JPH07198770A - Improved probe device and method for measuring critical superconducting current in non-contacting state - Google Patents

Improved probe device and method for measuring critical superconducting current in non-contacting state

Info

Publication number
JPH07198770A
JPH07198770A JP5353596A JP35359693A JPH07198770A JP H07198770 A JPH07198770 A JP H07198770A JP 5353596 A JP5353596 A JP 5353596A JP 35359693 A JP35359693 A JP 35359693A JP H07198770 A JPH07198770 A JP H07198770A
Authority
JP
Japan
Prior art keywords
sample
coil
coils
exciting
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5353596A
Other languages
Japanese (ja)
Inventor
Kimio Kato
公雄 加藤
Koji Kanbara
康二 蒲原
Kazutoshi Soma
一俊 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Kogyo KK
Original Assignee
Tokyo Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Kogyo KK filed Critical Tokyo Kogyo KK
Priority to JP5353596A priority Critical patent/JPH07198770A/en
Publication of JPH07198770A publication Critical patent/JPH07198770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PURPOSE:To provide a high-sensitivity probe device and method by which THE local current density of a sample and the critical current density of a superconducting material are measured in a non-contacting state. CONSTITUTION:An improved probe composed of a pair of exciting coils 3 and 10 which are vertically connected in series with a sample in between and form a magnetic field for generating an induced current, detecting coils 5 and 8 which are arranged outside the coils 3 and 10, vertically connected in series with the sample in between, and detect the magnetic field formed by the induced current, and compensating coils 4 and 9 which are arranged outside the coils 3 and 10, vertically connected in series, and automatically cancel the electromotive force induced by the coils 5 and 8. All of the coils 3 and 10, 5 and 8, and 4 and 9 are coaxially arranged. The difference between the electromotive force when a sample exists and that when no sample exists is found as a pure sample output and the nature of the sample is calculated by finding the magnetizing behavior of the sample from the sample output. The detecting sensitivity of this improved probe is remarkably improved, because both the intensity of the exciting magnetic field and the uniformity of the magnetic field sensed by the sample are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料の局所部分に生じ
させた誘導電流密度を測定する装置および方法、とくに
超伝導体の臨界電流密度を測定する装置および方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and method for measuring an induced current density generated in a local portion of a sample, and more particularly to an apparatus and method for measuring a critical current density of a superconductor.

【0002】[0002]

【従来の技術】超伝導体は、その特異な性質より広く研
究され、また応用されてきている。そのため、超伝導体
の物理的性質、特にその臨界電流を精度よく知ることが
特に重要になってきている。
2. Description of the Related Art Superconductors have been widely studied and applied due to their unique properties. Therefore, it is becoming particularly important to know the physical properties of superconductors, especially their critical currents, with high precision.

【0003】超伝導体の臨界電流を非接触で測定する従
来の装置の1つが図5に示されている。この装置は、互
いに逆向きに巻かれた一対のピックアップコイル51を
直列に接続し、その一対のピックアップコイルを包囲し
てリング状の超伝導体試料52を設置し、一対のピック
アップコイル51および試料52を包囲してその一対の
ピックアップコイルとほぼ同軸に外部コイル53を設置
し、外部コイル53により時間的に変化する磁場を生じ
させ、試料のリングの内部領域を遮断しかつ変化する磁
場とともに発達する超伝導電流を試料に生じさせ、超伝
導体試料の臨界電流値に達したときのピックアップコイ
ルの電圧がほぼゼロになった時点の外部コイルにより生
じた磁場の大きさから相関的に超伝導体試料の臨界電流
値を測定するものである。
One conventional device for contactlessly measuring the critical current of a superconductor is shown in FIG. In this device, a pair of pickup coils 51 wound in mutually opposite directions are connected in series, a ring-shaped superconductor sample 52 is installed so as to surround the pair of pickup coils, and the pair of pickup coils 51 and the sample are placed. An external coil 53 is provided so as to surround 52 and to be substantially coaxial with the pair of pickup coils, and a magnetic field that changes with time is generated by the external coil 53. The external coil 53 cuts off the internal region of the ring of the sample and develops with the changing magnetic field. Generated superconducting current in the sample, and the superconductivity correlates from the magnitude of the magnetic field generated by the external coil when the voltage of the pickup coil reaches almost zero when the critical current value of the superconductor sample is reached. The critical current value of the body sample is measured.

【0004】臨界電流を非接触で測定する他の方法とし
て、スクイド(SQUID)磁束計があり、その装置の略示図
が図6に示されている。このスクイド磁束計は、超伝導
ワイヤのサーチコイル61とそれに接続されたコイル6
2、スクイド素子63、コイル64とそれに接続された
増幅器65、超伝導ホルダー66、および低温槽67か
ら成るものである。この磁束計を利用して、超伝導体の
臨界電流の測定は次のように行われる。まず、試料を超
伝導状態にし、かかる試料全体に磁場を印加する。磁場
は、試料の表面から侵入するが、その磁場分布は試料の
臨界電流密度に依存している。この分布は磁場を取り去
っても保持されることから、前記サーチコイルを試料表
面に近接させ、その表面付近の磁場分布を測定する。そ
して、その測定された磁場分布より臨界電流密度を導出
する。
Another method of non-contact measurement of the critical current is a SQUID magnetometer, and a schematic diagram of the device is shown in FIG. This SQUID magnetometer consists of a superconducting wire search coil 61 and a coil 6 connected to it.
2, a SQUID element 63, a coil 64, an amplifier 65 connected to the coil 64, a superconducting holder 66, and a cryostat 67. Using this magnetometer, the critical current of the superconductor is measured as follows. First, the sample is put in a superconducting state, and a magnetic field is applied to the entire sample. The magnetic field penetrates from the surface of the sample, and its magnetic field distribution depends on the critical current density of the sample. Since this distribution is retained even if the magnetic field is removed, the search coil is brought close to the sample surface and the magnetic field distribution near the surface is measured. Then, the critical current density is derived from the measured magnetic field distribution.

