JP2003207526A - Method and device for measuring critical current density of semiconductor - Google Patents

Method and device for measuring critical current density of semiconductor

Info

Publication number
JP2003207526A
JP2003207526A JP2002068563A JP2002068563A JP2003207526A JP 2003207526 A JP2003207526 A JP 2003207526A JP 2002068563 A JP2002068563 A JP 2002068563A JP 2002068563 A JP2002068563 A JP 2002068563A JP 2003207526 A JP2003207526 A JP 2003207526A
Authority
JP
Japan
Prior art keywords
coil
superconductor
current density
current
critical current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002068563A
Other languages
Japanese (ja)
Other versions
JP3937010B2 (en
Inventor
Yasunari Motai
康徳 馬渡
Hirofumi Yamazaki
裕文 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002068563A priority Critical patent/JP3937010B2/en
Publication of JP2003207526A publication Critical patent/JP2003207526A/en
Application granted granted Critical
Publication of JP3937010B2 publication Critical patent/JP3937010B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method and device for nondestructively evaluating a local value of critical current density and its distribution in no contact in a large-area and large-size superconductor such as large-area membrane, lengthy wire rod, or bulk material, particularly, with a large thickness. <P>SOLUTION: In this method for measuring critical current density of a superconductor, the superconductor is divided to blocks of a prescribed shape, a coil is arranged in one block, AC current is carried to the coil, the current carried to the coil and a third harmonic induced voltage induced in the coil are detected, and the critical current density is determined from a prescribed arithmetic expression showing the relation between the current and the voltage under a prescribed condition. The position of the coil is successively moved to other blocks, and the above operations are repeated to determine the distribution of critical current density every block. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention 【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

【001】本発明は、大面積超伝導膜、長尺超伝導テー
プ線材、および大型超伝導バルク材などの大面積・大型
の超伝導体の臨界電流密度の局所的な値とその分布を、
非破壊的かつ非接触で評価する測定方法および測定装置
に関する。
The present invention provides local values of critical current densities and distributions of large-area and large-sized superconductors such as large-area superconducting films, long superconducting tape wire materials, and large-sized superconducting bulk materials.
The present invention relates to a measuring method and a measuring device for nondestructive and noncontact evaluation.

【従来の技術】大面積超伝導膜、長尺超伝導テープ線
材、および大型超伝導バルク材などの大面積・大型の超
伝導体は、限流器、送電ケーブル、軸受など、様々な電
力機器への応用が期待されている。超伝導体における臨
界電流密度は、これらの電力機器に応用したときの性能
を決める重要なパラメータである。高い臨界電流密度が
均一に分布した、大面積・大型で高品質の超伝導体の開
発・作製を行うために、局所的な臨界電流密度とその分
布を非破壊的に非接触で、かつ簡便に評価する方法の開
発が望まれていた。
2. Description of the Related Art Large-area and large-scale superconductors such as large-area superconducting films, long superconducting tape wire materials, and large-sized superconducting bulk materials are used in various electric power devices such as fault current limiters, power transmission cables and bearings Is expected to be applied. The critical current density in superconductors is an important parameter that determines the performance when applied to these power devices. In order to develop and fabricate a large area, large size, and high-quality superconductor in which the high critical current density is uniformly distributed, the local critical current density and its distribution are non-destructive, non-contact, and simple. It was desired to develop a method for evaluation.

【002】[002]

【発明が解決しようとする課題】(1)超伝導体の臨界
電流密度を評価するのに最もよく用いられている方法の
一つは、超伝導体に電極をつけて電流・電圧特性を測定
する四端子法である。四端子法を用いるためには超伝導
体を加工する必要があり、そのときの超伝導特性の劣化
が問題となる。また、この方法では、比較的小さい超伝
導体の臨界電流密度しか評価することができない。臨界
電流密度を非破壊的に非接触で評価するのに最もよく用
いられている方法の一つは、直流磁化を測定する方法で
ある。これは比較的小さい超伝導体全体の平均的な臨界
電流密度しか評価することができない。 (2)超伝導膜の局所的な臨界電流密度の分布を評価す
る方法として、コイルに流す交流電流とコイルに生じる
第三高調波誘導電圧を測定する方法がすでに提案されて
いる。それは、交流電流を零から増加していき、第三高
調波誘導電圧が大きく生じはじめる時の交流電流値I
thから臨界電流密度を評価する方法である。(文献
[1]:J.H.Claassen,M.E.Reev
es,and R.J.Soulen、Jr.,A c
ontactless method for mea
surement of the critical
current density and criti
cal temperature of superc
onducting films,Rev.Sci.I
nstrum.62,996(1991)参照。)
(1) One of the most commonly used methods for evaluating the critical current density of a superconductor is to measure the current-voltage characteristics by attaching electrodes to the superconductor. It is a four-terminal method. In order to use the four-terminal method, it is necessary to process the superconductor, and the deterioration of superconducting properties at that time becomes a problem. In addition, this method can evaluate only the critical current density of a relatively small superconductor. One of the most commonly used methods for non-destructively and non-contact evaluation of the critical current density is a method of measuring direct current magnetization. It can only evaluate the average critical current density over a relatively small superconductor. (2) As a method of evaluating the distribution of the local critical current density of the superconducting film, a method of measuring an alternating current flowing in the coil and a third harmonic induction voltage generated in the coil has already been proposed. That is, the alternating current value I when the third harmonic induced voltage starts to increase largely as the alternating current increases from zero.
This is a method of evaluating the critical current density from th . (Reference [1]: JH Classen, ME Reev.
es, and R.S. J. Soulen, Jr. , A c
ontactless method for mea
maintenance of the critical
current density and criti
cal temperature of superc
onducing films, Rev. Sci. I
nstrum. 62, 996 (1991). )

