JP5293755B2 - Apparatus for measuring complex permeability of magnetic material and method for measuring crystal grain size of magnetic material using the same - Google Patents

Apparatus for measuring complex permeability of magnetic material and method for measuring crystal grain size of magnetic material using the same Download PDF

Info

Publication number
JP5293755B2
JP5293755B2 JP2011016243A JP2011016243A JP5293755B2 JP 5293755 B2 JP5293755 B2 JP 5293755B2 JP 2011016243 A JP2011016243 A JP 2011016243A JP 2011016243 A JP2011016243 A JP 2011016243A JP 5293755 B2 JP5293755 B2 JP 5293755B2
Authority
JP
Japan
Prior art keywords
measured
magnetic
leg
measurement
complex permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011016243A
Other languages
Japanese (ja)
Other versions
JP2011123081A (en
Inventor
宏晴 加藤
章生 長棟
高島  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011016243A priority Critical patent/JP5293755B2/en
Publication of JP2011123081A publication Critical patent/JP2011123081A/en
Application granted granted Critical
Publication of JP5293755B2 publication Critical patent/JP5293755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology for accurately and stably measuring local complex permeability and local crystal grain size of a magnetic body to be measured, even when a measuring object moves relatively with respect to a sensor section. <P>SOLUTION: This magnetic characteristic measuring device winds a coil for alternating current excitation and a coil for detection on a ferromagnetic body core with a U-shaped cross section, closely faces the tip of the leg of the core with the U-shaped cross section to the magnetic body to be measured, and measures the complex permeability of the magnetic body to be measured. In the complex permeability measuring device, leg interval A is determined to establish the equation A&ge;v/f+2&times;C and C&gt;0, where v is moving speed of the magnetic body to be measured moving relatively in the arrangement direction of the leg, f is application frequency to the alternating current exciting coil, C is width of a detection sensitivity reduction region between the legs expressed as a function of the predetermined lift off and the leg interval A. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、磁性体の局所的な複素透磁率の測定装置、およびこれを用いた結晶粒径の測定方法に関するものである。   The present invention relates to an apparatus for measuring the local complex permeability of a magnetic material and a crystal grain size measuring method using the same.

交流磁場中で使用される、電磁気的な特性が重要な磁性体製品においては、微分透磁率、渦電流損失、鉄損等の複素透磁率で表現される物性値が、品質管理上非常に重要である。ここで言う複素透磁率とは、例えば非特許文献1にあるような複素透磁率を用いて表現される。外部から印加する交流磁界をH、磁束密度をB、位相遅れをδ、として、複素透磁率μは以下のように表される。   For magnetic products with important electromagnetic characteristics used in an alternating magnetic field, physical properties expressed by complex permeability such as differential permeability, eddy current loss, and iron loss are very important for quality control. It is. The complex magnetic permeability mentioned here is expressed using complex magnetic permeability as described in Non-Patent Document 1, for example. The complex permeability μ is expressed as follows, assuming that the AC magnetic field applied from the outside is H, the magnetic flux density is B, and the phase delay is δ.

Figure 0005293755
Figure 0005293755

Figure 0005293755
Figure 0005293755

上式の実部μ’は通常使用する複素数でない透磁率を示し、μ”は損失と関連付けられる。また、鉄損と粒径、あるいは透磁率と粒径の間には相関関係があるため、磁性体の複素透磁率を測定することで、測定領域内で平均化された結晶粒径測定も可能である。   The real part μ ′ in the above equation indicates the normally non-complex magnetic permeability, and μ ″ is associated with the loss. Also, since there is a correlation between the iron loss and the particle size, or the permeability and the particle size, By measuring the complex permeability of the magnetic material, it is possible to measure the crystal grain size averaged in the measurement region.

この複素透磁率は、一般的には短冊状切り板を使用するラボ測定法(エプスタイン試験、SST試験等)により求めることができるが、この方法は、(a)測定に時間がかかる、(b)被測定材をあらかじめ決められたサイズに揃える必要がある、(c)特にエプスタイン試験においては切り板サンプルを井桁状に組む必要があり、製造ラインのように測定対象とセンサ部が相対的に移動する場合では、そのままの形状で簡便に測定することができない、という問題点がある。   This complex permeability can be generally determined by a laboratory measurement method (Epstein test, SST test, etc.) using a strip-shaped cut plate, but this method (a) takes time to measure, (b ) It is necessary to arrange the materials to be measured to a predetermined size. (C) Especially in the Epstein test, it is necessary to assemble the cut plate samples in a cross-beam shape. In the case of movement, there is a problem that it is not possible to simply measure the shape as it is.