【0005】さらに他の非接触による測定装置は、特開
平4−115155号に開示されている。図3及び4
は、それぞれ該発明による反射型プローブ及び透過型プ
ローブの断面図である。図3の反射型プローブ30は、
近接した試料36の限定した部分内に誘導電流を生じさ
せるための磁場を形成する、逆向きに接続された一対の
励磁コイル34及び35と、該励磁コイルの内側に配置
され、前記誘導電流により試料に形成される磁場を検知
する検知コイル33とから成り、前記励磁コイルおよび
前記検知コイルの軸線方向が共に前記試料の面36に対
して垂直となるよう配置されるものである。一方、図4
の透過型プローブ40は、近接した試料の限定した部分
内に誘導電流を生じさせるための磁場を形成する、逆向
きに接続された一対の励磁コイル44及び45と、前記
誘導電流により形成される磁場を検知する検知コイル4
3とから成り、前記励磁コイルは前記試料の表面近傍で
その軸線方向が前記試料の面46に対して垂直となるよ
うに配置され、前記検知コイルは前記試料の反対側近傍
でその軸線が前記励磁コイルの軸線と一致するように配
置されるものである。超伝導体の臨界電流密度は以下の
方法で測定する。図3の反射型プローブ30に所望の電
流を流すと磁場が試料層36の局所化された部分に浸透
し、その部分に誘導電流が生じ、その誘導電流がまた磁
場を形成する。検知コイル33はかかる磁場を誘導起電
力として検知する。この誘導電流が臨界電流に達する
と、その瞬間から検知コイル33により検知される磁場
のパターンが共通波形から逸脱し始める。その時の励磁
磁場と試料の厚さから臨界電流を算出する。
Yet another non-contact measuring device is disclosed in Japanese Patent Laid-Open No. 4-115155. 3 and 4
FIG. 3 is a sectional view of a reflective probe and a transmissive probe according to the present invention, respectively. The reflection type probe 30 of FIG.
A pair of oppositely connected exciting coils 34 and 35 forming a magnetic field for producing an induced current in a limited portion of the adjacent sample 36, and the inside of the excited coil, The detection coil 33 detects the magnetic field formed on the sample, and is arranged such that the axial directions of the excitation coil and the detection coil are both perpendicular to the surface 36 of the sample. On the other hand, FIG.
Of the transmissive probe 40 is formed by a pair of oppositely connected exciting coils 44 and 45 forming a magnetic field for producing an induced current in a confined portion of the sample in close proximity, and the induced current. Detection coil 4 for detecting magnetic field
3, the exciting coil is arranged in the vicinity of the surface of the sample such that its axial direction is perpendicular to the surface 46 of the sample, and the detecting coil has its axis in the vicinity of the opposite side of the sample. It is arranged so as to coincide with the axis of the exciting coil. The critical current density of the superconductor is measured by the following method. When a desired current is applied to the reflective probe 30 of FIG. 3, the magnetic field penetrates into the localized portion of the sample layer 36, an induced current is generated in that portion, and the induced current also forms a magnetic field. The detection coil 33 detects the magnetic field as an induced electromotive force. When this induced current reaches the critical current, the pattern of the magnetic field detected by the detection coil 33 starts to deviate from the common waveform from that moment. The critical current is calculated from the exciting magnetic field and the thickness of the sample at that time.

【0006】上記のそれぞれの方法は非接触によるもの
であるが、試料に直接端子を設け臨界電流を測定する方
法として、四端子法がある。この方法は、試料に端子を
設け、その端子を介して輸送電流を試料に流し、試料内
での電位降下を試料に設けた電圧端子により測定するも
のである。
Although each of the above-mentioned methods is non-contact, there is a four-terminal method as a method of directly providing a terminal on the sample and measuring the critical current. In this method, a sample is provided with a terminal, a transport current is passed through the sample through the terminal, and a potential drop in the sample is measured by a voltage terminal provided on the sample.

【0007】[0007]

【発明が解決しようとする課題】図5に示す装置によ
り、臨界電流密度を測定する方法は、試料を所定の形状
に加工しなければならない。したがって、大形の試料や
試料のいろいろな部分について臨界電流密度を測定する
必要がある場合に、かかる方法を採用できない。
In the method of measuring the critical current density by the device shown in FIG. 5, the sample must be processed into a predetermined shape. Therefore, such a method cannot be adopted when it is necessary to measure the critical current density of a large sample or various parts of the sample.

【0008】図6に示すスクイド磁束計は、試料の各部
分について臨界電流密度等を測定できるが、その測定を
行うためには試料全体を磁化させる必要がある。そのた
め、測定時まで安定した磁化のための磁場を形成しなけ
ればならない。
The SQUID magnetometer shown in FIG. 6 can measure the critical current density and the like for each part of the sample, but it is necessary to magnetize the entire sample in order to perform the measurement. Therefore, it is necessary to form a magnetic field for stable magnetization until the time of measurement.

【0009】さらに、外部磁場は試料の表面全体から侵
入するから、それに伴う誘導電流による発熱は試料全体
から発することになる。したがって、この発熱による試
料の破壊を阻止するためには、外部磁場の強さ、磁場の
印加時間に制限が加わざるを得ない。
Furthermore, since the external magnetic field penetrates from the entire surface of the sample, the heat generated by the induced current accompanying it is generated from the entire sample. Therefore, in order to prevent the destruction of the sample due to this heat generation, the strength of the external magnetic field and the magnetic field application time must be limited.

【0010】図3及び図4に示す装置では、試料の感じ
る磁場が励磁コイルと試料面との距離に依存して増減す
るため、試料表面の平坦化加工工程が必要となり、しか
も厳密な位置合わせ作業が必要となる。
In the apparatus shown in FIGS. 3 and 4, since the magnetic field sensed by the sample increases and decreases depending on the distance between the exciting coil and the sample surface, a step of flattening the sample surface is required, and strict alignment is required. Work is required.

【0011】四端子法は、試料に直接端子を設けなけれ
ばならなず、また試料に輸送電流を流すことから、その
大きさに限度がある。さらに、試料の各部分についての
測定が殆ど不可能である。
In the four-terminal method, the terminals must be directly provided on the sample, and since a transport current is passed through the sample, the size thereof is limited. Furthermore, measurements on each part of the sample are almost impossible.