【003】しかし、この交流電流値Ithは、臨界電流
密度Jと超伝導体の厚さdの積Jdに比例し、dが
大きい超伝導体においてはコイル電流IがIthに達
することが出来ず、Jの測定が不可能になる場合があ
る。 (3)また、第三高調波誘導電圧から臨界電流密度を評
価する別の方法として、比較的小さな円柱状、あるいは
平板状の超伝導体に用いられる方法がある。(文献
[2]:C.P.Bean,Magnetizatio
n of high−field supercond
uctors,Rev.Mod.Phys.36,31
(1964)参照。) この方法では、超伝導体を取り囲むようにコイルを配置
する必要があるため、この方法を大面積・大型の超伝導
体に用いることはできないし、また、超伝導体全体の平
均的な臨界電流密度だけしか評価することができない。
すなわち、この方法では、大面積・大型の超伝導体の臨
界電流密度を局所的に評価することはできず、臨界電流
密度が均一に分布した高品質の超伝導体ができているか
どうか調べることは不可能であった。
However, this alternating current value I th is proportional to the product J cd of the critical current density J c and the thickness d of the superconductor, and in a superconductor having a large d, the coil current I 0 is I th. In some cases, J c cannot be measured and J c cannot be measured. (3) As another method for evaluating the critical current density from the third harmonic induction voltage, there is a method used for a relatively small columnar or plate-shaped superconductor. (Reference [2]: CP Bean, Magnetizatio.
no of high-field supercond
octors, Rev. Mod. Phys. 36,31
See (1964). ) In this method, it is necessary to arrange the coil so as to surround the superconductor, so this method cannot be used for large-area and large-sized superconductors. Only the current density can be evaluated.
In other words, this method cannot locally evaluate the critical current density of large-area / large-scale superconductors, and examines whether or not high-quality superconductors with evenly distributed critical current density are produced. Was impossible.

【004】様々な応用が期待される、高い臨界電流密度
が均一に分布した大面積・大型の超伝導体の開発・作製
を行うために、臨界電流密度の局所的な値がいくらか、
また臨界電流密度が均一に分布しているかどうかを非破
壊的に評価する方法の開発が必要不可欠である。大面積
の超伝導膜の局所的な臨界電流密度とその分布を非破壊
的に評価するのに、上記(2)に示されている方法が用
いられているが、この方法では、厚さdが大きくて、
(d>I/kJ:但し、kはコイルの形状や配置な
どで決まる比例定数。)磁場を遮蔽することができる超
伝導体の臨界電流密度を評価することができなかった。
本発明の目的は、これらの問題点に鑑み、大面積膜、長
尺線材、バルク材などの大面積・大型超伝導体におい
て、特に厚さが大きい場合の臨界電流密度の局所的な値
とその分布を、非破壊的かつ非接触で評価する測定方法
および測定装置を提供することにある。
In order to develop and fabricate a large-area / large-sized superconductor in which a high critical current density is uniformly distributed, which is expected to have various applications, some local values of the critical current density are required.
It is also essential to develop a method for nondestructively evaluating whether or not the critical current density is evenly distributed. The method shown in the above (2) is used for nondestructively evaluating the local critical current density and its distribution of a large area superconducting film. In this method, the thickness d Is big,
(D> I 0 / kJ c : where k is a proportional constant determined by the shape and arrangement of the coil.) The critical current density of a superconductor capable of shielding a magnetic field could not be evaluated.
In view of these problems, the object of the present invention is to provide a local value of the critical current density in a large-area / large-sized superconductor such as a large-area film, a long wire, or a bulk material, especially when the thickness is large. It is an object of the present invention to provide a measuring method and a measuring device that evaluate the distribution in a non-destructive and non-contact manner.

【005】[0095]

【課題を解決するための手段】本発明は上記課題を達成
するために以下の解決手段を採用する。 (1)超伝導体の臨界電流密度の測定方法において、超
伝導体を所定形状のブロックに仮想的に分割し、一つの
ブロックにコイルを配置し、コイルに交流電流を流し、
このコイルに流す電流Iと、この電流Iによりコイ
ルに誘起される第三高調波誘導電圧Vとを検出し、所
定条件のもとに前記電流Iと前記電圧V との間の関
係を表す所定の演算式から臨界電流密度を求め、コイル
の位置を別のブロックに移動させて以上の操作を繰り返
して各ブロック毎の臨界電流密度の分布を求めること。 (2)上記(1)記載の超伝導体の臨界電流密度の測定
方法において、上記演算式を (i)小電流0<I−Ic1<<Ic1の場合: V=(Gf/J)Ic1 −b(I−Ic1
2+b, (ii)大電流Ic1<<I<Ithの場合: V=(Gf/J)I とし、所定条件を、Jは臨界電流密度、fはコイルに
流す交流電流の周波数、Ic1は第三高調波誘導電圧が
ゼロ以外の値をとり始める閾値、IthはJdに比例
する電流値、但し、dは超伝導体の厚さ、bは0<b<
1の値をとるパラメータ、G(i=1,2)はコイル
の幾何学的形状や配置などで決まる係数とすること。
The present invention achieves the above object.
In order to do so, the following solution is adopted. (1) In the method for measuring the critical current density of a superconductor,
Virtually divide the conductor into blocks of a certain shape,
Place the coil in the block, let the alternating current flow through the coil,
Current I flowing in this coil0And this current I0By carp
Third harmonic induced voltage V induced in theThreeAnd detect
The current I0And the voltage V ThreeSeki between
The critical current density is calculated from a predetermined formula that expresses the
Move the position of to another block and repeat the above operation
Then, calculate the distribution of the critical current density for each block. (2) Measurement of critical current density of the superconductor described in (1) above
In the method, (I) Small current 0 <I0-Ic1<< Ic1in the case of: VThree= (G1f / Jc) Ic1 -B(I0-Ic1)
2 + b, (Ii) Large current Ic1<< I0<Ithin the case of: VThree= (GTwof / Jc) I0 Two And the predetermined condition is JcIs the critical current density, f is the coil
Frequency of flowing alternating current, Ic1Is the third harmonic induction voltage
The threshold value I that starts to take a value other than zero, IthIs Jcproportional to d
Current value, where d is the thickness of the superconductor, b is 0 <b <
A parameter that takes a value of 1, Gi(I = 1, 2) is a coil
It should be a coefficient determined by the geometric shape and arrangement of the.

