JP3845729B2 - Method and apparatus for measuring current and voltage characteristics of superconductors - Google Patents

Method and apparatus for measuring current and voltage characteristics of superconductors Download PDF

Info

Publication number
JP3845729B2
JP3845729B2 JP2003111662A JP2003111662A JP3845729B2 JP 3845729 B2 JP3845729 B2 JP 3845729B2 JP 2003111662 A JP2003111662 A JP 2003111662A JP 2003111662 A JP2003111662 A JP 2003111662A JP 3845729 B2 JP3845729 B2 JP 3845729B2
Authority
JP
Japan
Prior art keywords
current
superconductor
voltage
coil
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003111662A
Other languages
Japanese (ja)
Other versions
JP2004069674A (en
Inventor
裕文 山崎
康徳 馬渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003111662A priority Critical patent/JP3845729B2/en
Publication of JP2004069674A publication Critical patent/JP2004069674A/en
Application granted granted Critical
Publication of JP3845729B2 publication Critical patent/JP3845729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大面積超伝導膜、長尺超伝導テープ線材、および大型超伝導バルク材などの大面積・大型の超伝導体における、電流と電圧の関係(電流・電圧特性)を、非破壊的かつ非接触で評価する測定方法に関する。
【0002】
【従来の技術】
大面積超伝導膜、長尺超伝導テープ線材および大型超伝導バルク材などの大面積・大型の超伝導体は、限流器、超伝導マグネット、軸受け等、さまざまな電力機器への応用が期待されている。超伝導体の電流・電圧特性は、これらの電力機器に応用したときの超伝導体の性能を決める重要な特性であり、特に、高温超伝導酸化物においては、電流・電圧特性がなだらかであることが知られているため、さまざまな応用において、重要な役割を果たす。
【0003】
限流器においては、系統事故時の常伝導転移挙動を左右するため、機器設計に必要であり、超伝導マグネットおよび軸受けにおいては、磁束クリープによる超伝導電流の減衰を決めることから、マグネットにおける永久電流モード運転および軸受けにおける長期運転のために必要不可欠である。これらの大面積・大型の超伝導体を、さまざまな電力機器に応用するため、超伝導体の電流・電圧特性とその分布を非破壊的に非接触で、かつ簡便に評価する方法の開発が望まれていた。
【0004】
また、超伝導体の電流・電圧特性は、超伝導試料の均一性を表わすパラメーターであり、試料が均一であればあるほど、電流・電圧特性が急峻であることが知られている。従って、超伝導テープ線材や限流器用の導体等の製造工程において、その電流・電圧特性を評価すれば、プロセスの評価が可能となり、製造技術へのフィードバックをかけることができる。
【0005】
(1)超伝導体の電流・電圧特性を評価するのに最もよく用いられている方法の一つは、超伝導体に電流端子と電圧端子の4つの電極を付け、通電電流を流して電圧を測定する4端子法である。しかし、この方法を用いるためには、超伝導体を加工する必要があり、そのときの超伝導特性の劣化が問題となる。また、臨界電流以上に通電電流を流す必要があるため、急激な熱の発生等で超伝導体を壊してしまう恐れもある。
【0006】
電流・電圧特性を非破壊的に評価するのに最もよく用いられている方法の一つは、直流磁化を測定する方法であるが、これは、小さな超伝導体全体の平均的な電流・電圧特性しか評価することができない。
【0007】
(2)超伝導膜の局所的な臨界電流密度の分布を評価する方法として、超伝導膜直上に配置したコイルに流す交流電流I=Icos2πft(fは交流電流の周波数、tは時間)とコイルに生じる第3高調波誘導電圧(の振幅)Vを測定する方法がすでに提案されている。これは、Iをゼロから増加して行き、Vが大きく生じ始めるときの交流電流値I=Ithから臨界電流密度Jcを評価する方法である(下記非特許文献1参照)。
【0008】
同様の方法として、コイルに生じる第3高調波誘導電圧を測定するかわりに、駆動コイルと超伝導膜を挟んで対称の位置に検出コイルを配置し、駆動コイルに流す交流電流値Iと検出コイルに誘起される基本波誘導電圧を測定する方法もある(下記非特許文献2参照)。なお、検出コイルを駆動コイルと共巻きにして、基本波誘導電圧の変化を測定することでも、臨界電流密度を評価することができる(下記非特許文献3参照)。
【0009】
また、同様な方法で、超伝導厚膜、バルク材について、IとVの関係を詳細に解析して臨界電流密度を測定する方法がすでに提案されている(下記非特許文献4参照)。
【0010】
しかし、これらの方法では、超伝導体の臨界電流密度を測定できるのみで、電流・電圧特性までは評価できなかった。
【0011】
【非特許文献1】
J. H. Claassen, M. E. Reeves and R. J. Soulen, Jr., "A contactless method for measurement of the critical current density and critical temperature of superconducting films", Rev. Sci. Instrum. 62, 996 (1991).
【非特許文献2】
H. Hochmuth and M. Lorenz, "Inductive determination of the critical current density of superconducting thin films without lateral structuring", Physica C 220, 209 (1994).
【非特許文献3】
H. Hochmuth and M. Lorenz, "Side selective and non-destructive determination of the critical current density of double-sided superconducting thin films", Physica C 265, 335 (1996).
【非特許文献4】
馬渡康徳、山崎裕文、中川愛彦、「超伝導薄膜,バルク材における臨界電流密度と第三高調波誘導電圧」、第66回2002年度春季低温工学・超電導学会講演概要集
【0012】
【発明が解決しようとする課題】
本発明の課題は、大面積超伝導膜、長尺超伝導テープ線材、および大型超伝導バルク材などの大面積・大型の超伝導体の電流・電圧特性とその分布を、いかに非破壊的かつ非接触で測定するかである。
【0013】
【課題を解決するための手段】
本願発明は、上記課題を達成するために以下の解決手段を採用する。
(1)超伝導膜の直上に小さなコイルを配置し、該コイルに交流電流を流し、このコイルに流れる電流Iと、この電流によりコイルに誘起される第3高調波誘導電圧Vとを測定する。Iをゼロから増加して行き、Vが大きく生じ始めるときの交流電流値Ithから臨界電流密度Jcを評価するのは、上記非特許文献1と同様である。
【0014】
(2)別法として、超伝導膜の直上に小さな駆動コイルを配置し、該駆動コイルに交流電流を流し、このコイルに流れる電流Iと、この電流により駆動コイルと超伝導膜を挟んで対称の位置に配置された検出コイルに誘起される基本波誘導電圧V1を測定する。Iをゼロから増加して行き、V1が大きく生じ始めるときの交流電流値Ithから臨界電流密度Jcを評価するのは、上記非特許文献2と同様である。また、検出コイルを駆動コイルと共巻きにし、V1の変化が生じるときの交流電流値Ithから臨界電流密度Jcを評価することもできる(上記非特許文献3参照)。
【0015】
(3)コイルの電流値がIth付近のとき、超伝導体に誘起される電界(の振幅)は、コイルの作る交流磁界をHcos2πft、超伝導膜の厚さをd、真空の透磁率をμとすると、ほぼE=4μfdで与えられる。即ち、電界Eで駆動させたときに電流密度Jcの超伝導電流が流れることがわかる。従って、周波数fを変化させ、Eを変化させて、臨界電流密度Jcを複数回測定し、Jcの周波数依存性を測定することによって、電流密度と電界の関係(電流・電圧特性)を評価することができる。このことは、第3高調波誘導電圧を用いる方法(上記(1))と基本波誘導電圧を用いる方法(上記(2))の両者に当てはまる。
