検体の内部応力を検知する応
力測定手段と、該応力測定手段と同心状に設けられ前記
被検体に接触して該被検体固有の磁気特性及びその変化
を測定する磁束計と、を備えた非破壊検査装置。 3、被検体に接触し、該被検体の内部応力を検知する応
力測定手段と、該応力測定手段と前記被検体との間に設
けられ前記被検体に接触して該被検体固有の磁気特性及
びその変化を測定する磁束計と、を備えた非破壊検査装
置。 4、被検体に接触して該被検体固有の磁気特性及びその
変化を測定する磁束計と、該磁束計と前記被検体との間
に設けられ前記被検体に接触して該被検体の内部応力を
検知する応力測定手段と、を備えた非破壊検査装置。 5、応力測定手段が、高透磁率材料または軟磁性材をコ
アとし励磁用のコイルを有して被検体に接触する測定用
プローブと、前記測定用プローブと同一仕様の補償用プ
ローブと、前記測定用プローブと補償用プローブとを含
んで構成されるブリッジ回路と、該ブリッジ回路の不平
衡電流値を測定する不平衡電流測定手段と、測定された
不平衡電流値に基づいて前記被検体の内部応力を演算す
る演算手段と、を備えていることを特徴とする請求項2
乃至4に記載の非破壊検査装置。 6、プローブがコの字型に形成され、該コの字型の両端
部が被検体に接触する磁極であることを特徴とする請求
項5に記載の非破壊検査装置。 7、演算手段から出力される内部応力値、被検体の保磁
力及び残留磁束密度を、被検体の測定位置を一方の座標
軸にとってグラフ化するコンピュータと、該コンピュー
タに接続されて前記グラフを表示する表示手段と、を備
えていることを特徴とする請求項5または6に記載の非
破壊検査装置。 8、磁極間の中心に磁束計が配置されていることを特徴
とする請求項6に記載の非破壊検査装置。 9、測定プローブの被検体との接触面が、該接触面内で
、前記接触面に垂直な測定プローブ中心線を軸として回
転可能であることを特徴とする請求項5、6及び8に記
載の非破壊検査装置。 10、被検体が、化学プラント、火力発電プラント、原
子力プラントのうちのいずれかの機器材料及び実機部材
であることを特徴とする請求項1乃至9に記載の非破壊
検査装置。 11、被検体に接触し、該被検体の内部応力を検知する
応力測定手段と、該応力測定手段と同心状に設けられ前
記被検体固有の渦電流を測定する磁化コイル及び検出コ
イルと、を備えた非破壊検査装置。 12、被検体に接触し、該被検体の内部応力を検知する
応力測定手段と、該応力測定手段と前記被検体との間に
設けられ前記被検体に接触して該被検体固有のバルクハ
ウゼンノイズを測定する励磁コイル及び検出コイルと、
該励磁コイルに低周波電圧を供給する発振器と、を備え
た非破壊検査装置。 13、磁束計が、被検体に起磁力を与える励磁手段と、
与えられた起磁力によって前記被検体から誘起される磁
束を検知するホール素子と、を備えていることを特徴と
する請求項1乃至10に記載の非破壊検査装置。 14、磁束計が、被検体に起磁力を与える超電導コイル
と、与えられた起磁力によって前記被検体から誘起され
る磁束を検知する超電導ピックアップコイルと、を備え
ていることを特徴とする請求項1乃至10に記載の非破
壊検査装置。 15、被検体に順次異なる値の起磁力を与え、該起磁力
によって被検体から誘起される磁力線を検知して磁気ヒ
ステテリシスカーブを求め、該磁気ヒステテリシスカー
ブに基づいて前記被検体の磁気特性を求め、得られた磁
気特性に基づいて前記被検体の機械的性質を判定する非
破壊検査方法。 16、内部応力が被検体の磁気特性に及ぼす影響を予め
データ化しておき、被検体と測定プローブを通る閉じた
磁気回路と、基準検体と補償プローブを通る磁気回路と
をを形成し、両磁気回路の磁気抵抗の差に基づいて被検
体の内部応力を検知する手順と、該被検体に順次異なる
値の起磁力を与え、該起磁力によって被検体から誘起さ
れる磁力線を検知して磁気ヒステテリシスカーブを求め
、該磁気ヒステテリシスカーブに基づいて前記被検体の
磁気特性を得る手順と、先の手順によって得られた内部
応力を用いて前記磁気特性を補正し、補正された磁気特
性に基づいて前記被検体の機械的性質を判定する非破壊
検査方法。
[Scope of Claims] 1. In a non-destructive testing apparatus equipped with a stress measuring means for detecting internal stress of a subject using magnetism, the stress measuring means measures magnetic properties specific to the subject and changes thereof. A non-destructive testing device characterized by being equipped with a magnetometer. 2. A stress measuring means that comes into contact with the subject and detects the internal stress of the subject, and a stress measuring means that is provided concentrically with the stress measuring means and that comes into contact with the subject and measures the magnetic properties specific to the subject and changes thereof. A non-destructive testing device equipped with a magnetometer for measurement. 3. Stress measuring means that comes into contact with the subject and detects the internal stress of the subject, and a stress measuring means that is provided between the stress measuring means and the subject and that comes into contact with the subject and measures the unique magnetic properties of the subject. and a magnetometer that measures the change thereof. 4. A magnetometer that comes into contact with the object to measure the magnetic properties and changes thereof unique to the object; A non-destructive testing device equipped with a stress measuring means for detecting stress. 5. The stress measurement means includes a measurement probe that has a core made of a high magnetic permeability material or a soft magnetic material and has an excitation coil and comes into contact with the test object, a compensation probe that has the same specifications as the measurement probe, and the a bridge circuit including a measurement probe and a compensation probe; unbalanced current measuring means for measuring an unbalanced current value of the bridge circuit; Claim 2, further comprising: calculation means for calculating internal stress.