【006】(3)超伝導体の臨界電流密度の測定装置に
おいて、電流検出器と、電流検出器を介して流れる交流
電流によって生じる交流磁場を発生させると共に超伝導
体によって誘導される磁束を検出するコイルと、該コイ
ルで検出した誘導電圧から第三高調波誘導電圧を抽出す
る手段とを備えたこと。 (4)上記(3)記載の超伝導体の臨界電流密度の測定
装置において、所定条件における前記電流と前記第三高
調波誘導電圧から上記(2)記載の演算式に基づいて超
伝導体の分割ブロック毎の臨界電流密度を求める演算手
段を備えたこと。
(3) In a device for measuring a critical current density of a superconductor, an alternating current magnetic field generated by an alternating current flowing through the current detector and the current detector is generated and a magnetic flux induced by the superconductor is detected. And a means for extracting the third harmonic induced voltage from the induced voltage detected by the coil. (4) In the apparatus for measuring the critical current density of a superconductor according to (3) above, the superconductor according to the above (2) is calculated from the current and the third harmonic induction voltage under a predetermined condition. Equipped with arithmetic means for obtaining the critical current density for each divided block.

【007】[0097]

【発明の実施の態様】本発明は、大型の超伝導体を複数
ブロックに仮想的に分割した各ブロック順に、その表面
付近に検出用のコイルを配置し、コイルに流す交流電流
と、コイルに誘起される第三高調波誘導電圧V
測定し、所定の演算式から前記各ブロック毎の臨界電流
密度を演算により求める測定方法およびそのための測定
装置にある。具体的には、交流電流Iを零から増加さ
せていくと、電流Iがある閾値I c1に達するまでは
電圧Vが現れない。これは、交流電流Iにより生じ
る交流磁場Hが下部臨界磁場Hc1より小さい場合、
超伝導体に磁束線(渦糸)が侵入することが出来ないか
らである。すなわち、0<I<Ic1のときV=0
である。一方、I>Ic1における電流Iと電圧V
との関係は、電流Iの大きさに応じて、次の(1)
または(2)式で与えられる。 (i)小電流:0<I−Ic1<<Ic1(0<H
−Hc1<<Hc1)の場合: V=(Gf/J)Ic1 −b(I−Ic12+b,(1) (ii)大電流Ic1<<I<Ith(Hc1<<H
<Jd)の場合: V=(Gf/J)I (2) ここで、Jは臨界電流密度、dは超伝導体の厚さ、f
はコイルに流す交流電流の周波数、bは0<b<1の値
をとるパラメータ、Gはコイルの幾何学的形状や配置
などで決まる係数である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention comprises a plurality of large superconductors.
The surface of each block that is virtually divided into blocks
A detection coil is placed nearby and an alternating current is passed through the coil.
I0And the third harmonic induction voltage V induced in the coilThreeTo
Measure and calculate the critical current for each block from the given formula
Measurement method for calculating density and measurement therefor
On the device. Specifically, the alternating current I0Is increased from zero
The current I0There is a threshold I c1Until you reach
Voltage VThreeDoes not appear. This is the alternating current I0Caused by
AC magnetic field H0Is the lower critical magnetic field Hc1If less than
Can magnetic flux lines (vortex) enter the superconductor?
It is. That is, 0 <I0<Ic1When VThree= 0
Is. On the other hand, I0> Ic1Current I at0And voltage V
ThreeIs related to the current I0Depending on the size of the following (1)
Alternatively, it is given by the equation (2). (I) Small current: 0 <I0-Ic1<< Ic1(0 <H0
-Hc1<< Hc1)in the case of:     VThree= (G1f / Jc) Ic1 -B(I0-Ic1)2 + b, (1) (Ii) Large current Ic1<< I0<Ith(Hc1<< H
0<JcIn case of d):     VThree= (GTwof / Jc) I0 Two                          (2) Where JcIs the critical current density, d is the thickness of the superconductor, f
Is the frequency of the alternating current flowing in the coil, b is a value of 0 <b <1
Parameter that takesiIs the coil geometry and placement
It is a coefficient determined by.

【008】検出した電流Iと電圧Vの測定値から
(1)または(2)式を用いて、臨界電流密度Jを評
価することができる。この測定装置の測定動作は、超伝
導体を加工することなく非接触で行われる。また、微小
なコイルを用いて超伝導体の表面を走査させて測定する
ことにより、局所的な臨界電流密度の分布を評価するこ
とができる。なお、既に述べたところであるが、前記文
献[1]では、電流Iが閾値I より大きい(すな
わち、交流磁場HがJdより大きい)場合につい
て、臨界電流密度を測定する方法が示されている。しか
し、超伝導体の厚さdが大きい場合、この条件が満たさ
れなくなることがあり、臨界電流密度を評価することが
出来ない。
The critical current density J c can be evaluated from the measured values of the detected current I 0 and voltage V 3 using the equation (1) or (2). The measuring operation of this measuring device is performed in a non-contact manner without processing the superconductor. Moreover, the distribution of the local critical current density can be evaluated by scanning and measuring the surface of the superconductor using a minute coil. Although it was already mentioned, in the literature [1], the current I 0 is greater than the threshold I t h (i.e., an alternating magnetic field H 0 is greater than J c d) if the method of measuring the critical current density It is shown. However, when the thickness d of the superconductor is large, this condition may not be satisfied, and the critical current density cannot be evaluated.