【0012】そこで、本発明の目的は、試料を加工する
ことなく且つ非接触で、試料を流れる電流密度を安定し
て測定するための方法および装置を提供することであ
る。
Therefore, an object of the present invention is to provide a method and an apparatus for stably measuring the current density flowing through a sample without processing the sample and without contact.

【0013】本発明の他の目的は、試料の各局所部分に
ついての電流密度を試料に非接触で測定する方法および
装置を提供することである。
Another object of the present invention is to provide a method and apparatus for measuring the current density for each local portion of the sample without contacting the sample.

【0014】さらに、本発明の他の目的は、超伝導体の
臨界電流値のより高感度な測定装置及び方法を与えるこ
とである。
Still another object of the present invention is to provide an apparatus and method for measuring the critical current value of a superconductor with higher sensitivity.

【0015】さらにまた、本発明の他の目的は、試料の
厳密な位置合わせが不要な電流密度の測定装置及び方法
を与えることである。
Still another object of the present invention is to provide an apparatus and method for measuring current density which does not require precise alignment of samples.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明の非接触で試料の電流密度を測定するための
プローブは、試料を挟んで上下に直列に連結された、試
料の限定された部分内に誘導電流を発生させるための磁
場を形成する一対の励磁コイルと、励磁コイルの外側に
配置され、試料を挟んで上下に直列に連結された、上記
誘導電流により形成される磁場を検知する検知コイルと
から成り、励磁コイルおよび検知コイルの軸線方向が共
に試料の面に対して垂直となるものである。
In order to achieve the above object, a probe for measuring the current density of a sample in a non-contact manner of the present invention is a sample which is connected in series vertically with a sample interposed therebetween. A pair of exciting coils that form a magnetic field for generating an induced current in the formed part, and a magnetic field formed by the induced current that is arranged outside the exciting coil and is connected in series vertically with the sample sandwiched therebetween. And a detection coil for detecting, and the axial directions of the excitation coil and the detection coil are both perpendicular to the surface of the sample.

【0017】上記一対の励磁コイルは共軸に配置され、
同じ向きに巻かれた同一仕様のコイルであることが望ま
しい。同様に、一対の検知コイルは共軸に配置され、且
つ該軸線は励磁コイルの軸線と同軸であることが望まし
い。また、上記検知コイルは、同じ向きに巻かれた同一
仕様のコイルであり且つ試料の近傍に配置されているこ
とが望ましい。
The pair of exciting coils are coaxially arranged,
It is desirable that the coils have the same specifications wound in the same direction. Similarly, it is desirable that the pair of detection coils be coaxially arranged, and that the axis line be coaxial with the axis line of the exciting coil. Further, it is desirable that the detection coil is a coil of the same specification wound in the same direction and is arranged near the sample.

【0018】ここで、本発明のプローブは、励磁コイル
の直径と上下コイルの間隔とが、試料に対し均一な磁場
を与える関係を満たすように選択されているものであ
る。
Here, in the probe of the present invention, the diameter of the exciting coil and the interval between the upper and lower coils are selected so as to satisfy the relationship of giving a uniform magnetic field to the sample.

【0019】また本発明のプローブは、励磁コイルの外
側に同軸に配置され、試料を挟んで上下に直列に且つ共
軸に連結された、検知コイルに発生する励磁磁場による
電圧を打ち消すための打ち消しコイルを含んでもよい。
その場合、打ち消しコイルは、試料の作る磁束を感じな
い程度に試料から離れて配置されていることが望まし
い。
Further, the probe of the present invention is arranged coaxially outside the exciting coil, and is for canceling the voltage due to the exciting magnetic field generated in the detecting coil, which is connected in series vertically and coaxially with the sample sandwiched therebetween. It may include a coil.
In that case, it is desirable that the canceling coil is arranged away from the sample so that the magnetic flux generated by the sample is not felt.

【0020】励磁コイルにより形成される磁場の最大値
及び最小値を変化させるために、励磁コイルに三角波電
流を供給してもよく、また正弦波電流を供給してもよ
い。
In order to change the maximum value and the minimum value of the magnetic field formed by the exciting coil, a triangular wave current or a sinusoidal wave current may be supplied to the exciting coil.

【0021】本発明の超伝導体の臨界電流値測定装置
は、上記プローブと、前記検知コイルに発生する励磁磁
場による電圧を打ち消すための可変相互インダクタンス
系と、プローブの励磁コイルを作動させる励磁電源と、
プローブの検知コイルに接続され、検知された電圧を増
幅する検出用増幅器と、検出用増幅器により増幅された
信号から超伝導体の臨界電流値を算出する処理器とから
成るものである。ここで、上記プローブは、上記打ち消
しコイルを含んでも、含まなくてもよい。検出用増幅器
は積分器であることが望ましい。
The apparatus for measuring a critical current value of a superconductor according to the present invention comprises the probe, a variable mutual inductance system for canceling a voltage due to an exciting magnetic field generated in the detection coil, and an exciting power supply for operating the exciting coil of the probe. When,
The detection amplifier is connected to the detection coil of the probe and amplifies the detected voltage, and a processor for calculating the critical current value of the superconductor from the signal amplified by the detection amplifier. Here, the probe may or may not include the cancellation coil. The detection amplifier is preferably an integrator.

【0022】本発明の非接触による超伝導体の臨界電流
値測定方法は、上下の励磁コイル及び検知コイルの間に
試料を、コイルの軸線と試料面が垂直になるように且つ
上下のコイルから等距離の位置に近接配置する工程と、
試料の磁化が十分に飽和するような大きさの且つ振幅が
一定の交流励磁電流を励磁コイルに供給する工程と、試
料が無いときの検知電圧がゼロボルトになるように打ち
消しコイルまたは可変相互インダスタンス系を調節する
工程と、金属試料の磁化測定から装置定数を算出する工
程と、超伝導体試料の磁化測定から上記装置定数を使っ
て、飽和磁化を算出する工程と、試料の磁化曲線を使っ
て、飽和磁化に対応する電流密度を求める工程とから成
るものである。
The non-contact method for measuring the critical current value of a superconductor according to the present invention is such that the sample is placed between the upper and lower exciting coils and the detecting coil so that the axis of the coil is perpendicular to the sample surface. A step of closely disposing at equidistant positions,
The step of supplying an alternating exciting current of a magnitude and constant amplitude to the exciting coil such that the magnetization of the sample is sufficiently saturated, and a canceling coil or variable mutual-instance so that the detection voltage when there is no sample becomes zero volt. Adjusting the system, calculating the device constant from the magnetization measurement of the metal sample, calculating the saturation magnetization using the above device constant from the magnetization measurement of the superconductor sample, and using the magnetization curve of the sample And the step of obtaining the current density corresponding to the saturation magnetization.

