JPS59112257A - Method and device for nondestructive inspection of ferromagnetic material - Google Patents

Method and device for nondestructive inspection of ferromagnetic material

Info

Publication number
JPS59112257A
JPS59112257A JP22175682A JP22175682A JPS59112257A JP S59112257 A JPS59112257 A JP S59112257A JP 22175682 A JP22175682 A JP 22175682A JP 22175682 A JP22175682 A JP 22175682A JP S59112257 A JPS59112257 A JP S59112257A
Authority
JP
Japan
Prior art keywords
stress
sensor
signal
high frequency
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22175682A
Other languages
Japanese (ja)
Inventor
Mamoru Shibata
守 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HATA GIKEN KK
Original Assignee
HATA GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HATA GIKEN KK filed Critical HATA GIKEN KK
Priority to JP22175682A priority Critical patent/JPS59112257A/en
Publication of JPS59112257A publication Critical patent/JPS59112257A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/725Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables by using magneto-acoustical effects or the Barkhausen effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/125Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02863Electric or magnetic parameters

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To inspect the stress or fatigue deformation of ferromagnetic material by utilizing the relation between the high frequency component of an electromagnetic wave generated in the process of magnetizing the ferromagnetic material and the high frequency component of an elastic wave, and the correlation with its stress, etc. CONSTITUTION:The magnetic circuit device is composed of a laminated iron core 2, exciting coil 3, and AC power source 4 opposite to the material 1 to be inspected. An inspecting device consists of a BN (Barkhausen noise) coil sensor 7 installed near the surface of the material 1 without contacting and an AE (acoustic emission) sensor 8 installed in contact, with the material 1. The BN coil sensor 7 outputs a signal having a voltage proportional to the magnetic flux density of the section of a detection coil and the AE sensor 8 is a piezoelectric element which measures the elastic wave. The measurement result applied to the detection of uniaxial stress in case of external stress is varied to an iron steel material having positive magneto-striction shows that the simultaneous measurement of the BN and AE signals provides the accurate estimation of a stress state.

Description

【発明の詳細な説明】 本発明は、電気機械、建築構造体等に用いられ′ている
鉄鋼材料をけじめとする強磁性材料の応力又は疲労変形
を非破壊に検査する方法犀び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for non-destructively testing stress or fatigue deformation of ferromagnetic materials such as steel materials used in electrical machines, building structures, etc.

従来この種の強磁性材料の応力状態の検査には、歪ゲー
ジ法%X線法、磁気特性法等の各種の方法が用いられて
いるが、これらの方法は、測定の際の簡易塵、再現性、
測定深度の制限等に欠点があった。つまり、歪ゲージ法
では、非接触測定ができず、さらにゲージ接着前の残留
応力の検出が不可能である。X線法では装置の簡易塵に
難点があるにかに、測定深度が被測定物表面から数十ミ
クロン(〜10”−5m)と制限される欠点がある。B
−H特性測定、保磁力測定等の磁気特性法では、グロー
ブと被測定材の微少な空隙の差で測定誤差を生じるので
再現性に問題がある。磁気特性法は、傷、ピンホール等
の構造体の巨視的欠陥の検出には有効であるが、疲労変
形の被害のような局所的ミクロな欠陥及び変化を検出す
るのに適してない。
Conventionally, various methods have been used to inspect the stress state of this type of ferromagnetic material, such as the strain gauge method, % X-ray method, and magnetic property method. Reproducibility,
There were drawbacks such as limitations on measurement depth. In other words, the strain gauge method does not allow non-contact measurement, and furthermore, it is impossible to detect residual stress before gluing. The X-ray method has the disadvantage of simple dust in the equipment, but also has the disadvantage that the measurement depth is limited to several tens of microns (~10"-5 m) from the surface of the object to be measured.B
- Magnetic property methods such as H property measurement and coercive force measurement have problems with reproducibility because measurement errors occur due to minute gaps between the glove and the material to be measured. Although magnetic property methods are effective in detecting macroscopic defects in structures such as scratches and pinholes, they are not suitable for detecting local microscopic defects and changes such as damage caused by fatigue deformation.

さらに、強磁性体材料の非破壊検査法として研究開発の
段階にあるバルクハウゼン・ノイズC以下BNと略す)
は、応力及び疲労変形の検出に有力である事が知られて
いる。しかし、この方法は、上記パラメーターの他に、
材料中のいくつかの微小構造の変化にも敏感であるとい
う難点がある。
Furthermore, Barkhausen noise C (hereinafter abbreviated as BN) is currently in the research and development stage as a non-destructive testing method for ferromagnetic materials.
is known to be effective in detecting stress and fatigue deformation. However, in addition to the above parameters, this method also requires
It also has the disadvantage of being sensitive to some microstructural changes in the material.