【009】第三高調波誘導電圧は次ようにして導かれ
る。z>0に配置した円形コイルに流れる交流電流I
cos(2πft)により,超伝導体表面z=0にはH
cos(2πft)の磁場が生じる。ここで、kをコ
イルの形状や配置などで決まる比例係数として、H
kIと表すことができる。電流振幅Iが閾値Ic1
=Hc1/kを超えなければ,磁場は下部臨界磁場H
c1よりも小さく,超伝導体に磁束線(渦糸)は侵入す
ることができない。この場合、コイルに第三高調波誘導
電圧は発生しない。すなわち、I<I c1(H<H
c1)ではV=0である。以下、I>Ic1(H
>Hc1)の場合を考える。臨界状態モデル(文献
[2]参照)によれば、超伝導体における磁場Hの勾配
∂H/∂zの大きさは臨界電流密度Jに等しい。臨界
状態モデルによる磁束線の侵入長(H−Hc1)/J
が、Londonの侵入長λよりも大きく、かつ超伝
導体の厚さdよりも小さい場合を考える。従来の臨界状
態モデルと同様に、∂H/∂z=±Jを積分して磁場
H(z,t)の分布が得られる。|H(z,t)|<H
c1の領域では、磁束線が存在することができない。す
なわち、磁束密度Bは、|H|<Hc1ではB=0とな
る。H>Hc1の場合のBとHとの関係式はB=μ
(H1/b−Hc1 1/bで与えられ、μは真
空透磁率、bは0<b<1の値をとるパラメータであ
る。(文献[3]:E.H.Brandt,Geome
tric barrier and current
string in type−II superco
nductors obtained from co
ntinuum electrodynamics,
Phys.Rev.B.59,3369(1999)参
照。)このBとHとの関係式は、H>>Hc1ではB=
μHと近似され、一方、0<H−Hc1<<Hc1
はB=μc1[(H/Hc1−1)/b]と近似
される。こうして、H(z,t)の分布からB(z,
t)の分布が求められ、超伝導体内部z<0における遮
蔽電流密度j(z,t)=(1/μ)∂B/∂zの分
布が得られる。このj(z,t)により発生したコイル
の鎖交磁束の時間微分から、コイルに生じる誘導電圧V
(t)が求められる。この誘導電圧をフーリエ展開し
て、第三高調波成分はV’cos(6πft)+
”sin(6πft)と表され、第三高調波の絶対
値V=[(V’)+(V”)1/ の計算
結果は、上の(1)または(2)式で与えられる。な
お、これら(1)および(2)式は、直流バイアス磁場
をかけないで、コイルによる交流磁場だけが超伝導体に
かかっているものとして導かれた。一方、H c1より十
分大きな直流バイアス磁場が超伝導体にかかっている状
態に交流磁場Hcos(2πft)が重畳されれば、
の大きさによらず(2)式となる。 (実施例)
The third harmonic induced voltage is derived as follows.
It AC current I flowing in circular coils arranged at z> 00
Due to cos (2πft), H is given to the superconductor surface z = 0.
0A magnetic field of cos (2πft) is generated. Where k is
As a proportional coefficient determined by the shape and arrangement of the ill, H0=
kI0It can be expressed as. Current amplitude I0Is the threshold Ic1
= Hc1/ K does not exceed the lower critical magnetic field H
c1Magnetic flux line (vortex) penetrates into the superconductor
I can't. In this case, the third harmonic induction in the coil
No voltage is generated. That is, I0<I c1(H0<H
c1) Is VThree= 0. Below, I0> Ic1(H0
> Hc1) Consider the case. Critical state model (literature
According to [2]), the gradient of the magnetic field H in the superconductor
The magnitude of ∂H / ∂z is the critical current density Jcbe equivalent to. critical
Penetration length of magnetic flux line (H0-Hc1) / J
cIs larger than London's penetration length λ, and
Consider the case where the thickness is smaller than the conductor thickness d. Conventional criticality
∂H / ∂z = ± J, like the state modelcMagnetic field by integrating
The distribution of H (z, t) is obtained. | H (z, t) | <H
c1In the region of, magnetic flux lines cannot exist. You
That is, the magnetic flux density B is | H | <Hc1Then B = 0
It H> Hc1In the case of, the relational expression between B and H is B = μ
0(H1 / b-Hc1 1 / b)bGiven by μ0Is true
Air permeability, b is a parameter having a value of 0 <b <1
It (Reference [3]: EH Brandt, Geome.
tric barrier and current
string in type-II superco
nducers obtained from co
ntinuum electrodynamics,
Phys. Rev. B. 59,3369 (1999) visit
Teru. ) The relational expression between B and H is H >> Hc1Then B =
μ0Is approximated to H, while 0 <H-Hc1<< Hc1so
Is B = μ0Hc1[(H / Hc1-1) / b]bAnd approximation
To be done. Thus, from the distribution of H (z, t), B (z,
The distribution of t) is obtained, and the shielding at z <0 inside the superconductor is obtained.
Shadowing current density j (z, t) = (1 / μ0) ∂B / ∂z
A cloth is obtained. Coil generated by this j (z, t)
The induced voltage V generated in the coil from the time derivative of the interlinkage magnetic flux
(T) is required. Fourier transform this induced voltage
And the third harmonic component is VThree‘Cos (6πft) +
VThree"Sin (6πft)", the absolute value of the third harmonic
Value VThree= [(VThree’)Two+ (VThree")Two]1 / TwoCalculation of
The result is given by the above equation (1) or (2). Na
The equations (1) and (2) are the DC bias magnetic field.
Only the alternating magnetic field generated by the coil is applied to the superconductor
I was guided as if it were hanging. On the other hand, H c1More than ten
A large DC bias magnetic field is applied to the superconductor.
AC magnetic field H0If cos (2πft) is superposed,
I0(2) regardless of the size of. (Example)