【0023】ここで、本発明による方法は、上記試料中
に超伝導物質と通常金属とが混在するとき、超伝導体の
磁化を分離するために、周波数を十分低くして通常金属
による磁化の影響を除外する工程をさらに含むことがで
きる。
Here, in the method according to the present invention, when the superconducting substance and the ordinary metal are mixed in the sample, the frequency is sufficiently lowered to separate the magnetization of the superconductor, and the magnetization of the ordinary metal is reduced. The method may further include a step of excluding the influence.

【0024】[0024]

【作用】本発明に従えば、励磁のための磁場は、局所的
空間分布を有し、そのため試料の限定された部分にその
磁場を印加でき、したがってその限定された部分につい
て誘導電流を生じさせることができる。
According to the invention, the magnetic field for the excitation has a local spatial distribution, so that it can be applied to a limited part of the sample and thus produces an induced current for that limited part. be able to.

【0025】[0025]

【実施例】図1は、本発明に従う改良型非接触プローブ
の好適実施例の断面図を略示したものである。プローブ
1の軸線に沿って位置する上下2本の芯ロッド2、11
の先端を取り巻くようにそれぞれ励磁コイル3、10が
巻かれている。これらの励磁コイルは直列に連結され、
好適には同じ向きに巻かれた同一仕様のコイルである。
また、その励磁コイル3、10の外側で励磁コイルを取
り巻くように、試料6に近接して、且つ共軸に上下一対
の検知コイル5、8が巻かれている。この一対の検知コ
イルは直列に連結され、好適には同じ向きに巻かれた同
一仕様のコイルである。さらに、上記励磁コイル3、1
0の外側で励磁コイルを取り巻くように、試料6から離
れて、且つ共軸に上下一対の打ち消しコイル4、9が巻
かれている。この一対の打ち消しコイルは直列に連結さ
れ、検知コイルとは逆向きで好適には同じ向きに巻かれ
た同一仕様のコイルである。ただし、これらの打ち消し
コイル4、9は後述する可変相互インダクタンス系を使
用するときには省略してもよい。
1 is a schematic cross-sectional view of a preferred embodiment of the improved non-contact probe according to the present invention. Two upper and lower core rods 2 and 11 positioned along the axis of the probe 1.
Exciting coils 3 and 10 are wound so as to surround the tip of each. These exciting coils are connected in series,
It is preferably a coil of the same specification wound in the same direction.
Further, a pair of upper and lower detection coils 5 and 8 are wound coaxially and coaxially with the sample 6 so as to surround the exciting coils outside the exciting coils 3 and 10. The pair of detection coils are connected in series and preferably have the same specifications and are wound in the same direction. Further, the exciting coils 3 and 1
A pair of upper and lower canceling coils 4 and 9 are wound coaxially and apart from the sample 6 so as to surround the exciting coil outside 0. The pair of canceling coils are connected in series, and are coils of the same specifications wound in the opposite direction to the detection coil, and preferably in the same direction. However, these canceling coils 4 and 9 may be omitted when the variable mutual inductance system described later is used.

【0026】ロッド2、励磁コイル3、および検知コイ
ル5の先端が同一平面と成るように、全体を(図1にお
いて一点鎖線で示すように)モールドして一体化する。
ロッド11、励磁コイル10、および検知コイル8につ
いても同様にモールドする。このように検知コイル、励
磁コイルを一体化することにより、プローブを試料に対
して相対的に移動させることができる。
The rod 2, the exciting coil 3, and the detecting coil 5 are integrally molded (as indicated by the one-dot chain line in FIG. 1) so that the tips thereof are flush with each other.
The rod 11, the excitation coil 10 and the detection coil 8 are also molded in the same manner. By thus integrating the detection coil and the excitation coil, the probe can be moved relative to the sample.

【0027】プローブ1の励磁コイル3、10の直径
と、上下のプローブの間隔との比は選択可能であって、
各試料に対して、所望の均一な磁場を付勢するよう調節
できる。一般に、試料が経験する磁場は、励磁コイルに
近づくにつれ増大するような位置の関数であるが、本発
明においては、試料は、適性に上下コイルに挟まれてい
る状態であり、言わばコイル内部にあるようなものなの
で、多少上下に移動しても試料が感じる磁場は一定であ
る。
The ratio between the diameters of the exciting coils 3 and 10 of the probe 1 and the distance between the upper and lower probes is selectable.
Each sample can be adjusted to energize the desired uniform magnetic field. Generally, the magnetic field experienced by the sample is a function of the position such that it increases as it approaches the exciting coil, but in the present invention, the sample is properly sandwiched between the upper and lower coils, so to speak, inside the coil. Since it is something like that, the magnetic field felt by the sample is constant even if it moves up and down to some extent.

【0028】試料は、上下の励磁コイル及び検出コイル
の間に、コイルの軸線と試料面が垂直になるように且つ
上下のコイルから等距離の位置に近接配置される。励磁
コイル3、10に、試料層6上に所望の磁場を形成する
よう電流を流す。励磁コイル3、10は局所化された磁
場を形成することから、試料層6の限定された一部につ
いてのみ均一な磁場を印加できる。
The sample is placed between the upper and lower excitation coils and the detection coil so that the axis of the coil is perpendicular to the sample surface and equidistant from the upper and lower coils. A current is applied to the exciting coils 3 and 10 so as to form a desired magnetic field on the sample layer 6. Since the exciting coils 3 and 10 form a localized magnetic field, a uniform magnetic field can be applied only to a limited part of the sample layer 6.