この方法は、例えば、材料の化学組成、金属組織等の変
化に対して反応するため、機械、構造物等の検査対象物
中でこれらの要因が変化すると、応力を一義的に決定す
る事が出来なくなる。また、最近BN信号−と付随して
発生する弾性波を非破壊検査法に利用する方法も注目さ
れはじめている。
This method responds to, for example, changes in the chemical composition and metallographic structure of the material, so if these factors change in the object to be inspected, such as a machine or structure, it is difficult to uniquely determine the stress. I can't do it. Recently, attention has also begun to be paid to a method of utilizing elastic waves generated in conjunction with the BN signal for non-destructive testing.

しかし、この方法は、応力の検出に際して引張応力と圧
縮応力の区別が困難であるという欠点があ″る。
However, this method has the disadvantage that it is difficult to distinguish between tensile stress and compressive stress when detecting stress.

本発明は、このような状況に鑑みて発明されたものであ
り、従来の検査方法の欠点を解決し、強磁性体材料の応
力又は疲労変形を検査することができるようKした強磁
性材料の非破壊検査方法及び装置を提供するものである
The present invention was invented in view of the above situation, and it solves the shortcomings of conventional inspection methods and provides a method for inspecting ferromagnetic materials for stress or fatigue deformation. The present invention provides a non-destructive testing method and device.

まず、本発明の原理について説明する。強磁性体の磁化
過程において、外部磁場がどの様にゆっくりと連続変化
しようと材料の磁束密度の変化に不連続成分が含まれる
事は、BN信号に高周波成分が含まれている事から立証
されている。通常。
First, the principle of the present invention will be explained. In the magnetization process of a ferromagnetic material, no matter how slowly and continuously the external magnetic field changes, the change in magnetic flux density of the material contains a discontinuous component, which is proven from the fact that the BN signal contains a high frequency component. ing. usually.

強磁性体材料は異なる自発磁化ベクトルを持っ磁区と呼
ばれる領域に分割され−ており、磁区の境界面は磁壁と
呼ばれている。外部磁場に対しての安定磁区が成長する
過程すなわち磁化過程で、磁壁が不可逆かつ不連続に移
動し、高周波のBN信号が発生する。との磁壁の不連続
移動に材料中の応力状態及び疲労変形、が影響を与える
事は知られている。本発明の原理は、磁壁の不連続移動
と前記のパラメーターの相関現象をオリ用する事にある
A ferromagnetic material is divided into regions called magnetic domains that have different spontaneous magnetization vectors, and the boundaries between the magnetic domains are called domain walls. In the process of growing a stable magnetic domain against an external magnetic field, that is, in the magnetization process, the domain wall moves irreversibly and discontinuously, and a high-frequency BN signal is generated. It is known that the stress state and fatigue deformation in the material affect the discontinuous movement of the domain wall. The principle of the present invention is to make use of the discontinuous movement of the domain wall and the correlation phenomenon between the parameters described above.

また、外部磁場強度が十分に高いと別な磁化機構である
自発磁化ベクトルの回転による磁束密度の不連続成分の
発生が見られる場合がある。この様に磁壁の不連続移動
以外でも磁束密度の変化に不連続な成分を発生する磁化
廻程があり、本発明は、強磁性体の磁束密度変化のあら
ゆる不連続成分の発生にもとすく高周波電磁波及び弾性
波の測定を利用している。
Furthermore, if the external magnetic field strength is sufficiently high, a discontinuous component of the magnetic flux density may occur due to the rotation of the spontaneous magnetization vector, which is another magnetization mechanism. In this way, there is a magnetization cycle that generates a discontinuous component in the change in magnetic flux density other than the discontinuous movement of the domain wall, and the present invention can easily prevent the generation of any discontinuous component in the change in magnetic flux density of a ferromagnetic material. It uses measurements of high-frequency electromagnetic waves and elastic waves.