5. The non-destructive testing device according to 4. 6. The nondestructive testing device according to claim 5, wherein the probe is formed in a U-shape, and both ends of the U-shape are magnetic poles that contact the subject. 7. A computer that graphs the internal stress value, coercive force and residual magnetic flux density of the subject outputted from the calculation means, with the measurement position of the subject as one coordinate axis, and a computer that is connected to the computer and displays the graph. 7. The non-destructive testing apparatus according to claim 5, further comprising a display means. 8. The non-destructive testing device according to claim 6, characterized in that a magnetometer is disposed at the center between the magnetic poles. 9. Claims 5, 6, and 8, characterized in that the contact surface of the measurement probe with the subject is rotatable within the contact surface about a center line of the measurement probe perpendicular to the contact surface. non-destructive testing equipment. 10. The non-destructive inspection apparatus according to any one of claims 1 to 9, wherein the object to be inspected is an equipment material or an actual machine member of any one of a chemical plant, a thermal power plant, and a nuclear power plant. 11. A stress measuring means that contacts the subject and detects the internal stress of the subject, and a magnetization coil and a detection coil that are provided concentrically with the stress measuring means and measure eddy currents specific to the subject. Equipped with non-destructive testing equipment. 12. Stress measuring means that comes into contact with the subject and detects the internal stress of the subject, and a Barkhausen device that is provided between the stress measuring means and the subject and that comes into contact with the subject and is unique to the subject. an excitation coil and a detection coil for measuring noise;
A non-destructive testing device comprising: an oscillator that supplies a low frequency voltage to the excitation coil. 13. Excitation means in which the magnetometer applies magnetomotive force to the subject;
11. The nondestructive testing apparatus according to claim 1, further comprising a Hall element that detects magnetic flux induced from the object by an applied magnetomotive force. 14. Claim characterized in that the magnetometer includes a superconducting coil that applies magnetomotive force to the subject, and a superconducting pickup coil that detects magnetic flux induced from the subject by the applied magnetomotive force. 11. The non-destructive testing device according to items 1 to 10. 15. Sequentially apply different values of magnetomotive force to the test object, detect magnetic lines of force induced from the test object by the magnetomotive force to obtain a magnetic hysteresis curve, and determine the magnetic properties of the test object based on the magnetic hysteresis curve. A non-destructive testing method for determining the mechanical properties of the object based on the obtained magnetic properties. 16. The influence of internal stress on the magnetic properties of the specimen is converted into data in advance, and a closed magnetic circuit passing through the specimen and the measurement probe, and a magnetic circuit passing through the reference specimen and the compensation probe are formed, and both magnetic There is a procedure for detecting the internal stress of a test object based on the difference in magnetic resistance of the circuit, and a magnetic hysteresis method by sequentially applying different values of magnetomotive force to the test object and detecting the lines of magnetic force induced from the test object by the magnetomotive force. a step of obtaining a hysteresis curve and obtaining the magnetic properties of the object based on the magnetic hysteresis curve; correcting the magnetic properties using the internal stress obtained in the previous step; and correcting the magnetic properties based on the corrected magnetic properties. A non-destructive testing method for determining the mechanical properties of the object.
JP1083017A 1989-03-31 1989-03-31 Non-destructive inspection equipment Expired - Lifetime JP2766929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1083017A JP2766929B2 (en) 1989-03-31 1989-03-31 Non-destructive inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1083017A JP2766929B2 (en) 1989-03-31 1989-03-31 Non-destructive inspection equipment