【0029】励磁コイル3、10には試料層6に誘導電
流を生じさせるために時間変化する電流を流す。比較的
微弱な臨界電流をもつ試料に対しては正弦波電流を流す
ことが望ましいが、比較的大きな臨界電流をもつ試料に
対してはLCR放電によって電流を流すことが望まし
い。
A time-varying current is passed through the exciting coils 3 and 10 in order to generate an induced current in the sample layer 6. It is desirable to apply a sinusoidal current to a sample having a relatively weak critical current, but it is desirable to apply a current by LCR discharge to a sample having a relatively large critical current.

【0030】このような断続的に変化する電流を励磁コ
イルに流すと、通電状態では励磁コイルはその抵抗のた
め発熱するが、非通電状態では(自然)冷却される。し
たがって、励磁コイルの加熱と冷却とが交互になるた
め、短時間に非常に大きな電流が流れることにより励磁
コイルが安定動作ができない温度まで上昇しても、次に
冷却され、動作全体として励磁コイルの発熱を抑制で
き、励磁コイルに大きな電流を流すことができる。ま
た、試料層においても、非超伝導状態では励磁コイルが
通電しているとき誘導電流が発生し発熱するが、次の非
通電時に冷却されるため、発熱を抑制でき大きな磁場を
印加できる。
When such an intermittently changing current is passed through the exciting coil, the exciting coil generates heat due to its resistance in the energized state, but is (naturally) cooled in the de-energized state. Therefore, since heating and cooling of the exciting coil alternate, even if the exciting coil rises to a temperature at which stable operation cannot be performed due to the flow of a very large current in a short time, it is cooled next and the exciting coil as a whole operates. It is possible to suppress the heat generation and to supply a large current to the exciting coil. Also in the sample layer, in the non-superconducting state, an induced current is generated when the exciting coil is energized to generate heat, but since it is cooled in the next non-energized state, heat generation can be suppressed and a large magnetic field can be applied.

【0031】図2は、上述したプローブを利用した、試
料の電流密度測定装置の好適実施例の略示ブロック図で
ある。可変相互インダクタンス系25は、一方で、プロ
ーブ20の励磁コイル21、23及び検知コイル22、
24に接続され、他方で、励磁電源26及び磁化信号処
理系28に接続されている。可変相互インダクタンス系
25は、検知コイル22、24に発生する、励磁コイル
21、23の作る励磁磁場による誘導起電力を自動キャ
ンセルする。励磁電源26は、可変相互インダクタンス
系25を介して励磁コイル21、23に接続され、その
コイルを付勢する。励磁コイル21、23に流れる電流
値のデータは演算部29に送られる。検出用増幅器28
は、可変相互インダクタンス系25を介して検知コイル
22、24に接続されている。その増幅器28は好適に
は積分器であり、したがって、増幅器28より得られる
データは試料6に誘導された磁場ということになる。そ
のデータも演算部29に送られる。演算部29およびデ
ータ処理部30は、励磁電源26および増幅器28のデ
ータを演算処理し、電流密度、電気抵抗、臨界電流等を
導出する。また、制御部を設け、データ処理部30から
の信号により、励磁電源26及び可変相互インダクタン
ス系25を制御してもよい。図2の実施例において使用
するプローブには、図1の打ち消しコイル4、9が含ま
れていても、いなくてもよい。
FIG. 2 is a schematic block diagram of a preferred embodiment of a sample current density measuring apparatus using the above-mentioned probe. The variable mutual inductance system 25 includes, on the one hand, the excitation coils 21, 23 and the detection coil 22, of the probe 20.
24, and on the other hand, is connected to an excitation power supply 26 and a magnetization signal processing system 28. The variable mutual inductance system 25 automatically cancels the induced electromotive force generated in the detection coils 22 and 24 by the exciting magnetic field generated by the exciting coils 21 and 23. The excitation power source 26 is connected to the excitation coils 21 and 23 via the variable mutual inductance system 25 and energizes the coils. The data of the current value flowing through the exciting coils 21 and 23 is sent to the arithmetic unit 29. Detection amplifier 28
Are connected to the detection coils 22 and 24 via a variable mutual inductance system 25. The amplifier 28 is preferably an integrator, so the data obtained from the amplifier 28 will be the magnetic field induced in the sample 6. The data is also sent to the arithmetic unit 29. The arithmetic unit 29 and the data processing unit 30 arithmetically process the data of the excitation power supply 26 and the amplifier 28 to derive the current density, electric resistance, critical current, and the like. Further, a control unit may be provided and the excitation power supply 26 and the variable mutual inductance system 25 may be controlled by a signal from the data processing unit 30. The probe used in the embodiment of FIG. 2 may or may not include the cancellation coils 4, 9 of FIG.

【0032】次に、本発明による超伝導体の臨界電流値
の測定方法を説明する。上記打ち消しコイル又は可変相
互インダクタンス系により、励磁コイルが作る磁場によ
る検知コイルでの起電力は完全にキャンセルされ、出力
電圧は純粋に試料が作る磁場による検知コイルにおける
起電力のみになる。
Next, a method of measuring the critical current value of the superconductor according to the present invention will be described. The canceling coil or the variable mutual inductance system completely cancels the electromotive force in the detection coil due to the magnetic field generated by the exciting coil, and the output voltage is purely the electromotive force in the detection coil due to the magnetic field generated by the sample.

【0033】この状態でまず、通常金属、好適には平板
の金属の磁化を測定する。励磁電流として時間変化する
正弦波電流を励磁コイルに供給すると、試料表面には交
流的に変化する磁化Mが生じる。平板金属の場合、磁化
Mは、M∝σDωと表され、試料の導電率σ、厚さD及
び角振動数ωの積に比例する。さらに、出力Vは磁化M
に比例することから、V−ωのグラフの傾きから出力V
と磁化Mの比例定数Rを装置定数として算出することが
できる。
In this state, first, the magnetization of a normal metal, preferably a flat metal, is measured. When a sinusoidal current that changes with time as an exciting current is supplied to the exciting coil, a magnetization M that changes in an AC manner is generated on the sample surface. In the case of a flat plate metal, the magnetization M is expressed as M∝σDω and is proportional to the product of the conductivity σ of the sample, the thickness D and the angular frequency ω. Further, the output V is the magnetization M
Since it is proportional to
And the proportionality constant R of the magnetization M can be calculated as a device constant.