磁壁の不連続移動、自発磁化ベクトルの不連続回転等の
検出は、次の2つの物理変換方法によって測定可能であ
る。第1の方法は、コイルによる電磁誘導を利用した電
磁波の高周波成分の検出である。これは、通常のBN信
号の測定方法と同一である。第2の方法は、磁歪(磁気
ひずみとも呼ばれている)の存在を通じて発生する弾性
波の高周波成分を圧電素子センサ等を用いて測定する方
法である。磁壁の移動が局所的な磁歪の発生と解消を伴
ない、弾性波を発生する。この方法はアコ−ステイク・
エミッション(以下AEと略す)と呼ばれている。
Detection of discontinuous movement of domain walls, discontinuous rotation of spontaneous magnetization vectors, etc. can be measured by the following two physical conversion methods. The first method is to detect high frequency components of electromagnetic waves using electromagnetic induction by a coil. This is the same as the normal BN signal measurement method. The second method is to measure the high frequency components of elastic waves generated through the presence of magnetostriction (also called magnetostriction) using a piezoelectric element sensor or the like. The movement of domain walls accompanies the generation and cancellation of local magnetostriction, generating elastic waves. This method is suitable for acoustic take.
It is called emission (hereinafter abbreviated as AE).

本発明は、以上の原理、すなわち強磁性材料の磁化過程
で発生する電磁波の高周波成分と弾性波の高周波成分と
の関係が、その応力又は疲労変形と相関関係を有するこ
とを利用したものであり、従って、本発明は次のように
構成される。
The present invention utilizes the above principle, that is, the relationship between the high frequency component of electromagnetic waves and the high frequency component of elastic waves generated during the magnetization process of a ferromagnetic material has a correlation with its stress or fatigue deformation. , Therefore, the present invention is configured as follows.

本発明に係る強磁性材料の非破壊検査方法は、強磁性材
料の磁化過程で発生する電磁波及び弾性波の高周波成分
を検出し、これらの高周波成分を解析することにより、
強磁性材料の応力又は、疲労変形を検査することを特徴
とする。
The nondestructive testing method for ferromagnetic materials according to the present invention detects high frequency components of electromagnetic waves and elastic waves generated during the magnetization process of ferromagnetic materials, and analyzes these high frequency components.
It is characterized by inspecting stress or fatigue deformation of ferromagnetic materials.

さらに、本発明に係る強磁性材料の非破壊゛検査装置は
、上記の方法を実施する装置であり、被検査材の強磁性
材料の一部に交番磁界を印加する磁気回路装置と;前記
強磁性材料の磁化過程で発生する電磁波及び弾性波を検
出する検出装置と:該検出装置の出力から高周波成分を
取り出し、その成分特性を解析する信号処理装置と;を
備え、強磁性材料の応力又は疲労i形を検査することを
特徴とする。
Furthermore, the non-destructive inspection apparatus for ferromagnetic materials according to the present invention is an apparatus for carrying out the above method, and further includes: a magnetic circuit device that applies an alternating magnetic field to a part of the ferromagnetic material of the inspected material; A detection device that detects electromagnetic waves and elastic waves generated during the magnetization process of a magnetic material; and a signal processing device that extracts a high frequency component from the output of the detection device and analyzes the component characteristics; It is characterized by testing fatigue type I.

次に、本発明の実施例を図面に基づいて説明する。Next, embodiments of the present invention will be described based on the drawings.

第1図は本発明の一実施例に係る磁気回路装置と検出装
置の説明図である。この実施例は、被検査材1が厚板、
幅広、シート等の強磁性体構造物の場合を対象にしてい
る。
FIG. 1 is an explanatory diagram of a magnetic circuit device and a detection device according to an embodiment of the present invention. In this embodiment, the material to be inspected 1 is a thick plate.
This applies to wide ferromagnetic structures such as sheets.

磁気回路装置は、被検査材1に対向して設置されたコの
字状の積層鉄心2、この鉄心に巻回されり励磁コイル6
及びこの励磁コイルに励磁電流lを供給する交流電源4
から構成されており、被検査材1と共に図の破@5に示
す磁気回路を形成している。このときの外部磁場強度は
、励磁コイ、ル6の巻回数、某所電源4から供給される
励磁電流i、及び被検査材1と鉄心2との空隙dによっ
てほぼ決定され、その値は空隙に取付けられたガウスメ
ータのプローブ6によシ検出され、測定される。
The magnetic circuit device includes a U-shaped laminated iron core 2 installed facing the material to be inspected 1, and an excitation coil 6 wound around this iron core.
and an AC power supply 4 that supplies an excitation current l to this excitation coil.
Together with the material to be inspected 1, it forms a magnetic circuit shown at 5 in the figure. The external magnetic field strength at this time is approximately determined by the number of turns of the excitation coil and loop 6, the excitation current i supplied from a certain power source 4, and the gap d between the material to be inspected 1 and the iron core 2, and its value is determined by the gap. It is detected and measured by the attached Gaussmeter probe 6.