【010】本発明の実施例について以下図を参照して詳
細に説明する。図1は本発明の検出装置のブロック構成
図である。検出装置10は、定電圧で、固定周波数f
(例えば1kHz)の基準交流信号を発生する信号発生
器11、前記信号発生器11の出力電流を増幅する電流
増幅器13、前記出力電流を検出するための抵抗14、
出力電流を測定するマルチメータ15、交流磁場の発生
と誘導電圧検出を兼ねたコイル16、フィルタ18、周
波数fを3倍に逓倍する周波数3倍器12、3fの周波
数にロックするロックインアンプ19、検出した電流お
よび電圧から所定条件のもとで所定演算式に基づいて臨
界電流密度を求めるコンピュータ20とから構成され
る。コイル16に流れる電流Iは抵抗14を介してマ
ルチメータ15により検出される。このマルチメータ1
5の検出電流値Iはコンピュータ20で基準値と比較
されると共に臨界電流密度Jcを求めるために使用され
る。コンピュータ20は前記基準値との偏差分ΔIを信
号発生器11にフィードバックし信号発生器11の出力
電流を基準値に制御する。コイル16に流れる電流I
の周波数fは周波数3倍器12によって検出され、この
周波数3倍器12により3倍の周波数3fの信号として
出力される。ロックインアンプ19は周波数を前記3倍
の周波数3fにロックしてコンピュータ20に出力す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram of the detection apparatus of the present invention. The detection device 10 has a constant voltage and a fixed frequency f.
A signal generator 11 for generating a reference AC signal (for example, 1 kHz), a current amplifier 13 for amplifying the output current of the signal generator 11, a resistor 14 for detecting the output current,
A multimeter 15 for measuring an output current, a coil 16 that also serves to generate an AC magnetic field and detect an induced voltage, a filter 18, a frequency tripler 12 that triples the frequency f, and a lock-in amplifier 19 that locks to the frequency of 3f. , A computer 20 for obtaining the critical current density from the detected current and voltage under a predetermined condition based on a predetermined arithmetic expression. The current I 0 flowing through the coil 16 is detected by the multimeter 15 via the resistor 14. This multimeter 1
The detected current value I 0 of 5 is compared with the reference value by the computer 20 and is used to determine the critical current density Jc. The computer 20 feeds back the deviation ΔI from the reference value to the signal generator 11 and controls the output current of the signal generator 11 to the reference value. Current I 0 flowing in coil 16
The frequency f is detected by the frequency tripler 12 and is output as a signal of the frequency 3f tripled by the frequency tripler 12. The lock-in amplifier 19 locks the frequency to the tripled frequency 3f and outputs it to the computer 20.

【011】コイル16により検出した誘導電圧は、フィ
ルタ18およびロックインアンプ19を介して第3高調
波誘導電圧Vのみが取り出され、コンピュータ20に
入力され、臨界電流密度Jを求めるために使用され
る。検出操作時、大型の超伝導体17を仮想的に複数ブ
ロックに分割した各ブロック順に、その表面付近にコイ
ル16を配置し、該コイル16に信号発生器11および
電流増幅器13により制御される所定電流を流す。コイ
ル16により発生した磁束により超伝導体17に誘導電
流が流れる。この誘導電流によって2次磁束が発生し、
この2次磁束をコイル16により誘導電圧として検出す
る。この誘導電圧のうち、第三高調波誘導電圧のみを抽
出する。コンピュータ20は、所定条件において、この
測定した電流Iと第三高調波誘導電圧Vをもとに前
記式(1)または(2)から該当ブロックの臨界電流密
度Jを求める。所定条件としては、Jは臨界電流密
度、fはコイルに流す交流電流の周波数、Ic1は第三
高調波誘導電圧がゼロ以外の値をとり始める閾値、I
thはJdに比例する電流値、但し、dは超伝導体の
厚さ、bは0<b<1の値をとるパラメータ、Gはコ
イルの幾何学的形状や配置などで決まる係数とするこ
と。以下同様に操作して、大型超伝導体17における分
割した他のブロックの臨界電流密度を順次求める。
As for the induced voltage detected by the coil 16, only the third harmonic induced voltage V 3 is taken out through the filter 18 and the lock-in amplifier 19 and input to the computer 20 to obtain the critical current density J c. used. During the detection operation, the large superconductor 17 is virtually divided into a plurality of blocks in the order of each block, and the coil 16 is arranged near the surface of the block, and the coil 16 is controlled by the signal generator 11 and the current amplifier 13. Apply current. An induction current flows through the superconductor 17 due to the magnetic flux generated by the coil 16. A secondary magnetic flux is generated by this induced current,
The secondary magnetic flux is detected by the coil 16 as an induced voltage. Of this induced voltage, only the third harmonic induced voltage is extracted. The computer 20 obtains the critical current density J c of the corresponding block from the equation (1) or (2) based on the measured current I 0 and the third harmonic induction voltage V 3 under a predetermined condition. As the predetermined conditions, J c is the critical current density, f is the frequency of the alternating current flowing in the coil, I c1 is the threshold value at which the third harmonic induction voltage starts to take a value other than zero, and I
th is a current value proportional to J cd , where d is the thickness of the superconductor, b is a parameter with a value of 0 <b <1, and G i is a coefficient determined by the geometrical shape and arrangement of the coil. To do. Thereafter, the same operation is performed to sequentially obtain the critical current densities of the other divided blocks in the large-sized superconductor 17.

【012】図2は、コイル16に流した交流電流I
対するコイル16に生じた第三高調波誘導電圧Vの特
性図である。この特性図のデータは、直径2インチ、厚
さd=400nmの超伝導YBaCu7−d膜に
おいて、液体窒素温度77K、周波数f=1kHzの条
件で求めたものである。図4は、コイル16に流した交
流電流Iに対するコイル16に生じた第三高調波誘導
電圧Vの特性図である。この特性図のデータは、17
mm×16mm、厚さd=6mmの超伝導YBaCu
7−dバルク試料において、液体窒素温度77K、
周波数f=1kHzの条件で求めたものである。
FIG. 2 is a characteristic diagram of the third harmonic induction voltage V 3 generated in the coil 16 with respect to the AC current I 0 flowing in the coil 16. The data of this characteristic diagram is obtained for a superconducting YBa 2 Cu 3 O 7-d film having a diameter of 2 inches and a thickness of d = 400 nm under the conditions of liquid nitrogen temperature 77K and frequency f = 1 kHz. FIG. 4 is a characteristic diagram of the third harmonic induction voltage V 3 generated in the coil 16 with respect to the alternating current I 0 flowing in the coil 16. The data of this characteristic chart is 17
mm × 16 mm, thickness d = 6 mm, superconducting YBa 2 Cu
3 O 7-d bulk sample, liquid nitrogen temperature 77K,
It is obtained under the condition of frequency f = 1 kHz.