【0034】次に、超伝導体試料の磁化を測定する。超
伝導体の場合、磁化Mの最大振幅は臨界電流密度JC
決まることより、出力Vは飽和磁化M0(JC)に比例する
関係が得られる。ここで、上述の装置定数Rを用いて、
V=4RM0なる関係式が導かれる。この式から飽和磁
化M0を求め、試料の磁化曲線から対応するJCを導出す
る。
Next, the magnetization of the superconductor sample is measured. In the case of a superconductor, the maximum amplitude of the magnetization M is determined by the critical current density J C , so that the output V is proportional to the saturation magnetization M 0 (J C ). Here, using the above device constant R,
The relational expression V = 4RM 0 is derived. The saturation magnetization M 0 is obtained from this equation, and the corresponding J C is derived from the magnetization curve of the sample.

【0035】また、この方法は、試料中に通常金属と、
超伝導体が混在する場合に応用することができる。上述
したように、金属の磁化はωに比例しているが超伝導体
の磁化は周波数に依存していないため、ωを十分小さく
とれば、金属の磁化の影響を除外でき、超伝導体からの
出力のみを分離することができる。
In this method, a normal metal is added to the sample,
It can be applied when superconductors are mixed. As mentioned above, the magnetization of the metal is proportional to ω, but the magnetization of the superconductor does not depend on the frequency. Therefore, if ω is made sufficiently small, the influence of the magnetization of the metal can be excluded, and Only the output of can be separated.

【0036】さらに、通常金属の抵抗率測定に上記方法
を応用できる。励磁電流の周波数を高くすることによ
り、信号を大きくすることもできる。
Further, the above method can be applied to the measurement of the resistivity of ordinary metals. The signal can be increased by increasing the frequency of the exciting current.

【0037】さらにまた、上記方法では、試料位置によ
る試料経験磁場の変動が小さいので、励磁磁場対励磁電
流の関係式の更生が容易になる。
Furthermore, in the above method, since the variation of the sample empirical magnetic field depending on the sample position is small, it is easy to regenerate the relational expression of the exciting magnetic field versus the exciting current.

【0038】以上のように、本発明に従うと、試料の所
望の部分について、超伝導体の臨界電流値等を測定する
ことができる。したがって、プローブを移動することに
より、またはマトリックス的に配置することにより試料
表面全体について測定することもでき、これにより臨界
電流値の分布図を作ることができる。
As described above, according to the present invention, the critical current value and the like of the superconductor can be measured for a desired portion of the sample. Therefore, it is possible to measure the entire sample surface by moving the probe or by arranging it in a matrix, and thus a distribution map of the critical current values can be created.

【0039】[0039]

【効果】本発明の改良型プローブにより、試料を加工す
ることなく且つ非接触で、電流密度を測定することが可
能になった。
[Effect] The improved probe of the present invention makes it possible to measure the current density without processing the sample and without contact.

【0040】本発明の改良型プローブによって、励磁磁
場の磁場強度が従来のものの約2倍となり、検出感度が
向上した。
With the improved probe of the present invention, the magnetic field strength of the exciting magnetic field is about twice that of the conventional one, and the detection sensitivity is improved.

【0041】本発明の改良型プローブによって、試料が
感じる磁場が非常に均一化され、試料のZ方向の位置精
度はあまり問題ではなくなった。
With the improved probe of the present invention, the magnetic field sensed by the sample was made extremely uniform, and the positional accuracy of the sample in the Z direction became less of a problem.

【0042】本発明の超伝導臨界電流測定装置によっ
て、出力されるのは、試料の作る磁場による誘導起電力
のみとなり、検出レベルが従来の約4倍に向上した。
The superconducting critical current measuring apparatus of the present invention outputs only the electromotive force induced by the magnetic field produced by the sample, and the detection level is improved to about four times that of the conventional method.

【0043】本発明の新局所臨界電流測定法により、測
定時間が短縮され、試料の分離も容易になった。
The new local critical current measuring method of the present invention shortens the measuring time and facilitates the separation of the sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の改良型プローブの部分断面図
である。
FIG. 1 is a partial cross-sectional view of an improved probe of the present invention.

【図2】図2は、本発明のプロープを利用した電流密度
測定装置の略示ブロック図である。
FIG. 2 is a schematic block diagram of a current density measuring device using the probe of the present invention.

【図3】図3は、従来の反射型プローブの部分断面図で
ある。
FIG. 3 is a partial cross-sectional view of a conventional reflective probe.

【図4】図4は、従来の透過型プローブの部分断面図で
ある。
FIG. 4 is a partial cross-sectional view of a conventional transmission probe.

【図5】図5は、従来の超伝導体の臨界電流測定装置を
示す。
FIG. 5 shows a conventional critical current measuring device for a superconductor.

【図6】図6は、従来のスクイド磁束計を示す。FIG. 6 shows a conventional Squid magnetometer.

【符号の説明】[Explanation of symbols]

1 改良型プローブ 2 芯ロッド 3 励磁コイル 4 打ち消しコイル 5 検知コイル 6 試料層 8 検知コイル 9 打ち消しコイル 10 励磁コイル 11 芯ロッド 1 Improved probe 2 Core rod 3 Excitation coil 4 Canceling coil 5 Detection coil 6 Specimen layer 8 Detection coil 9 Canceling coil 10 Excitation coil 11 Core rod

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月17日[Submission date] June 17, 1994