【0016】
【実施の態様】
(1)超伝導膜に流れる電流密度が、臨界電流密度Jcに等しいか、より小さいときに抵抗ゼロ、それより大きいときに抵抗無限大という臨界状態モデル(電流・電圧特性が無限に急峻)によれば、第3高調波誘導電圧は、V=μfIthG(I/Ith) と表わされる。ここに、Gは、コイルの形状と巻き数、超伝導膜に対する配置のみで決まるスケール関数である。従って、周波数fを変化させて、V/fをIに対して測定すると、周波数によらず、全く同じ曲線が得られるはずであり、Ithから計算される臨界電流密度Jcは、全く同じになるはずである。
【0017】
(2)しかし、実際の超伝導体においては、超伝導膜に流れる電流密度が臨界電流密度Jcより小さいときでも微小な電圧が発生しており、また、電流密度がJcより少し大きくなっても、すぐに非常に大きな抵抗(電圧)が発生するわけではなく、電流・電圧特性は、臨界状態モデルよりもなだらかである。このため、超伝導膜に流れる電流密度は駆動する電界によって決まり、通常、臨界電流密度Jcを電界の関数として定義している。
【0018】
(3)第3高調波誘導電圧測定法において、V/f対I曲線を周波数fを変化させて複数回測定した場合、全く同じ曲線が得られるわけではなく、超伝導体の電流・電圧特性を反映した変化が生ずる。そして、Ithから計算される臨界電流密度Jcも電流・電圧特性を反映して変化する。このため、V/fをIに対して測定し、IthからJcを測定することを、周波数fを変化させ、駆動する電界E=4μfdを変化させて、複数回行なえば、電流・電圧特性を評価することができる。
【0019】
(4)ここでは、第3高調波誘導電圧の測定から超伝導膜の電流・電圧特性を測定する方法を示したが、駆動コイルの近傍に配置された検出コイルに誘起される基本波誘導電圧の測定から超伝導膜の電流・電圧特性を測定することもできる。また、厚さの厚いバルク材等においても、上記特許文献4に記載の方法による臨界電流密度の測定を周波数を変えて複数回行えば、同様に、電流・電圧特性を評価することができる。
【0020】
【実施例】
図1は、コイルに流した交流電流(実効値)I/√2に対する、コイルに生じた第3高調波誘導電圧(実効値)V/√2を周波数fで割った値の特性図であり、周波数を200Hzから20kHzまで変化させて複数回測定している。この図から、Ithの周波数依存性を得ることができる。なお、この特性図のデータは、1センチ角、厚さd=550nmの超伝導YBaCu7−d膜において、液体窒素温度77.3Kで測定したものである。
【0021】
この実験に用いたコイルでは、交流磁界H(A/m)=62,000×I(A)で既知であるため、超伝導体にかかる電界E=4μfdは、各周波数において簡単に計算することができる。また、臨界電流密度Jcは、Ithに比例し、その比例係数は、実験または計算により容易に求めることができる。
【0022】
図1のデータにおいて、(第3高調波誘導電圧/周波数)=0.05μV secとなる点で、各々の周波数に対してIthを決め、それからJcを計算した。各周波数に対して、電界E=4μfdを計算し、この両者から求めた電流・電圧特性(電流密度と電界の関係)を図1の挿入図に示す。高温超伝導酸化物においてよく観測される、冪乗の電流・電圧特性(E〜J)に近い特性が得られ、n=28と計算されたが、細かく見ると冪乗からのずれが観測された。このずれの原因について調べたところ、第3高調波誘導電圧を測定する際のノイズに起因することがわかったため、そのノイズを低減する工夫を行なった。
【0023】
図2に、ノイズ低減用のキャンセルコイルを含む測定回路の模式図を示す。キャンセルコイルは、試料コイルと同一仕様で製作したコイルであり、臨界電流密度及び臨界電流の大きい(試料薄膜とは別の)超伝導薄膜の直上に配置されているため、試料コイルとほぼ等しい電気抵抗、インダクタンスを有する。発振器及び電力増幅器を用いて、試料コイル及びそれと直列に接続したキャンセルコイルに周波数fの交流電流を流し、それらのコイルに発生した第3高調波誘導電圧を測定するわけであるが、図に示すように、A点の電圧からB点の電圧の2倍を減じた電圧を測定すれば、発振器及び電力増幅器に起因する高調波ノイズ電圧を有効に除去することができ、試料コイルの直下に配置された試料薄膜に起因する信号電圧Vのみを正確に測定することができる。
【0024】
図3に、図2の測定回路を用いて測定した、I/√2対V/√2fの特性図を示すが、この図では、周波数を100Hzから20kHzまで変化させて複数回測定している。なお、この特性図のデータは、1センチ角、厚さd=250nmの超伝導YBaCu7−d膜において、液体窒素温度77.3Kで測定したものである。図3のデータにおいて、V/√2f=0.05μV sec となる点で、各々の周波数に対してIthを決め、それからJcを計算した。各周波数に対して、電界E=4μfdを計算し、この両者から求めた電流・電圧特性(電流密度と電界の関係)を図4に示す。ノイズ低減の効果で、ほぼ冪乗の電流・電圧特性(E〜J)が観測され、n=20.8と計算された。なお、図4の挿入図には、同じ電流・電圧特性を線形スケールで示している。
【0025】
【発明の効果】
本願発明によれば、コイルに流す交流電流Iとコイルに生じる第3高調波誘導電圧Vの関係を、周波数fを変化させて複数回測定し、Vが大きく生じ始めるときの交流電流値Ithの周波数依存性を調べることによって、局所的な電流・電圧特性を評価することが可能になる。こうして、大面積超伝導膜や超伝導テープ線材を電力機器に応用する上で重要な特性である電流・電圧特性を正しく評価することができる。
【0026】
また、超伝導バルク材のように厚さが厚い場合でも、IとVの関係を、周波数fを変化させて複数回測定することによって、電流・電圧特性を評価することが可能になる。
超伝導体の上でコイルを走査させて測定を行えば、電流・電圧特性の分布を評価することが可能である。
【図面の簡単な説明】
【図1】 超伝導薄膜において、コイルに流した交流電流I/√2に対する、コイルに生じた第3高調波誘導電圧V/√2を周波数fで割った値の特性図である。周波数を200Hzから20kHzまで変化させて複数回測定している。挿入図は、このデータから計算された電流・電圧特性を示す。
【図2】 第3高調波誘導電圧のノイズ低減用のキャンセルコイルを含む測定回路の模式図。
【図3】 図2の測定回路を用いて測定した、I/√2対V/√2fの特性図。周波数を100Hzから20kHzまで変化させて複数回測定している。
【図4】 本発明によって評価された、超伝導薄膜の電流・電圧特性。本図はログスケール、挿入図は線形スケールで表示している。
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a non-destructive relationship between current and voltage (current / voltage characteristics) in large-area and large-sized superconductors such as large-area superconducting films, long superconducting tape wires, and large superconducting bulk materials. The present invention relates to a measurement method that evaluates automatically and non-contactly.
[0002]
[Prior art]
Large-area and large-sized superconductors such as large-area superconducting films, long superconducting tape wires, and large superconducting bulk materials are expected to be applied to various power devices such as current limiters, superconducting magnets, and bearings. Has been. The current / voltage characteristics of superconductors are important characteristics that determine the performance of superconductors when applied to these power devices. Especially in high-temperature superconducting oxides, the current / voltage characteristics are gentle. As it is known, it plays an important role in various applications.