検出装置は、被検査材1の表面近傍に非接触に配置され
たBNコイルセンサ7及び被検査材1に接触設置された
AEセンサ8から構成される。BNコイルセンサ7は、
電磁波を測定するセンナであり、とのセンサからは検出
コイル断面の磁束密度に比例した電圧が信号として取り
出される。AEセンサ8け、弾性波を測定するセンサで
あり、圧電素子を用いている。被検査材1の磁気回路部
分で発生した弾性波が被検査材1を伝搬してAEセンサ
8に到達すると、このセンサにより変位又は速度に比例
した電圧が信号として取り出される。
The detection device includes a BN coil sensor 7 that is placed in the vicinity of the surface of the material to be inspected 1 in a non-contact manner, and an AE sensor 8 that is placed in contact with the material to be inspected 1 . The BN coil sensor 7 is
It is a sensor that measures electromagnetic waves, and a voltage proportional to the magnetic flux density in the cross section of the detection coil is extracted as a signal from the sensor. Eight AE sensors measure elastic waves and use piezoelectric elements. When the elastic waves generated in the magnetic circuit portion of the inspected material 1 propagate through the inspected material 1 and reach the AE sensor 8, this sensor extracts a voltage proportional to the displacement or speed as a signal.

第2図は、本発明の他の実施例に係る磁気回路装置と検
出装置の説明図である。この実施例は。
FIG. 2 is an explanatory diagram of a magnetic circuit device and a detection device according to another embodiment of the present invention. This example is.

被検査材1がワイヤー、棒1幅の狭いシート材等の強磁
性体構造物の場合を対象にしており、特にこの図では被
検査材として線材材料が図示されている。
The object is a case where the material to be inspected 1 is a ferromagnetic structure such as a wire or a sheet material with a narrow rod 1 width, and in particular, in this figure, a wire material is illustrated as the material to be inspected.

磁気回路装置は、第1図の実施例とは違って。The magnetic circuit arrangement differs from the embodiment of FIG.

環状ソレノイド9及び交流電源4から構成されている。It is composed of an annular solenoid 9 and an AC power source 4.

この環状ソレノイドの中心を被検査材1が貫通配置され
ている。そして、磁界強度測定は。
A material to be inspected 1 is disposed passing through the center of this annular solenoid. And magnetic field strength measurement.

ソレノイド9の長さ方向の中心に配置されたガウスメー
タのフロープロによυ検出され、測定される。
υ is detected and measured by a Gaussmeter flow pro placed at the center of the solenoid 9 in its length direction.

検出装置は、体積横細が可能な巻付は形のBNコイルセ
ンサ10及びAEセンサ8から構成されている。AEセ
ンサ8は、被検査材1の表面が四本半径をもっているの
で、ウェブガイド11を介して被検査材1に設置されて
いる。このように構成された検出装置からは、第1図の
実施例と同様に、電磁波と弾性波が取り出される。
The detection device is composed of a BN coil sensor 10 and an AE sensor 8, each having a winding shape capable of narrowing the volume horizontally. The AE sensor 8 is installed on the inspected material 1 via a web guide 11 because the surface of the inspected material 1 has four radii. As in the embodiment shown in FIG. 1, electromagnetic waves and elastic waves are extracted from the detection device configured in this manner.

第6図は1本発明の一実施例に係る信号処理装置のブロ
ック図である。
FIG. 6 is a block diagram of a signal processing device according to an embodiment of the present invention.

検出装置12(第1図及び第2図の符号7.8.10に
相当する)により得られた電磁性波及び弾性波に相当す
る電気信号は、前着増幅器及び主増幅器16で50〜1
00dB程度増幅される。信号の周波数はフィルタ14
で所定の周波数域にしぼられる。周波数の下限は数十キ
ロハルツ(〜104H2)で上限は数メガハルツ(〜’
IO’Hz)程度である。信号解析にはきだち、この高
周波帯にこのバンドパス・フィルタ14を用いて信号を
所定の周波数塘に設定する。この後の信号記録処理方法
として、6種類の方法が図示されている。第1の方法は
、フィルタ14を出た信号を実効値電圧計15を用いて
測定する方法であシ、第2の方法は、フィルタ14を出
た信号をスペクトル分析器16で周波数解析する方法で
ある。第6の方法は、フィルタ14の出力信号を包絡線
検波器、17を通し、オシロスコープ又は波形記憶装置
18を用いて包絡線信号のピーク値を読む方法である。
The electric signals corresponding to electromagnetic waves and elastic waves obtained by the detection device 12 (corresponding to the symbols 7.8.10 in FIGS. 1 and 2) are transmitted to the front amplifier and the main amplifier 16 at
It is amplified by about 00 dB. The frequency of the signal is determined by the filter 14.
is narrowed down to a predetermined frequency range. The lower limit of frequency is several tens of kilohartz (~104H2) and the upper limit is several megahartz (~'
IO'Hz). At the beginning of signal analysis, the bandpass filter 14 is used in this high frequency band to set the signal to a predetermined frequency. Six types of methods are illustrated as subsequent signal recording processing methods. The first method is to measure the signal output from the filter 14 using an effective value voltmeter 15, and the second method is to frequency-analyze the signal output from the filter 14 using a spectrum analyzer 16. It is. A sixth method is to pass the output signal of the filter 14 through an envelope detector 17 and read the peak value of the envelope signal using an oscilloscope or waveform storage device 18.