【013】図3は、超伝導薄膜において、コイルに流し
た交流電流Iに対するコイルに生じた第三高調波誘導
電圧の平方根V 1/2の特性図である。図2と図3の
電流値および電圧値は同じデータを使用している。図3
の0<I<0.48mAの領域が、前記(1)式ある
いは(2)式が妥当な領域である。すなわち、(2)式
のIthは、0.48mA程度である。図3では測定ノ
イズに埋もれて見にくいが、この0<I<Ith
0.48mAの領域のデータを精密に解析すれば、原理
的にはJを求めることができる。図4および図5の方
が分りやすいので、次に具体的に説明する。図4は、超
伝導バルク試料において、コイルに流した交流電流I
に対するコイルに生じた第三高調波誘導電圧の特性図で
ある。図5は、超伝導バルク試料において、コイルに流
した交流電流Iに対するコイルに生じた第三高調波誘
導電圧の平方根V 1/2の特性図である。図4と図5
の電流値および電圧値は同じデータを使用している。図
5から、第三高調波誘導電圧の平方根V 1/2と交流
電流Iとの関係は線形となっていることがわかる。前
記(2)式は、V 1/2=(Gf/J1/2
と書き直すことができる。したがって、図4の特性曲
線の原点を通る線形依存性は(2)式が正しいことを示
しており、また、図5の特性曲線の直線の傾きは(G
f/J /2に等しい。(2)式における係数G
は、コイルの幾何学的形状や配置などが分かれば、それ
らの数値を計算で求めることが可能である。しかし、最
も簡便な方法は、本願発明による方法とは別の方法(例
えば、四端子法、直流磁化法など)により臨界電流密度
が予めわかっている超伝導体において交流電流I
と第三高調波誘導電圧Vとを測定し、係数Gを決定
しておくことである。同じコイルを用いて超伝導体表面
からの距離を同じにして測定する限り、そうして決定さ
れたG を用いて、図3の直線の傾き(Gf/J
1/2と周波数fの値から、臨界電流密度Jを求める
ことができる。
FIG. 3 shows a case where a superconducting thin film is fed to a coil.
AC current I0Third harmonic induction in the coil against
Square root of voltage VThree 1/2FIG. 2 and 3
The same data is used for the current value and the voltage value. Figure 3
0 <I0The region of <0.48 mA is the above formula (1).
Equation (2) is a valid area. That is, equation (2)
Of IthIs about 0.48 mA. In Figure 3, the measurement
It's hard to see because it's buried in Iz, but this 0 <I0<Ith=
If you analyze the data in the 0.48 mA area precisely, the principle
Specifically JcCan be asked. 4 and 5
Since it is easy to understand, a detailed description will be given next. Figure 4 is super
AC current I flowing in the coil in the conductive bulk sample0
In the characteristic diagram of the third harmonic induced voltage generated in the coil for
is there. Figure 5 shows the flow in the coil of a superconducting bulk sample.
Alternating current I0The third harmonic induced in the coil against
Square root of conductive pressure VThree 1/2FIG. 4 and 5
The same data is used for the current value and voltage value of. Figure
From 5, the square root of the third harmonic induction voltage VThree 1/2Interact with
Current I0It can be seen that the relationship with and is linear. Previous
The expression (2) is VThree 1/2= (GTwof / Jc)1/2I
0Can be rewritten as Therefore, the characteristic song of FIG.
The linear dependence passing through the origin of the line shows that equation (2) is correct.
In addition, the slope of the straight line of the characteristic curve in FIG.Two
f / Jc)1 / 2be equivalent to. Coefficient G in equation (2)Two
If you know the geometry and arrangement of the coil,
It is possible to calculate these numerical values. But up
A simpler method is another method (example
For example, four-terminal method, DC magnetization method, etc.)
JcAC current I in a superconductor whose0
And the third harmonic induction voltage VThreeAnd the coefficient GTwoDecide
It is to keep. Superconductor surface using the same coil
As long as you measure the same distance from
G TwoUsing the slope (GTwof / Jc)
1/2And the value of frequency f, the critical current density JcAsk for
be able to.

【発明の効果】本願発明によれば、コイルに流す交流電
流Iとコイルに生じる第三高調波誘導電圧Vの測定
値から、上記(1)または(2)式を用いて、局所的な
臨界電流密度を評価することが可能になる。こうして、
大面積・大型超伝導体を電力機器に応用する上で重要な
パラメータである各ブロック毎の臨界電流密度を正しく
評価することができる。超伝導体の上でコイルを走査さ
せて測定を行えば、臨界電流密度の分布を評価すること
が可能である。その分布の分解能は、コイルの大きさで
決まるので、微小なコイルを用いれば、より分解能の高
い測定が可能になる。
According to the present invention, from the measured values of the alternating current I 0 flowing in the coil and the third harmonic induced voltage V 3 generated in the coil, the above equation (1) or (2) is used to locally It becomes possible to evaluate various critical current densities. Thus
It is possible to correctly evaluate the critical current density of each block, which is an important parameter when applying large area and large size superconductors to electric power equipment. The distribution of the critical current density can be evaluated by scanning the coil on the superconductor and performing the measurement. Since the resolution of the distribution is determined by the size of the coil, if a minute coil is used, measurement with higher resolution becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の検出装置のブロック構成図である。FIG. 1 is a block configuration diagram of a detection device of the present invention.

【図2】超伝導薄膜における、コイルに流した交流電流
に対するコイルに生じた第三高調波誘導電圧V
特性図である。
FIG. 2 is a characteristic diagram of the third harmonic induction voltage V 3 generated in the coil with respect to the alternating current I 0 flowing in the coil in the superconducting thin film.

【図3】超伝導薄膜における、コイルに流した交流電流
に対するコイルに生じた第三高調波誘導電圧の平方
根V 1/2の特性図である。
FIG. 3 is a characteristic diagram of the square root V 3 1/2 of the third harmonic induction voltage generated in the coil with respect to the alternating current I 0 flowing in the coil in the superconducting thin film.

【図4】超伝導バルク試料における、コイルに流した交
流電流Iに対するコイルに生じた第三高調波誘導電圧
の特性図である。
FIG. 4 is a characteristic diagram of a third harmonic induction voltage V 3 generated in a coil with respect to an alternating current I 0 flowing in the coil in a superconducting bulk sample.