[0003]
In the case of a current limiter, it is necessary for equipment design because it affects the normal conduction transition behavior at the time of a system fault.For superconducting magnets and bearings, the attenuation of superconducting current due to magnetic flux creep is determined. Essential for current mode operation and long term operation in bearings. In order to apply these large-area and large-sized superconductors to various power devices, there is a development of a non-destructive, non-contact and simple method for evaluating the current / voltage characteristics and distribution of superconductors. It was desired.
[0004]
The current / voltage characteristics of a superconductor are parameters that represent the uniformity of a superconducting sample. It is known that the more uniform the sample, the sharper the current / voltage characteristics. Therefore, if the current / voltage characteristics are evaluated in the manufacturing process of a superconducting tape wire or a current limiter conductor, the process can be evaluated and feedback to the manufacturing technology can be applied.
[0005]
(1) One of the most commonly used methods for evaluating the current / voltage characteristics of a superconductor is to attach four electrodes, a current terminal and a voltage terminal, to the superconductor and pass an energizing current to the voltage. Is a four-terminal method. However, in order to use this method, it is necessary to process the superconductor, and deterioration of the superconducting characteristics at that time becomes a problem. In addition, since it is necessary to pass an energizing current higher than the critical current, there is a possibility that the superconductor may be broken due to sudden heat generation.
[0006]
One of the most commonly used methods to non-destructively evaluate current / voltage characteristics is to measure DC magnetization, which is the average current / voltage of a small superconductor. Only properties can be evaluated.
[0007]
(2) As a method for evaluating the distribution of the local critical current density of the superconducting film, the alternating current I = I 0 cos2πft flowing through the coil disposed immediately above the superconducting film (f is the frequency of the alternating current, and t is the time) And a method of measuring the third harmonic induced voltage (amplitude) V 3 generated in the coil has already been proposed. This is a method of evaluating the critical current density Jc from the alternating current value I 0 = I th when I 0 is increased from zero and V 3 starts to greatly occur (see Non-Patent Document 1 below).
[0008]
As a similar method, instead of measuring the third harmonic induced voltage generated in the coil, a detection coil is arranged at a symmetrical position across the drive coil and the superconducting film, and the AC current value I 0 flowing through the drive coil is detected. There is also a method of measuring the fundamental wave induced voltage induced in the coil (see Non-Patent Document 2 below). The critical current density can also be evaluated by measuring the change of the fundamental wave induced voltage with the detection coil being wound together with the drive coil (see Non-Patent Document 3 below).
[0009]
In addition, a method for measuring the critical current density by analyzing the relationship between I 0 and V 3 in detail for a superconducting thick film and a bulk material by a similar method has already been proposed (see Non-Patent Document 4 below). .
[0010]
However, these methods can only measure the critical current density of the superconductor and cannot evaluate the current / voltage characteristics.
[0011]
[Non-Patent Document 1]
JH Claassen, ME Reeves and RJ Soulen, Jr., "A contactless method for measurement of the critical current density and critical temperature of superconducting films", Rev. Sci. Instrum. 62, 996 (1991).