第4図は、正の磁歪を持つ鉄鋼材料に対して、外部応力
を変化させた場合の1軸応力の検出に本発明を適用して
測定した結果を示す線図で、BN信号の出力は破線で、
AE倍信号出力は実線で示されている。外部磁場は50
 Hz正弦波交流磁場(応力軸に平行で、200 エル
ステッドrms)が用いられ、それぞれの信号の実効値
電圧値の応力に対する変化が図示されている。f3N信
号は、引張応力6Kp/、2以上で応力依存性が極めて
小さくなっている。一方、AE倍信号引張、圧縮の両方
の応力状態で、無応力状態に較べて単調減少している。
Fig. 4 is a diagram showing the results of measurement by applying the present invention to detect uniaxial stress when changing external stress on a steel material with positive magnetostriction, and the output of the BN signal is With the dashed line,
The AE multiplied signal output is shown as a solid line. The external magnetic field is 50
A Hz sinusoidal alternating magnetic field (parallel to the stress axis, 200 oersteds rms) is used and the variation of the rms voltage value of each signal with respect to stress is illustrated. The stress dependence of the f3N signal becomes extremely small when the tensile stress is 6 Kp/2 or more. On the other hand, the AE multiplied signal monotonically decreases in both tensile and compressive stress states compared to the non-stress state.

明らかに、BN信号又はAE倍信号単独の測定では、応
力状態は一義的に決定できない。本発明によるBN信号
及びAE倍信号1司時測定は、この様な応力状態の正確
な評価を可能にしている。
Obviously, the stress state cannot be uniquely determined by measuring the BN signal or the AE multiplied signal alone. The simultaneous measurement of the BN signal and the AE multiplied signal according to the present invention makes it possible to accurately evaluate such a stress state.

上述の実施例では、BN信号又はAE倍信号単独測定に
よる非破壊検査法の欠点が、これら両信号の同時測定に
より、十分に補完されており、強磁性体構造物の正確な
応力評価を可能にしている。
In the above-mentioned example, the shortcomings of the non-destructive inspection method based on the single measurement of the BN signal or the AE multiplied signal are sufficiently compensated for by the simultaneous measurement of both signals, making it possible to accurately evaluate stress in ferromagnetic structures. I have to.

同時測定によるデータの信頼性が単独測定に比べて高ま
っている事はもち論であるが、付随的な利点として本発
明の測定深度の大きさがあげられる。
It is a matter of course that the reliability of data obtained by simultaneous measurements is higher than that obtained by individual measurements, but an additional advantage is the large measurement depth of the present invention.

本発明の測定深度は、外部交流磁場の周波数により制御
する事が可能であシ、通常の測定では、X線法の100
倍以上に相貫する数ミリメートル(〜10=m)である
The measurement depth of the present invention can be controlled by the frequency of the external alternating magnetic field.
It is several millimeters (~10=m) that intersect more than twice.

また疲労変形の被害の検出は、BN信号及びAE倍信号
波形観察を行なう事により本発明による方法で可能であ
る。健全状態の対象物の信号波形に対して、疲労変形が
発生した個所に磁気回路装置を設定すれば、発生信号の
包絡線波形にみだれが観察される。さらに本発明による
非破壊検査は、材料の化学組織、金属組織、非金属介在
物の分布といった金属学的要因の検出にも有効である。
Further, damage caused by fatigue deformation can be detected by the method according to the present invention by observing the waveforms of the BN signal and the AE multiplied signal. If a magnetic circuit device is set at a location where fatigue deformation has occurred in the signal waveform of an object in a healthy state, drooping will be observed in the envelope waveform of the generated signal. Furthermore, the non-destructive inspection according to the present invention is also effective in detecting metallurgical factors such as the chemical structure of a material, the metal structure, and the distribution of non-metallic inclusions.