Publications (2)

Publication Number Publication Date
JPH02262026A true JPH02262026A (en) 1990-10-24
JP2766929B2 JP2766929B2 (en) 1998-06-18

Family

ID=13790475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1083017A Expired - Lifetime JP2766929B2 (en) 1989-03-31 1989-03-31 Non-destructive inspection equipment

Country Status (1)

Country Link
JP (1) JP2766929B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5771082A (en) * 1991-10-11 1998-06-23 Thomson-Lcd Active matrix display utilizing an embedded ground plane
US5828211A (en) * 1993-05-21 1998-10-27 Aea Technology Plc Determining stress in ferromagnetic materials from measurements of magnetic anisotropy and magnetic permeability
JPH10332641A (en) * 1997-06-05 1998-12-18 Shimizu Corp Method for determining plasticization of steel material
JP2009507220A (en) * 2005-09-05 2009-02-19 スカニア シーブイ アクチボラグ(パブル) Method of processing cast iron components based on hardness estimation by magnetic Barkhausen noise
JP2010230351A (en) * 2009-03-26 2010-10-14 Honda Motor Co Ltd Work hardness measuring instrument
JP2012037412A (en) * 2010-08-09 2012-02-23 Ntn Corp Barkhausen noise inspection device
JP2018004483A (en) * 2016-07-04 2018-01-11 電子磁気工業株式会社 Magnetic characteristics measuring method, and magnetic characteristics measuring device
KR101999945B1 (en) * 2019-04-25 2019-07-15 주식회사 센서피아 Apparatus For Measuring Stess of ferromagnetic substance
JP2019211292A (en) * 2018-06-01 2019-12-12 富士電機株式会社 Device for evaluating surface stress and/or hardness of magnetic substance
EP3730775A1 (en) * 2019-04-24 2020-10-28 Delphi Technologies IP Limited Method for detection of mechanical stress in a common rail body
CN113008977A (en) * 2021-02-23 2021-06-22 中海石油技术检测有限公司 Distributed magnetic anomaly detection and identification method for steel pipeline
CN113534024A (en) * 2021-06-29 2021-10-22 浙江英洛华引力科技有限公司 Magnetic force detection device for magnet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246143B (en) * 2008-04-02 2010-11-10 吉林大学 Device for measuring ferromagnetic material internal stress by impulse electromagnetic field
EP3266975B1 (en) * 2016-07-07 2019-01-30 Sandvik Mining and Construction Oy Component for rock breaking system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221880A (en) * 1975-08-11 1977-02-18 Sumitomo Metal Ind Ltd Magnetic strain detecting apparatus
JPS61161659U (en) * 1985-03-28 1986-10-07
JPS61206865U (en) * 1985-06-17 1986-12-27
JPS62240851A (en) * 1986-04-14 1987-10-21 Toshiba Corp Method and apparatus for material testing
JPS6370158A (en) * 1986-09-12 1988-03-30 Nippon Kokan Kk <Nkk> Method and apparatus for measuring mechanical test value for material to be measured
JPS63279185A (en) * 1987-04-16 1988-11-16 シーメンス、アクチエンゲゼルシヤフト Method of detecting inherent stress of part