[Non-Patent Document 2]
H. Hochmuth and M. Lorenz, "Inductive determination of the critical current density of superconducting thin films without lateral structuring", Physica C 220, 209 (1994).
[Non-Patent Document 3]
H. Hochmuth and M. Lorenz, "Side selective and non-destructive determination of the critical current density of double-sided superconducting thin films", Physica C 265, 335 (1996).
[Non-Patent Document 4]
Yasunori Mawatari, Hirofumi Yamazaki, Aihiko Nakagawa, “Critical Current Density and Third Harmonic Induced Voltage in Superconducting Thin Films and Bulk Materials”, 66th Annual Spring Cryogenic Engineering and Superconductivity Society Presentations [0012]
[Problems to be solved by the invention]
The object of the present invention is to determine how non-destructive the current / voltage characteristics and distribution of large-area / large-sized superconductors such as large-area superconducting films, long superconducting tape wires, and large superconducting bulk materials are. Whether to measure without contact.
[0013]
[Means for Solving the Problems]
The present invention employs the following means for solving the above-mentioned problems.
(1) A small coil is disposed immediately above the superconducting film, an alternating current is passed through the coil, a current I 0 flowing through the coil, and a third harmonic induction voltage V 3 induced in the coil by the current are obtained. taking measurement. Continue to increase the I 0 from zero, to evaluate the critical current density Jc from the AC current value I th at which V 3 begins to occur largely is similar to Non-Patent Document 1.
[0014]
(2) As an alternative method, a small drive coil is arranged immediately above the superconducting film, an alternating current is passed through the driving coil, a current I 0 flowing through the coil, and the current is sandwiched between the driving coil and the superconducting film. A fundamental wave induced voltage V 1 induced in a detection coil arranged at a symmetric position is measured. Continue to increase the I 0 from zero, to evaluate the critical current density Jc from the AC current value I th at which V 1 is begins to occur largely is similar to Non-Patent Document 2. Also, the detection coil and the drive coil and the co-winding, it is also possible to evaluate the critical current density Jc from the AC current value I th when the change in V 1 is generated (see Non-Patent Document 3).
[0015]
(3) when the current value of the coil in the vicinity of I th, the electric field induced in the superconductor (amplitude) is, H 0 cos2πft an alternating magnetic field generated by the coil, the thickness of the superconducting film d, vacuum magnetic When the magnetic permeability and mu 0, is given by approximately E 0 = 4μ 0 H 0 fd . That is, it can be seen that the superconducting current density Jc flows when driven by an electric field E 0. Therefore, the relationship between the current density and the electric field (current / voltage characteristics) is evaluated by changing the frequency f, changing E 0 , measuring the critical current density Jc multiple times, and measuring the frequency dependence of Jc. can do. This applies to both the method using the third harmonic induced voltage (above (1)) and the method using the fundamental induced voltage (above (2)).
[0016]
Embodiment
(1) A critical state model (current / voltage characteristics are infinitely steep) in which the current density flowing in the superconducting film is equal to or smaller than the critical current density Jc, the resistance being zero, and the larger current density being infinite. Accordingly, the third harmonic induced voltage is expressed as V 3 = μ 0 fI th G (I 0 / I th ). Here, G is a scale function determined only by the shape and number of turns of the coil and the arrangement with respect to the superconducting film. Therefore, if the frequency f is changed and V 3 / f is measured with respect to I 0 , the same curve should be obtained regardless of the frequency, and the critical current density Jc calculated from I th is Should be the same.