そして、強磁性材料からなる構造物の応力、疲労変形等
の検査に対しては、次の解析方法のうち適切なものが採
用される。所定の交流外部磁場強度で所定の信号周波数
域の条件のもとに、次の複数の測定作業を行なう。
For testing stress, fatigue deformation, etc. of structures made of ferromagnetic materials, an appropriate one of the following analysis methods is adopted. The following plurality of measurement operations are performed under the conditions of a predetermined AC external magnetic field strength and a predetermined signal frequency range.

(1) B Nセンサーの出力の実効値電圧値を読む。(1) Read the effective voltage value of the output of the BN sensor.

(2)AEセンサーの出力の実効値電圧値を読む。(2) Read the effective voltage value of the AE sensor output.

(3)周波数域の異なる(例えば100キロで・ルツ〜
200キロ・・ルツiと200キロノ・ルツ〜 300
キロハルツ1)BNセンサーの出力の実効値の比を取る
(3) Different frequency ranges (for example, at 100 km)
200 km Ruth I and 200 km Ruth ~ 300
Kilohartz 1) Take the ratio of the effective value of the output of the BN sensor.

(4)周波数域の異なるAEセンサーの出力の実効値電
圧値の比を取る。
(4) Take the ratio of the effective voltage values of the outputs of the AE sensors in different frequency ranges.

(5)周波数域を同一にしたBNセンサーとAEセンサ
ーの出力の実効値電圧値の比を取る。
(5) Take the ratio of the effective voltage values of the outputs of the BN sensor and the AE sensor in the same frequency range.

(6)周波数域の異なるBNセンサーとAFjセンサー
の出力の実効値電圧値の比を取る。
(6) Find the ratio of the effective voltage values of the outputs of the BN sensor and AFj sensor in different frequency ranges.

(7) B Nセンサー信号の周波数分布を測定する。(7) Measure the frequency distribution of the BN sensor signal.

(8) A Eセンサー信号の周波数分布を測定する。(8) Measure the frequency distribution of the AE sensor signal.

(9) B Nセンサーの包絡線信号の波形観察を行な
う。
(9) Observe the waveform of the envelope signal of the BN sensor.

αIAEセンサーの包絡線信号の波形観察を行なう。Observe the waveform of the envelope signal of the αIAE sensor.

(ロ)BNセンサーの包絡線信号のピーク値を読む。(b) Read the peak value of the envelope signal of the BN sensor.

に)AEセンナ−の包絡線信号のピーク値を読む。2) Read the peak value of the envelope signal of the AE sensor.

(至)周波数域の異なるBNセンサーの包絡線信号のピ
ーク値の比を取る。
(To) Take the ratio of the peak values of envelope signals of BN sensors in different frequency ranges.

α◆周波数域の異なるAEセンサーの包絡線信号のピー
ク値の比を取る。
α◆Take the ratio of the peak values of envelope signals of AE sensors in different frequency ranges.

(2)周波数域を同一にしたBNセンサーとAEセンサ
ーの包絡線信号のピーク値の比を取る。
(2) Take the ratio of the peak values of the envelope signals of the BN sensor and AE sensor in the same frequency range.

09周波数域の異なるBNセンサーとAEセンサーの包
絡線信号のピーク値の比を取る。
09 Take the ratio of the peak values of the envelope signals of the BN sensor and AE sensor in different frequency ranges.

αη高磁場下で晃られるBNセンサーの包絡線信号の二
つのピークのピーク値の比を取る。
αη The ratio of the peak values of the two peaks of the envelope signal of the BN sensor under high magnetic field is taken.

(へ)高硼場下で見られるAEセンサーの包絡線信号の
二つのピークのピーク値の比を取る。
(f) Take the ratio of the two peak values of the envelope signal of the AE sensor observed under high field conditions.