【図5】超伝導バルク試料における、コイルに流した交
流電流Iに対するコイルに生じた第三高調波誘導電圧
の平方根V 1/2の特性図である。
FIG. 5 is a characteristic diagram of a square root V 3 1/2 of a third harmonic induction voltage generated in a coil with respect to an alternating current I 0 flowing in the coil in a superconducting bulk sample.

【符号の説明】[Explanation of symbols]

10 検出装置 11 信号発生器 12 周波数3倍器 13 電流増幅器 14 抵抗 15 マルチメータ 16 コイル 17 大型超伝導体 18 フィルタ 19 ロックインアンプ 20 コンピュータ 10 Detection device 11 signal generator 12 frequency tripler 13 Current amplifier 14 Resistance 15 Multimeter 16 coils 17 Large superconductor 18 filters 19 Lock-in amplifier 20 computers

フロントページの続き (出願人による申告)国等の委託研究の成果に係る特許 出願(平成13年度経済産業省「交流超電導電力機器基盤 技術研究開発、高電流密度超電導膜作製技術研究開 発」、産業活力再生特別措置法第30条の適用を受けるも の) Fターム(参考) 2G035 AA12 AA15 AB07 AC15 AD10 AD18 AD55 2G053 AA00 AB14 BA16 BB11 BB17 BC02 BC14 CA03 CA18 CB12 DA01 DB19 2G060 AA10 AE40 AF03 HA02 HC13Continued front page    (Declaration by the applicant) Patents related to the results of consigned research in countries etc. Application (2001 Ministry of Economy, Trade and Industry "AC superconducting electromotive force equipment platform Technical R & D, high current density superconducting film fabrication technology research development From Japan, subject to Article 30 of the Act on Special Measures for Revitalizing Industrial Vitality of) F term (reference) 2G035 AA12 AA15 AB07 AC15 AD10                       AD18 AD55                 2G053 AA00 AB14 BA16 BB11 BB17                       BC02 BC14 CA03 CA18 CB12                       DA01 DB19                 2G060 AA10 AE40 AF03 HA02 HC13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】超伝導体を所定形状のブロックに仮想的に
分割し、一つのブロックにコイルを配置し、コイルに交
流電流を流し、このコイルに流す電流Iと、この電流
によりコイルに誘起される第三高調波誘導電圧Vとを
検出し、所定条件のもとに前記電流Iと前記電圧V
との関係を表す所定の演算式から臨界電流密度を求め、
コイルの位置を別のブロックに順次移動させて以上の操
作を繰り返して各ブロック毎の臨界電流密度の分布を求
めることを特徴とする超伝導体の臨界電流密度の測定方
法。
1. A superconductor is virtually divided into blocks of a predetermined shape, a coil is arranged in one block, an alternating current is passed through the coil, a current I 0 is passed through this coil, and this current causes the coil to pass through the coil. The induced third harmonic induced voltage V 3 is detected, and the current I 0 and the voltage V 3 are detected under a predetermined condition.
The critical current density is calculated from a predetermined arithmetic expression expressing the relationship with
A method for measuring a critical current density of a superconductor, which comprises sequentially moving a position of a coil to another block and repeating the above operation to obtain a distribution of the critical current density for each block.
【請求項2】請求項1記載の超伝導体の臨界電流密度の
測定方法において、上記演算式を (i)小電流0<I−Ic1<<Ic1の場合: V=(Gf/J)Ic1 −b(I−Ic1
2+b, (ii)大電流Ic1<<I<Ithの場合: V=(Gf/J)I とし、所定条件を、Jは臨界電流密度、fはコイルに
流す交流電流の周波数、Ic1は第三高調波誘導電圧が
ゼロ以外の値をとり始める閾値、IthはJdに比例
する電流値、但し、dは超伝導体の厚さ、bは0<b<
1の値をとるパラメータ、G(i=1,2)はコイル
の幾何学的形状や配置などで決まる係数とすることを特
徴とする超伝導体の臨界電流密度の測定方法。
2. The critical current density of the superconductor according to claim 1,
In the measurement method, (I) Small current 0 <I0-Ic1<< Ic1in the case of: VThree= (G1f / Jc) Ic1 -B(I0-Ic1)
2 + b, (Ii) Large current Ic1<< I0<Ithin the case of: VThree= (GTwof / Jc) I0 Two And the predetermined condition is JcIs the critical current density, f is the coil
Frequency of flowing alternating current, Ic1Is the third harmonic induction voltage
The threshold value I that starts to take a value other than zero, IthIs Jcproportional to d
Current value, where d is the thickness of the superconductor, b is 0 <b <
A parameter that takes a value of 1, Gi(I = 1, 2) is a coil
The feature is that it is a coefficient determined by the geometrical shape and arrangement of
A method for measuring the critical current density of superconductors.
【請求項3】電流検出器と、電流検出器を介して流れる
交流電流によって生じる交流磁場を発生させると共に超
伝導体によって誘導される磁束を検出するコイルと、該
コイルで検出した誘導電圧から第三高調波誘導電圧を抽
出する手段とを備えたことを特徴とする超伝導体の臨界
電流密度の測定装置。
3. A current detector, a coil for generating an AC magnetic field generated by an AC current flowing through the current detector and detecting a magnetic flux induced by a superconductor, and an induction voltage detected by the coil. An apparatus for measuring a critical current density of a superconductor, comprising: means for extracting a third harmonic induced voltage.
【請求項4】請求項3記載の超伝導体の臨界電流密度の
測定装置において、所定条件における前記電流と前記第
三高調波誘導電圧から請求項2記載の演算式に基づいて
超伝導体の分割ブロック毎の臨界電流密度を求める演算
手段を備えたことを特徴とする超伝導体の臨界電流密度
の測定装置。
4. The apparatus for measuring the critical current density of a superconductor according to claim 3, wherein the superconductor is calculated from the current and the third harmonic induced voltage under a predetermined condition based on the arithmetic expression according to claim 2. An apparatus for measuring a critical current density of a superconductor, characterized by comprising arithmetic means for determining a critical current density for each divided block.
JP2002068563A 2001-11-07 2002-03-13 Method and apparatus for measuring critical current density of superconductor Expired - Lifetime JP3937010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002068563A JP3937010B2 (en) 2001-11-07 2002-03-13 Method and apparatus for measuring critical current density of superconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001341801 2001-11-07
JP2001-341801 2001-11-07
JP2002068563A JP3937010B2 (en) 2001-11-07 2002-03-13 Method and apparatus for measuring critical current density of superconductor