[0017]
(2) However, in an actual superconductor, a minute voltage is generated even when the current density flowing in the superconducting film is smaller than the critical current density Jc, and even if the current density is slightly higher than Jc. However, a very large resistance (voltage) is not generated immediately, and the current / voltage characteristics are gentler than the critical state model. For this reason, the current density flowing in the superconducting film is determined by the electric field to be driven, and usually the critical current density Jc is defined as a function of the electric field.
[0018]
(3) In the third harmonic induced voltage measurement method, when the V 3 / f vs. I 0 curve is measured a plurality of times while changing the frequency f, the exact same curve is not obtained, and the current of the superconductor Changes that reflect the voltage characteristics occur. Then, the critical current density Jc, which is calculated from the I th also changes to reflect the current-voltage characteristics. For this reason, measuring V 3 / f with respect to I 0 and measuring Jc from I th is performed several times by changing the frequency f and changing the driving electric field E 0 = 4 μ 0 H 0 fd. If so, current / voltage characteristics can be evaluated.
[0019]
(4) Although the method of measuring the current / voltage characteristics of the superconducting film from the measurement of the third harmonic induced voltage is shown here, the fundamental wave induced voltage induced in the detection coil arranged in the vicinity of the drive coil From this measurement, the current / voltage characteristics of the superconducting film can be measured. Further, even in a thick bulk material or the like, if the measurement of the critical current density by the method described in Patent Document 4 is performed a plurality of times at different frequencies, the current / voltage characteristics can be similarly evaluated.
[0020]
【Example】
FIG. 1 is a characteristic diagram of a value obtained by dividing a third harmonic induced voltage (effective value) V 3 / √2 generated in a coil by a frequency f with respect to an alternating current (effective value) I 0 / √2 passed through the coil. The frequency is changed from 200 Hz to 20 kHz, and the measurement is performed a plurality of times. From this figure, the frequency dependence of I th can be obtained. The data in this characteristic diagram was measured at a liquid nitrogen temperature of 77.3 K in a superconducting YBa 2 Cu 3 O 7-d film having a 1 cm square and a thickness d = 550 nm.
[0021]
Since the coil used in this experiment is known with an alternating magnetic field H 0 (A / m) = 62,000 × I 0 (A), the electric field E 0 = 4 μ 0 H 0 fd applied to the superconductor is It can be easily calculated in frequency. The critical current density Jc is proportional to I th, the proportionality factor can be determined easily by experiment or calculation.
[0022]
In the data of FIG. 1, I th was determined for each frequency at a point where (third harmonic induction voltage / frequency) = 0.05 μV sec, and Jc was calculated therefrom. The electric field E 0 = 4 μ 0 H 0 fd is calculated for each frequency, and the current / voltage characteristics (relationship between current density and electric field) obtained from both are shown in the inset of FIG. A characteristic close to the power / voltage characteristics (E to J n ) of the power, which is often observed in high-temperature superconducting oxides, was obtained and calculated to be n = 28. It was done. When the cause of this deviation was examined, it was found that it was caused by noise when measuring the third harmonic induced voltage. Therefore, a device for reducing the noise was devised.
[0023]