以上の説明から明らかなように、本発明は1強磁性材料
の磁化過程で発生する電磁波の高周波成分と弾性波の高
周波成分の関係と、その応力等との相関関係を利用する
ことによシ、従来技術の欠点を解消した強磁性材料の応
力等の検査を可能にしたものであυ、きわめて有用な説
明であるといえる。また、本発明はこのような技術思想
に基づくものであるから、その範囲は、上述の実施例に
限定されるものではなく、実質的に電磁波の高周波成分
と弾性波の高周波成分との関係と応力等との相関関係を
利用したものであれば全て含まれることはいうまでもな
い。
As is clear from the above description, the present invention utilizes the relationship between the high frequency components of electromagnetic waves and the high frequency components of elastic waves generated during the magnetization process of ferromagnetic materials, and the correlation between the stress, etc. , which made it possible to test stress, etc. of ferromagnetic materials, eliminating the drawbacks of the prior art, and can be said to be an extremely useful explanation. Moreover, since the present invention is based on such a technical idea, its scope is not limited to the above-mentioned embodiments, but substantially the relationship between the high frequency components of electromagnetic waves and the high frequency components of elastic waves. It goes without saying that any method that utilizes the correlation with stress etc. is included.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る磁気回路装置及び検出
装置の説明図、第2図は本発明の他の実施例に係る磁気
回路装置及び検出装置の説明図、第3図は本発明の一実
施例に係る信号処理装置のブロック図、第4図は本発明
による測定結果の例を示す線図である。 1;被検葺材6強磁性材料)1. 2.;積層鉄心、3
;励磁コイル、  4;交流電源、 7,10;BNコ
イルセンサ、   8;AEセンサ%  9:fi状ソ
レノイド。 代理人 弁理士 木 村 三 朗 第1図 4 第2図 第3図 5 特願昭57−221756号 20発明の名称 ’It I’lとの関脩   特許 出願人名 称  
株式会社 ハタ技研 (氏 名) 4、代理人 5、/、  7山11  のヌ、1 象明細書の「発明
の詳細な説明」の欄。 −よ吃
FIG. 1 is an explanatory diagram of a magnetic circuit device and a detection device according to one embodiment of the present invention, FIG. 2 is an explanatory diagram of a magnetic circuit device and a detection device according to another embodiment of the present invention, and FIG. FIG. 4 is a block diagram of a signal processing device according to an embodiment of the invention, and is a diagram showing an example of measurement results according to the invention. 1; Tested roofing material 6 ferromagnetic material) 1. 2. ; Laminated core, 3
; Excitation coil; 4; AC power supply; 7, 10; BN coil sensor; 8; AE sensor%; 9: Fi-shaped solenoid. Agent Patent Attorney Sanro Kimura Figure 1 Figure 4 Figure 2 Figure 3 5 Japanese Patent Application No. 57-221756 20 Name of Invention 'It I'l' Patent Name of Applicant Title
Hata Giken Co., Ltd. (name) 4. Agent 5. / 7. 11. 1. "Detailed description of the invention" column of the description. -Yotoi

Claims (2)

【特許請求の範囲】[Claims] (1)  強磁性材料の磁化過程で発生する電磁波及び
弾性波の高周波成分を検出し、これらの高周波成分を解
析することによシ、強磁性材料の応力又は疲労変形を検
査することを特徴とする強磁性材料の非破壊検査方法。
(1) It is characterized by detecting high frequency components of electromagnetic waves and elastic waves generated in the magnetization process of ferromagnetic materials and analyzing these high frequency components to inspect stress or fatigue deformation of ferromagnetic materials. A non-destructive testing method for ferromagnetic materials.
(2)被検査材の強磁性材料の一部に交番磁界を印加す
る磁気回路装置と;前記強磁性材料の磁化過程で発生す
る電磁波及び弾性波を検出する検出装置と;該検出装置
の出力から高周波成分を取り出し、その成分特性を解析
する信号処理装置と:を備え、強磁性材料の応力又は疲
労変形を検査することを特徴とする磁性材料の非破壊検
査装置。
(2) A magnetic circuit device that applies an alternating magnetic field to a part of the ferromagnetic material to be inspected; a detection device that detects electromagnetic waves and elastic waves generated during the magnetization process of the ferromagnetic material; and an output of the detection device 1. A non-destructive testing device for magnetic materials, comprising: a signal processing device for extracting a high frequency component from a ferromagnetic material and analyzing its component characteristics.
JP22175682A 1982-12-20 1982-12-20 Method and device for nondestructive inspection of ferromagnetic material Pending JPS59112257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22175682A JPS59112257A (en) 1982-12-20 1982-12-20 Method and device for nondestructive inspection of ferromagnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22175682A JPS59112257A (en) 1982-12-20 1982-12-20 Method and device for nondestructive inspection of ferromagnetic material

Publications (1)

Publication Number Publication Date
JPS59112257A true JPS59112257A (en) 1984-06-28

Family

ID=16771709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22175682A Pending JPS59112257A (en) 1982-12-20 1982-12-20 Method and device for nondestructive inspection of ferromagnetic material

Country Status (1)