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 非接触で試料の電流密度を測定するため
のプローブであって、 試料を挟んで上下に直列に連結された、該試料に誘導電
流を生じさせるための磁場を形成する一対の励磁コイル
と、 該励磁コイルの外側に配置され試料を挟んで上下に直列
に連結された、前記誘導電流により試料の形成する磁場
を検知する検知コイルと、から成り、 前記励磁コイルおよび前記検知コイルの軸線方向が共に
前記試料の面に対して垂直である、ところのプローブ。
1. A probe for contactlessly measuring a current density of a sample, which comprises a pair of vertically connected magnetic fields for generating an induced current in the sample. An exciting coil; and a detecting coil arranged outside the exciting coil and connected in series vertically with the sample sandwiched therebetween, for detecting a magnetic field formed by the sample by the induced current, the exciting coil and the detecting coil The probe, wherein both axis directions of are perpendicular to the plane of the sample.
【請求項2】 請求項1記載のプローブであって、 前記一対の励磁コイルが共軸に配置され、同じ向きに巻
かれた同一仕様のコイルであるところのプローブ。
2. The probe according to claim 1, wherein the pair of exciting coils are coaxially arranged and are coils of the same specification wound in the same direction.
【請求項3】 請求項2記載のプローブであって、 前記一対の検知コイルが共軸に配置され、且つ該軸線は
前記励磁コイルの軸線と同軸であるところのプローブ。
3. The probe according to claim 2, wherein the pair of detection coils are coaxially arranged, and the axis is coaxial with the axis of the exciting coil.
【請求項4】 請求項3記載のプローブであって、 前記一対の検知コイルは、同じ向きに巻かれた同一仕様
のコイルであり且つ試料の近傍に配置されているところ
のプローブ。
4. The probe according to claim 3, wherein the pair of detection coils are coils of the same specifications wound in the same direction and are arranged near the sample.
【請求項5】 請求項4記載のプローブであって、 前記励磁コイルの直径と上下コイルの間隔とが、試料に
対し均一な磁場を与える関係を満たすように選択されて
いるところのプローブ。
5. The probe according to claim 4, wherein the diameter of the exciting coil and the distance between the upper and lower coils are selected so as to satisfy the relationship of giving a uniform magnetic field to the sample.
【請求項6】 請求項5記載のプローブであって、さら
に、 前記励磁コイルの外側に同軸に配置され、試料を挟んで
上下に直列に且つ共軸に連結された、検知コイルに発生
する励磁磁場による電圧を打ち消すための打ち消しコイ
ルを含むプローブ。
6. The probe according to claim 5, further comprising: an excitation generated in a detection coil, which is coaxially arranged outside the excitation coil and is connected in series vertically and coaxially with the sample interposed therebetween. A probe including a cancellation coil for canceling the voltage due to the magnetic field.
【請求項7】 請求項6記載のプローブであって、 前記打ち消しコイルは、試料の作る磁場を感じない程度
に試料から離れて配置されているところのプローブ。
7. The probe according to claim 6, wherein the canceling coil is arranged away from the sample so that a magnetic field generated by the sample is not sensed.
【請求項8】 請求項1から7記載のプローブであっ
て、 前記励磁コイルは、三角波電流が供給されることで付勢
される、ところのプローブ。
8. The probe according to claim 1, wherein the exciting coil is energized by supplying a triangular wave current.
【請求項9】 請求項1から7記載のプローブであっ
て、 前記励磁コイルは、正弦波電流が供給されることで付勢
される、ところのプローブ。
9. The probe according to claim 1, wherein the exciting coil is energized by supplying a sinusoidal current.
【請求項10】 超伝導体の臨界電流値測定装置であっ
て、 請求項1から7記載のいずれかのプローブと、 前記検出コイルに発生する励磁磁場による電圧を打ち消
すための可変相互インダスタンス系と、 該プローブの励磁コイルを作動させる励磁電源と、 前記プローブの検知コイルに接続され、検知された電圧
を増幅する検出用増幅器と、 該検出用増幅器により増幅された信号から超伝導体の臨
界電流値を算出する処理器と、から成る装置
10. A device for measuring a critical current value of a superconductor, comprising: the probe according to claim 1; and a variable mutual-instance system for canceling a voltage due to an exciting magnetic field generated in the detection coil. An exciting power source for operating the exciting coil of the probe; a detection amplifier connected to the detection coil of the probe for amplifying the detected voltage; and a critical value of the superconductor from the signal amplified by the detection amplifier. A device comprising a processor for calculating a current value
【請求項11】 請求項10記載の装置であって、前記
検出用増幅器が積分器である、ところの装置。
11. The apparatus of claim 10, wherein the detecting amplifier is an integrator.
【請求項12】 請求項10または11記載の装置を使
って超伝導体の臨界電流値を測定する方法であって、 上下の前記励磁コイル及び前記検知コイルの間に試料
を、該コイルの軸線と試料面が垂直になるように且つ上
下のコイルから等距離の位置に近接配置する工程と、 試料の磁化が十分に飽和するような大きさの且つ振幅が
一定の交流励磁電流を前記励磁コイルに供給する工程
と、 試料が無いときの検知電圧がゼロボルトになるように前
記打ち消しコイルまたは可変相互インダクタンス系を調
節する工程と、 金属試料の磁化測定から装置定数を算出する工程と、 超伝導体試料の磁化測定から上記装置定数を使って、飽
和磁化を算出する工程と、 試料の磁化曲線を使って、前記飽和磁化に対応する電流
密度を臨界電流密度として求める工程と、から成る方
法。
12. A method for measuring a critical current value of a superconductor using the apparatus according to claim 10 or 11, wherein a sample is placed between the excitation coil and the detection coil above and below, and an axis line of the coil. And a step of arranging them so that the sample surface is perpendicular and equidistant from the upper and lower coils, and an alternating exciting current of a magnitude and a constant amplitude such that the magnetization of the sample is sufficiently saturated is applied to the exciting coil. , Adjusting the cancellation coil or the variable mutual inductance system so that the detection voltage becomes zero volts when there is no sample, calculating the device constant from the magnetization measurement of the metal sample, and the superconductor. The process of calculating the saturation magnetization from the measurement of the magnetization of the sample using the above device constant, and the step of obtaining the current density corresponding to the saturation magnetization as the critical current density using the magnetization curve of the sample. A method consisting of
【請求項13】 請求項12記載の方法であって、試料
中に超伝導物質と通常金属とが混在するとき、さらに超
伝導体の磁化を分離するために、周波数を十分低くして
通常金属による磁化の影響を除外する工程を含む、とこ
ろの方法。
13. The method according to claim 12, wherein when the superconducting substance and the ordinary metal are mixed in the sample, the frequency is sufficiently lowered to further separate the magnetization of the superconductor, and the ordinary metal is used. A method comprising the step of excluding the effect of magnetization due to.
JP5353596A 1993-12-28 1993-12-28 Improved probe device and method for measuring critical superconducting current in non-contacting state Pending JPH07198770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5353596A JPH07198770A (en) 1993-12-28 1993-12-28 Improved probe device and method for measuring critical superconducting current in non-contacting state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5353596A JPH07198770A (en) 1993-12-28 1993-12-28 Improved probe device and method for measuring critical superconducting current in non-contacting state