FIG. 2 is a schematic diagram of a measurement circuit including a cancel coil for noise reduction. The cancel coil is a coil manufactured with the same specifications as the sample coil, and is disposed directly on the superconducting thin film (separate from the sample thin film) having a large critical current density and critical current. Has resistance and inductance. Using an oscillator and a power amplifier, an AC current having a frequency f is passed through a sample coil and a cancel coil connected in series with the sample coil, and the third harmonic induced voltage generated in these coils is measured. Thus, if the voltage obtained by subtracting twice the voltage at the B point from the voltage at the A point is measured, the harmonic noise voltage caused by the oscillator and the power amplifier can be effectively removed, and the voltage is arranged immediately below the sample coil. have been only the signal voltage V 3 resulting from the thin film sample can be measured accurately.
[0024]
FIG. 3 shows a characteristic diagram of I 0 / √2 vs. V 3 / √2f measured using the measurement circuit of FIG. 2. In this figure, the frequency was changed from 100 Hz to 20 kHz and measured several times. ing. The data in this characteristic diagram was measured at a liquid nitrogen temperature of 77.3 K in a superconducting YBa 2 Cu 3 O 7-d film having a 1 cm square and a thickness d = 250 nm. In the data of FIG. 3, I th was determined for each frequency at a point where V 3 /√2f=0.05 μV sec, and Jc was calculated therefrom. For each frequency, the electric field E 0 = 4 μ 0 H 0 fd is calculated, and the current / voltage characteristics (relationship between current density and electric field) obtained from both are shown in FIG. Due to the effect of noise reduction, a nearly square current-voltage characteristic (E to J n ) was observed, and n = 20.8 was calculated. In the inset of FIG. 4, the same current / voltage characteristics are shown on a linear scale.
[0025]
【The invention's effect】
According to the present invention, the relationship between the AC current I 0 flowing through the coil and the third harmonic induced voltage V 3 generated in the coil is measured a plurality of times while changing the frequency f, and the AC current when V 3 starts to be greatly generated. by examining the frequency dependence of the value I th, it is possible to evaluate the local current-voltage characteristic. In this way, current / voltage characteristics, which are important characteristics in applying large-area superconducting films and superconducting tape wires to power equipment, can be evaluated correctly.
[0026]
Further, even when the thickness is large like a superconducting bulk material, it is possible to evaluate the current / voltage characteristics by measuring the relationship between I 0 and V 3 a plurality of times while changing the frequency f. .
If measurement is performed by scanning a coil on a superconductor, it is possible to evaluate the distribution of current / voltage characteristics.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram of a value obtained by dividing a third harmonic induction voltage V 3 / √2 generated in a coil by a frequency f with respect to an alternating current I 0 / √2 passed through the coil in a superconducting thin film. The frequency is measured several times while changing from 200 Hz to 20 kHz. The inset shows the current-voltage characteristics calculated from this data.
FIG. 2 is a schematic diagram of a measurement circuit including a cancel coil for noise reduction of a third harmonic induced voltage.
FIG. 3 is a characteristic diagram of I 0 / √2 vs. V 3 / √2f measured using the measurement circuit of FIG. The frequency is changed from 100 Hz to 20 kHz and is measured a plurality of times.
FIG. 4 shows current-voltage characteristics of a superconducting thin film evaluated according to the present invention. This figure shows the log scale, and the inset shows the linear scale.