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221880A (en) * 1975-08-11 1977-02-18 Sumitomo Metal Ind Ltd Magnetic strain detecting apparatus
JPS61161659U (en) * 1985-03-28 1986-10-07
JPS61206865U (en) * 1985-06-17 1986-12-27
JPS62240851A (en) * 1986-04-14 1987-10-21 Toshiba Corp Method and apparatus for material testing
JPS6370158A (en) * 1986-09-12 1988-03-30 Nippon Kokan Kk <Nkk> Method and apparatus for measuring mechanical test value for material to be measured
JPS63279185A (en) * 1987-04-16 1988-11-16 シーメンス、アクチエンゲゼルシヤフト Method of detecting inherent stress of part

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5771082A (en) * 1991-10-11 1998-06-23 Thomson-Lcd Active matrix display utilizing an embedded ground plane
US5828211A (en) * 1993-05-21 1998-10-27 Aea Technology Plc Determining stress in ferromagnetic materials from measurements of magnetic anisotropy and magnetic permeability
JPH10332641A (en) * 1997-06-05 1998-12-18 Shimizu Corp Method for determining plasticization of steel material
JP2009507220A (en) * 2005-09-05 2009-02-19 スカニア シーブイ アクチボラグ(パブル) Method of processing cast iron components based on hardness estimation by magnetic Barkhausen noise
JP2010230351A (en) * 2009-03-26 2010-10-14 Honda Motor Co Ltd Work hardness measuring instrument
JP2012037412A (en) * 2010-08-09 2012-02-23 Ntn Corp Barkhausen noise inspection device
JP2018004483A (en) * 2016-07-04 2018-01-11 電子磁気工業株式会社 Magnetic characteristics measuring method, and magnetic characteristics measuring device
JP2019211292A (en) * 2018-06-01 2019-12-12 富士電機株式会社 Device for evaluating surface stress and/or hardness of magnetic substance
EP3730775A1 (en) * 2019-04-24 2020-10-28 Delphi Technologies IP Limited Method for detection of mechanical stress in a common rail body
KR101999945B1 (en) * 2019-04-25 2019-07-15 주식회사 센서피아 Apparatus For Measuring Stess of ferromagnetic substance
CN113008977A (en) * 2021-02-23 2021-06-22 中海石油技术检测有限公司 Distributed magnetic anomaly detection and identification method for steel pipeline
CN113008977B (en) * 2021-02-23 2022-06-28 中海石油技术检测有限公司 Distributed magnetic anomaly detection and identification method for steel pipeline
CN113534024A (en) * 2021-06-29 2021-10-22 浙江英洛华引力科技有限公司 Magnetic force detection device for magnet

Also Published As

Publication number Publication date
JP2766929B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
JP5850414B2 (en) Surface characteristic inspection apparatus and surface characteristic inspection method
US7696747B2 (en) Electromagnetic induction type inspection device and method
Park et al. Evaluation of pulsed eddy current response and detection of the thickness variation in the stainless steel
JP2766929B2 (en) Non-destructive inspection equipment
Ramos et al. Using the skin effect to estimate cracks depths in mettalic structures
JPS60152950A (en) Eddy current nondestructive testing method and device thereof
JPH01245149A (en) Deterioration inspection instrument for metallic material
Wei et al. A transducer made up of fluxgate sensors for testing wire rope defects
JP3910222B2 (en) Fatigue measuring device
Bernieri et al. Characterization of an eddy-current-based system for nondestructive testing
JPH03255380A (en) Apparatus for measuring magnetic permeability
JPS62273447A (en) Method and apparatus for measuring deterioration degree of material
JP2005127963A (en) Nondestructive inspection method and its apparatus
JPH01147360A (en) Method and device for detecting deterioration
Matsunaga et al. Application of a HTS coil with a magnetic sensor to nondestructive testing using a low-frequency magnetic field
JPH04218764A (en) Detecting device of deterioration and damage of metal material
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
JPH01269049A (en) Method of inspecting deterioration of metallic material
EP0650028A2 (en) Method and apparatus for measurement of thickness of specimens
JP2794623B2 (en) Method for evaluating the degree of fatigue damage of materials
Capova et al. Recent trends in electromagnetic non-destructive sensing
Vértesy et al. Nondestructive material evaluation by novel electromagnetic methods
Nagendran et al. Development of SQUID-based system for nondestructive evaluation
JPH01119756A (en) Inspecting apparatus for deterioration of metal material
Bernieri et al. Metrological characterization of an eddy-current-based system for non-destructive testing