Publications (1)

Publication Number Publication Date
JPH07198770A true JPH07198770A (en) 1995-08-01

Family

ID=18431915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5353596A Pending JPH07198770A (en) 1993-12-28 1993-12-28 Improved probe device and method for measuring critical superconducting current in non-contacting state

Country Status (1)

Country Link
JP (1) JPH07198770A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269472B1 (en) 1996-02-27 2001-07-31 Lsi Logic Corporation Optical proximity correction method and apparatus
US6426131B1 (en) 1998-08-24 2002-07-30 Lsi Logic Corporation Off-axis pupil aperture and method for making the same
JP2005127940A (en) * 2003-10-27 2005-05-19 National Institute Of Advanced Industrial & Technology Method and instrument for measuring critical current density and current-voltage characteristic of superconductor thick film
JP2006064419A (en) * 2004-08-25 2006-03-09 National Institute For Materials Science Magnetization measuring method, and magnetization measuring instrument for executing same
WO2006059497A1 (en) * 2004-12-01 2006-06-08 Kyushu Institute Of Technology Method and device for measuring critical current density of superconductor
JP2007078500A (en) * 2005-09-14 2007-03-29 National Institute Of Advanced Industrial & Technology Method and apparatus for measuring critical current density of superconductive film
JP2010286327A (en) * 2009-06-11 2010-12-24 Railway Technical Res Inst Method for estimating critical current in production of superconducting coil
JP2017219456A (en) * 2016-06-09 2017-12-14 愛知製鋼株式会社 Magnetic field measurement device
CN115128387A (en) * 2022-08-19 2022-09-30 北京东舟技术股份有限公司 Robot tail end touch screen testing system, touch screen testing system and touch screen testing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269472B1 (en) 1996-02-27 2001-07-31 Lsi Logic Corporation Optical proximity correction method and apparatus
US6426131B1 (en) 1998-08-24 2002-07-30 Lsi Logic Corporation Off-axis pupil aperture and method for making the same
JP2005127940A (en) * 2003-10-27 2005-05-19 National Institute Of Advanced Industrial & Technology Method and instrument for measuring critical current density and current-voltage characteristic of superconductor thick film
JP2006064419A (en) * 2004-08-25 2006-03-09 National Institute For Materials Science Magnetization measuring method, and magnetization measuring instrument for executing same
WO2006059497A1 (en) * 2004-12-01 2006-06-08 Kyushu Institute Of Technology Method and device for measuring critical current density of superconductor
JPWO2006059497A1 (en) * 2004-12-01 2008-08-07 国立大学法人九州工業大学 Method and device for measuring critical current density of superconductor
JP2007078500A (en) * 2005-09-14 2007-03-29 National Institute Of Advanced Industrial & Technology Method and apparatus for measuring critical current density of superconductive film
JP2010286327A (en) * 2009-06-11 2010-12-24 Railway Technical Res Inst Method for estimating critical current in production of superconducting coil
JP2017219456A (en) * 2016-06-09 2017-12-14 愛知製鋼株式会社 Magnetic field measurement device
WO2017213005A1 (en) * 2016-06-09 2017-12-14 愛知製鋼株式会社 Magnetic field measurement device
CN115128387A (en) * 2022-08-19 2022-09-30 北京东舟技术股份有限公司 Robot tail end touch screen testing system, touch screen testing system and touch screen testing method

Similar Documents

Publication Publication Date Title
EP0646790B1 (en) Method and apparatus for detecting embrittlement of metal material
US4528856A (en) Eddy current stress-strain gauge
US3359495A (en) Magnetic reaction testing apparatus and method of testing utilizing semiconductor means for magnetic field sensing of an eddy-current-reaction magnetic field
US5059902A (en) Electromagnetic method and system using voltage induced by a decaying magnetic field to determine characteristics, including distance, dimensions, conductivity and temperature, of an electrically conductive material
Yoshimura et al. Detection of slit defects on backside of steel plate using low-frequency eddy-current testing
JPH07198770A (en) Improved probe device and method for measuring critical superconducting current in non-contacting state
JPH01245149A (en) Deterioration inspection instrument for metallic material
US5218296A (en) Method and apparatus for determining at least one characteristic of a superconductive film
Hinken et al. Thermoelectric SQUID method for the detection of segregations
JP2001318080A (en) Detection coil and inspecting device using the same
JPH05149923A (en) Apparatus and method for electromagnetic induction inspection by use of change in frequency phase
Mück et al. Eddy current nondestructive material evaluation based on HTS SQUIDs
JPWO2006059497A1 (en) Method and device for measuring critical current density of superconductor
JPS62273447A (en) Method and apparatus for measuring deterioration degree of material
JP2938950B2 (en) Deterioration damage detection device for metal materials
US4675605A (en) Eddy current probe and method for flaw detection in metals
JPH0820418B2 (en) Non-contact current density measurement probe
Deyneka et al. Non-destructive testing of ferromagnetic materials using hand inductive sensor
Dalal Radia et al. Detection of Defects Using GMR and Inductive Probes
Capova et al. Recent trends in electromagnetic non-destructive sensing
JPH01269049A (en) Method of inspecting deterioration of metallic material
Mesquita et al. Development of an Electronic Instrument for Eddy Current Testing
JPH01119756A (en) Inspecting apparatus for deterioration of metal material
JPH11211698A (en) Method and apparatus for calibration of sensitivity of magnetic testing device as well as calibration
JPH0470561A (en) Method and apparatus for detecting heterogeneous layer in metal

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050317

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051011

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20091021

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101021

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20111021

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20111021

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20131021

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350