Claims (8)

超伝導体の近傍に配置したコイルに交流電流を流し、該交流電流及び該交流電流により該コイルに誘起される第3高調波誘導電圧を検出することにより、該交流電流の周波数における該超伝導体の臨界電流密度を測定する工程と、該周波数と異なる周波数において、該工程を複数回行なうことによって、超伝導体の電流・電圧特性を求めることを特徴とする超伝導体の電流・電圧特性測定方法。An alternating current is passed through a coil disposed in the vicinity of the superconductor, and the alternating current and a third harmonic induced voltage induced in the coil by the alternating current are detected, whereby the superconductivity at the frequency of the alternating current is detected. A current-voltage characteristic of a superconductor characterized by determining a current-voltage characteristic of a superconductor by measuring the critical current density of the body and performing the process a plurality of times at a frequency different from the frequency. Measuring method. 請求項1に記載された超伝導体の電流・電圧特性測定方法において、上記超伝導体の電流・電圧特性は、上記第3高調波誘導電圧の振幅をV3、上記交流電流の周波数をf、上記交流電流をIとしたときに、V3/fをIに対して測定することにより求めることを特徴とする超伝導体の電流・電圧特性測定方法。2. The method of measuring current / voltage characteristics of a superconductor according to claim 1, wherein the current / voltage characteristics of the superconductor are: the amplitude of the third harmonic induced voltage is V3, the frequency of the alternating current is f, A method for measuring current / voltage characteristics of a superconductor, wherein V3 / f is measured with respect to I 0 when the alternating current is I 0 . 請求項1に記載された超伝導体の電流・電圧特性測定方法において、上記コイルに誘起される第3高調波誘導電圧を検出する際に、該コイルとは別体の該コイルと同一仕様で作製されたキャンセルコイルを上記超伝導体よりも高い臨界電流を有する別の超伝導体の近傍に配置して、第3高調波誘導電圧のノイズを低減することを特徴とする超伝導体の電流・電圧特性測定方法。2. The method of measuring current and voltage characteristics of a superconductor according to claim 1, wherein the third harmonic induced voltage induced in the coil is detected with the same specification as that of the coil separate from the coil. A superconductor current characterized in that the produced canceling coil is arranged in the vicinity of another superconductor having a higher critical current than the superconductor to reduce the noise of the third harmonic induced voltage. -Voltage characteristic measurement method. 請求項1ないし3のいずれかに記載された超伝導体の電流・電圧特性測定方法において、上記コイルを該超伝導体の各点に配置することにより、上記超伝導体の局所的な各点における電流・電圧特性を求めることを特徴とする超伝導体の電流・電圧特性測定方法。4. The method of measuring current / voltage characteristics of a superconductor according to claim 1, wherein the coil is disposed at each point of the superconductor to thereby provide local points of the superconductor. A method for measuring current / voltage characteristics of a superconductor, characterized in that the current / voltage characteristics are determined. 超伝導体の近傍に配置したコイルに交流電流を流し、該交流電流及び該交流電流により該コイルに誘起される第3高調波誘導電圧を検出することにより、該交流電流の周波数における該超伝導体の臨界電流密度を測定する工程と、該周波数と異なる周波数において、該工程を複数回行なうことによって、超伝導体の電流・電圧特性を求めることを特徴とする超伝導体の電流・電圧特性測定装置。An alternating current is passed through a coil disposed in the vicinity of the superconductor, and the alternating current and a third harmonic induced voltage induced in the coil by the alternating current are detected, whereby the superconductivity at the frequency of the alternating current is detected. A current-voltage characteristic of a superconductor characterized by determining a current-voltage characteristic of a superconductor by measuring the critical current density of the body and performing the process a plurality of times at a frequency different from the frequency. measuring device. 請求項に記載された超伝導体の電流・電圧特性測定装置において、上記超伝導体の電流・電圧特性は、上記第3高調波誘導電圧の振幅をV3、上記交流電流の周波数をf、上記交流電流をIとしたときに、V3/fをIに対して測定することにより求めることを特徴とする超伝導体の電流・電圧特性測定装置。6. The apparatus for measuring current / voltage characteristics of a superconductor according to claim 5 , wherein the current / voltage characteristics of the superconductor are such that the amplitude of the third harmonic induced voltage is V3, the frequency of the alternating current is f, the alternating current is taken as I 0, V3 / f superconductor current-voltage characteristic measurement apparatus, characterized in that determined by measuring relative I 0. 請求項に記載された超伝導体の電流・電圧特性測定装置において、上記コイルに誘起される第3高調波誘導電圧を検出する際に、該コイルとは別体の該コイルと同一仕様で作製されたキャンセルコイルを上記超伝導体よりも高い臨界電流を有する別の超伝導体の近傍に配置して、第3高調波誘導電圧のノイズを低減することを特徴とする超伝導体の電流・電圧特性測定装置。6. The apparatus for measuring current / voltage characteristics of a superconductor according to claim 5 , wherein the third harmonic induced voltage induced in the coil is detected with the same specification as that of the coil separate from the coil. A superconductor current characterized in that the produced canceling coil is arranged in the vicinity of another superconductor having a higher critical current than the superconductor to reduce the noise of the third harmonic induced voltage. -Voltage characteristic measuring device. 請求項5ないし7のいずれかに記載された超伝導体の電流・電圧特性測定装置において、上記コイルを該超伝導体の各点に配置することにより、上記超伝導体の局所的な各点における電流・電圧特性を求めることを特徴とする超伝導体の電流・電圧特性測定装置。8. The superconductor current / voltage characteristic measuring apparatus according to claim 5, wherein the coil is arranged at each point of the superconductor to thereby provide local points of the superconductor. A device for measuring current / voltage characteristics of a superconductor, characterized in that the current / voltage characteristics of a superconductor are obtained.
JP2003111662A 2002-06-10 2003-04-16 Method and apparatus for measuring current and voltage characteristics of superconductors Expired - Lifetime JP3845729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111662A JP3845729B2 (en) 2002-06-10 2003-04-16 Method and apparatus for measuring current and voltage characteristics of superconductors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002167991 2002-06-10
JP2003111662A JP3845729B2 (en) 2002-06-10 2003-04-16 Method and apparatus for measuring current and voltage characteristics of superconductors