Country Link
JP (1) JPS59112257A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231189A (en) * 1984-04-13 1985-11-16 韓国科学技術院 Method of measuring magnetic characteristic of magnetic material
JPH0274817A (en) * 1988-09-09 1990-03-14 Nippon Steel Corp Distance sensor
US5164669A (en) * 1990-07-23 1992-11-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of characterizing residual stress in ferromagnetic materials using a pulse histogram of acoustic emission signals
JPH06130038A (en) * 1992-10-16 1994-05-13 Meidensha Corp Method of measuring degeration and deformation of metal material
US5652394A (en) * 1994-04-08 1997-07-29 Nippon Steel Corporation Stress sensor fabricated from a material having precipitated granular carbides
BG65990B1 (en) * 2004-07-29 2010-08-31 Институт По Механика-Бан Method and device for magnetic noise and magnetic acoustic control of ferromagnetic materials
CN104034289A (en) * 2014-07-04 2014-09-10 国家电网公司 Condition monitoring method and device for windings of power transformer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111442A (en) * 1980-12-29 1982-07-10 Shimadzu Corp Measuring apparatus of residual stress

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57111442A (en) * 1980-12-29 1982-07-10 Shimadzu Corp Measuring apparatus of residual stress

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231189A (en) * 1984-04-13 1985-11-16 韓国科学技術院 Method of measuring magnetic characteristic of magnetic material
JPH0446380B2 (en) * 1984-04-13 1992-07-29 Kankoku Kagaku Gijutsu Kenkyusho
JPH0274817A (en) * 1988-09-09 1990-03-14 Nippon Steel Corp Distance sensor
US5164669A (en) * 1990-07-23 1992-11-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of characterizing residual stress in ferromagnetic materials using a pulse histogram of acoustic emission signals
JPH06130038A (en) * 1992-10-16 1994-05-13 Meidensha Corp Method of measuring degeration and deformation of metal material
US5652394A (en) * 1994-04-08 1997-07-29 Nippon Steel Corporation Stress sensor fabricated from a material having precipitated granular carbides
BG65990B1 (en) * 2004-07-29 2010-08-31 Институт По Механика-Бан Method and device for magnetic noise and magnetic acoustic control of ferromagnetic materials
CN104034289A (en) * 2014-07-04 2014-09-10 国家电网公司 Condition monitoring method and device for windings of power transformer

Similar Documents

Publication Publication Date Title
Tsukada et al. Detection of inner cracks in thick steel plates using unsaturated AC magnetic flux leakage testing with a magnetic resistance gradiometer
Wilson et al. Residual magnetic field sensing for stress measurement
US4528856A (en) Eddy current stress-strain gauge
WO2001067085A1 (en) Probe for eddy current testing
Janousek et al. Novel insight into swept frequency eddy-current non-destructive evaluation of material defects
JP2766929B2 (en) Non-destructive inspection equipment
Artetxe et al. Analysis of the voltage drop across the excitation coil for magnetic characterization of skin passed steel samples
Wei et al. A transducer made up of fluxgate sensors for testing wire rope defects
Ou et al. Nondestructive testing method for internal defects in ferromagnetic materials under weak bias magnetization
Wang et al. Quantitative characterization of tensile stress in electroplated nickel coatings with a magnetic incremental permeability sensor
Theiner et al. Determination of residual stresses using micromagnetic parameters
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
JPH0545184B2 (en)
JP2017067743A (en) Non-destructive inspection device and non-destructive inspection method
Langman Some comparisons between the measurement of stress in mild steel by means of Barkhausen noise and rotation of magnetization
US5423223A (en) Fatigue detection in steel using squid magnetometry
JPH01269049A (en) Method of inspecting deterioration of metallic material
JP7450305B1 (en) Inspection equipment and inspection method
Zhang et al. Study on stress testing of ferromagnetic materials based on magnetic anisotropy
RU2807964C1 (en) Method for monitoring the mechanical properties of rolled metal made of ferromagnetic metal alloys and a device for its implementation
Reig et al. High-Spatial Resolution Giant Magnetoresistive Sensors-Part I: Application in Non-Destructive Evaluation
RU2818648C1 (en) Device for determining homogeneity of mechanical properties of articles made from ferromagnetic materials and detecting zones with abnormal hardness therein
WO2019077778A1 (en) Eddy-current flaw testing method and eddy-current flaw testing device
KR102224117B1 (en) Magnetic nondestructive inspection device using magnetic hysteresis property estimation method
Bajracharya et al. Evaluation of Eddy Current Response Due to the Applied Stress on a Steel Plate Using Phase Diagram