Publications (2)

Publication Number Publication Date
JP2003207526A true JP2003207526A (en) 2003-07-25
JP3937010B2 JP3937010B2 (en) 2007-06-27

Family

ID=27666962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002068563A Expired - Lifetime JP3937010B2 (en) 2001-11-07 2002-03-13 Method and apparatus for measuring critical current density of superconductor

Country Status (1)

Country Link
JP (1) JP3937010B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127940A (en) * 2003-10-27 2005-05-19 National Institute Of Advanced Industrial & Technology Method and instrument for measuring critical current density and current-voltage characteristic of superconductor thick film
JP2005257592A (en) * 2004-03-15 2005-09-22 Japan Science & Technology Agency Method and apparatus for measuring critical current density
WO2006059497A1 (en) * 2004-12-01 2006-06-08 Kyushu Institute Of Technology Method and device for measuring critical current density of superconductor
KR101034761B1 (en) 2009-11-20 2011-05-18 우석대학교 산학협력단 Measuring method of critical current density of superconductor wires using measurement of magnetization loss
KR20150129154A (en) * 2014-05-08 2015-11-19 두산중공업 주식회사 Estimation method and device of superconducting wire
CN112557736A (en) * 2020-12-17 2021-03-26 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) System and method for measuring conductor plane current density distribution
CN113496077A (en) * 2020-04-07 2021-10-12 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Method for calculating superconducting magnet induced voltage under alternating magnetic field

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127940A (en) * 2003-10-27 2005-05-19 National Institute Of Advanced Industrial & Technology Method and instrument for measuring critical current density and current-voltage characteristic of superconductor thick film
JP2005257592A (en) * 2004-03-15 2005-09-22 Japan Science & Technology Agency Method and apparatus for measuring critical current density
WO2006059497A1 (en) * 2004-12-01 2006-06-08 Kyushu Institute Of Technology Method and device for measuring critical current density of superconductor
JPWO2006059497A1 (en) * 2004-12-01 2008-08-07 国立大学法人九州工業大学 Method and device for measuring critical current density of superconductor
KR101034761B1 (en) 2009-11-20 2011-05-18 우석대학교 산학협력단 Measuring method of critical current density of superconductor wires using measurement of magnetization loss
WO2011062350A1 (en) * 2009-11-20 2011-05-26 한국산업기술대학교산학협력단 Method for estimating the critical current density of a superconducting wire using an estimation of magnetization loss
JP2012503209A (en) * 2009-11-20 2012-02-02 韓国産業技術大学 校産学協力団 Estimation method of threshold current density of superconducting wire using measurement of magnetization loss
KR20150129154A (en) * 2014-05-08 2015-11-19 두산중공업 주식회사 Estimation method and device of superconducting wire
KR101597028B1 (en) * 2014-05-08 2016-02-24 두산중공업 주식회사 Estimation method and device of superconducting wire
CN113496077A (en) * 2020-04-07 2021-10-12 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Method for calculating superconducting magnet induced voltage under alternating magnetic field
CN113496077B (en) * 2020-04-07 2024-05-03 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Method for calculating induced voltage of superconducting magnet under alternating magnetic field
CN112557736A (en) * 2020-12-17 2021-03-26 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) System and method for measuring conductor plane current density distribution

Also Published As

Publication number Publication date
JP3937010B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
Billangeon et al. Emission and absorption asymmetry in the quantum noise of a Josephson junction
JP6083613B2 (en) Magnetic nondestructive inspection equipment
Zhu et al. Two dimensional measurement of magnetic field and core loss using a square specimen tester
JP3937010B2 (en) Method and apparatus for measuring critical current density of superconductor
JP2007078500A (en) Method and apparatus for measuring critical current density of superconductive film
Carreon et al. Thermoelectric detection of spherical tin inclusions in copper by magnetic sensing
Schurig et al. Nondestructive wafer inspection utilizing SQUIDs
Hatsukade et al. Characteristics of an HTS-SQUID gradiometer with ramp-edge Josephson junctions and its application on robot-based 3D-mobile compact SQUID NDE system
Mück et al. Eddy current nondestructive material evaluation based on HTS SQUIDs
Ruosi et al. High Tc SQUIDS and eddy-current NDE: a comprehensive investigation from real data to modelling
Statra et al. Contribution to the experimental characterization of the electromagnetic properties of HTS
JPH0545184B2 (en)
JP3845729B2 (en) Method and apparatus for measuring current and voltage characteristics of superconductors
Hatsukade et al. Detection of internal cracks and delamination in carbon-fiber-reinforced plastics using SQUID-NDI system
Buckley et al. Use of a bulk high T/sub c/magnetometer for non-destructive evaluation
Tanaka et al. Design of a High-Tc SQUID Planer Gradiometer and Evaluation of Sensitivity Distribution
Alzayed et al. Deep nondestructive testing using a bulk high T/sub c/RF-SQUID
Senapati et al. Miniature Hall sensor based ac susceptometer for measurements of vortex and superfluid dynamics in superconducting films
He et al. Saw-wave excitation eddy-current NDE based on HTS RF SQUID
JP4310431B2 (en) Method and apparatus for measuring critical current density and current / voltage characteristics of superconducting thick film
JPH04218764A (en) Detecting device of deterioration and damage of metal material
Lord et al. Detection and modeling of magnetite buildup in steam generators
Hatsukade et al. Development of an NDE method using SQUIDs for the reconstruction of defect shapes
Valentino et al. Experimental results in eddy current non destructive testing based on superconductive and conventional electromagnetic probes
Takayama et al. Numerical investigation on crack detection in HTS film: Accuracy of scanning permanent magnet method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

R150 Certificate of patent or registration of utility model

Ref document number: 3937010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term