Publications (2)

Publication Number Publication Date
JP2004069674A JP2004069674A (en) 2004-03-04
JP3845729B2 true JP3845729B2 (en) 2006-11-15

Family

ID=32032142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111662A Expired - Lifetime JP3845729B2 (en) 2002-06-10 2003-04-16 Method and apparatus for measuring current and voltage characteristics of superconductors

Country Status (1)

Country Link
JP (1) JP3845729B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310431B2 (en) * 2003-10-27 2009-08-12 独立行政法人産業技術総合研究所 Method and apparatus for measuring critical current density and current / voltage characteristics of superconducting thick film
JPWO2006059497A1 (en) * 2004-12-01 2008-08-07 国立大学法人九州工業大学 Method and device for measuring critical current density of superconductor
CN1963477B (en) * 2006-11-08 2011-03-30 中国科学院电工研究所 Method and apparatus for non-contact serial measurement of uniformity of n index of superconducting line/ strip steel rolled stock
KR100957623B1 (en) 2009-10-30 2010-05-13 한국전력공사 Ac loss measurement device of high temperature superconductor
KR101597028B1 (en) * 2014-05-08 2016-02-24 두산중공업 주식회사 Estimation method and device of superconducting wire
RU2628452C1 (en) * 2016-07-07 2017-08-16 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Device for determining parameters of tape superconductors

Also Published As

Publication number Publication date
JP2004069674A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
Yamasaki et al. Nondestructive determination of current–voltage characteristics of superconducting films by inductive critical current density measurements as a function of frequency
Ohshima et al. A simple measurement technique for critical current density by using a permanent magnet
JP3845729B2 (en) Method and apparatus for measuring current and voltage characteristics of superconductors
GB1499164A (en) Testing an elongate conductor consisting at least partially of superconductor material
JP2007078500A (en) Method and apparatus for measuring critical current density of superconductive film
Mawatari et al. Inductive measurements of third-harmonic voltage and critical current density in bulk superconductors
WO2006059497A1 (en) Method and device for measuring critical current density of superconductor
JP3937010B2 (en) Method and apparatus for measuring critical current density of superconductor
Grimes et al. Swept frequency permeameters for measuring the complex, off‐diagonal permeability tensor components of anisotropic, thin magnetic films
Yamasaki et al. Precise determination of the threshold current for third-harmonic voltage generation in the ac inductive measurement of critical current densities of superconducting thin films
JP4310431B2 (en) Method and apparatus for measuring critical current density and current / voltage characteristics of superconducting thick film
Yang et al. AC VI characteristics of Ag sheathed PbBi2223 tapes up to 10 kHz: phenomena and interpretations
Zinke et al. Linear AC magnetic circuit theory
Buckley et al. Use of a bulk high T/sub c/magnetometer for non-destructive evaluation
Zannella et al. AC losses in transport current regime in applied AC magnetic field: experimental analysis and modeling [superconducting cables]
Senapati et al. Miniature Hall sensor based ac susceptometer for measurements of vortex and superfluid dynamics in superconducting films
JP2912003B2 (en) Method for measuring magnetic properties of superconductors
Nakane A method for simultaneously measuring resistivity and the Meissner effect of a superconductor used with a solenoid coil
Yamasaki et al. Nondestructive, inductive measurement of critical current densities of superconducting films in magnetic fields
Tsukamoto et al. Dependence of AC transport current losses of HTS wires on their structures and synthesizing processes
EP0408134A2 (en) Device and methodology for characterizing superconductive materials
Yamasaki et al. Nondestructive inductive measurement of local critical current densities in Bi-2223 thick films
Karthikeyan et al. Magnetic shielding and harmonic generation in high-Tc superconducting tubes
Kiwa et al. Non-contact thickness gauge for conductive materials using HTS SQUID system
Hamajima et al. A mechanism causing an additional AC loss in a large CICC coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

R150 Certificate of patent or registration of utility model

Ref document number: 3845729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term