そこで複素透磁率の一つである鉄損を簡便に測定する方法としては、例えば、特許文献1に、製造ライン内に鉄損測定用の大型の励磁コイルおよび検出用コイルなどを設置し、そのコイルの中に鋼板を通して測定する技術が開示されている。この技術の場合、(1)検出コイルを鋼板の幅方向周囲に巻いてその内部の磁場全体を測定するため、鋼板の幅方向に関し、平均的な特性しか測定できない、(2)圧延方向についても磁束が広がっているため、広い範囲の測定になってしまっている、(3)鋼帯をコイルが覆う形になるため、センサ部をライン外に移動して修理することなどができず保守性が悪い、という問題点がある。   Therefore, as a method for easily measuring the iron loss which is one of the complex magnetic permeability, for example, in Patent Document 1, a large excitation coil and a detection coil for iron loss measurement are installed in the production line. A technique for measuring through a steel plate in a coil is disclosed. In the case of this technique, (1) since the entire coil is wound around the width direction of the steel sheet and the entire magnetic field is measured, only average characteristics can be measured in the width direction of the steel sheet. (2) Also in the rolling direction Since the magnetic flux has spread, the measurement has become a wide range. (3) Since the coil covers the steel strip, the sensor cannot be repaired by moving it outside the line. There is a problem that is bad.

これらの問題点を解決できる技術として、特許文献2には、コの字形コアに一次コイルと二次コイルを巻いてセンサ部とし、当該一次コイルと当該2次コイルの双方からの出力を電力計に接続し、鉄損を調べるという技術が公開されている。この場合センサ部からの磁場が、コアサイズにより決まるコア両脚部の周辺の被測定材の狭い範囲に集中する。磁場はコアサイズ以上に広がるものの、測定対象範囲としては、幅方向にはコアの幅方向のサイズが、また圧延方向には両脚部の間隔が目安となる。この構成は局所的に測定するという点では、鋼板幅方向にも圧延方向にも適当な測定方法で、かつ測定装置もコンパクトにでき、さらにかかる費用や保守性も良い。   As a technique that can solve these problems, Patent Document 2 discloses that a sensor unit is formed by winding a primary coil and a secondary coil around a U-shaped core, and outputs from both the primary coil and the secondary coil are wattmeters. The technology of connecting to and investigating iron loss has been released. In this case, the magnetic field from the sensor unit is concentrated in a narrow range of the material to be measured around the core legs determined by the core size. Although the magnetic field spreads beyond the core size, the measurement target range is the size in the width direction of the core in the width direction and the distance between both legs in the rolling direction. In this configuration, in terms of local measurement, an appropriate measurement method can be used in both the width direction and the rolling direction of the steel sheet, the measuring device can be made compact, and the cost and maintenance are good.

特開昭49−006961号公報JP-A 49-006961 特開平03−115876号公報Japanese Patent Laid-Open No. 03-115876

太田恵造著、「磁気工学の基礎II」共立出版、1973年、p.304Keizo Ota, “Basics of Magnetic Engineering II”, Kyoritsu Shuppan, 1973, p. 304

特許文献2の技術は、センサ部と測定対象の相対的変位が無いラボ測定を前提とした技術であるため、ラボテストでは安定して測定しかつ妥当な測定結果を得ることができることは、発明者等も確認した。しかしその一方で、測定対象が移動する実際の電磁鋼板製造ラインにて鉄損を測定するオンラインテストでは、製造条件によって、センサ部の出力が安定しない、測定精度が悪い等の問題があり、そのままでは適用できないことが分かった。   The technique of Patent Document 2 is a technique based on the premise of lab measurement in which there is no relative displacement between the sensor unit and the measurement object. Etc. were also confirmed. However, on the other hand, in the on-line test that measures iron loss in the actual magnetic steel sheet production line where the object to be measured moves, there are problems such as the output of the sensor unit becoming unstable and the measurement accuracy being bad depending on the production conditions. It turned out that it is not applicable.

そこで本発明は、上記課題を解決し、センサ部に対し測定対象が相対的に移動する場合においても、被測定磁性体の局所的な複素透磁率および結晶粒径を、高精度に安定して測定できる技術を提供することを目的とする。   Therefore, the present invention solves the above-described problems, and even when the measurement object moves relative to the sensor unit, the local complex permeability and crystal grain size of the magnetic substance to be measured can be stably stabilized with high accuracy. The purpose is to provide technology that can be measured.

本発明の要旨は以下の通りである。   The gist of the present invention is as follows.

第一の発明は断面コの字形強磁性体コアに交流励磁用コイルと検出用コイルを巻回し、前記断面コの字形コアの脚部先端を移動する被測定磁性体に予め定めたリフトオフを以って近接対向させて該被測定磁性体の複素透磁率を測定する磁気特性測定装置において、前記脚部の並び方向に相対的に移動する前記被測定磁性体の移動速度v、前記交流励磁コイルへの印加周波数f、予め定めたリフトオフと前記脚部間隔Aとの関数として表される前記脚部間における検出感度低下領域の幅C、および前記脚部間隔Aとが下記式を満足するように前記脚部間隔Aが決定されていることを特徴とする複素透磁率測定装置である。 In the first invention, an AC excitation coil and a detection coil are wound around a U-shaped ferromagnetic core, and a predetermined lift-off is applied to the magnetic material to be measured that moves the leg end of the U-shaped core. In the magnetic property measuring apparatus for measuring the complex permeability of the magnetic substance to be measured by making them close to each other, the moving velocity v of the magnetic substance to be moved relatively in the direction in which the legs are aligned, the AC excitation coil Frequency f, a width C of the detection sensitivity reduction region between the legs expressed as a function of a predetermined lift-off and the leg interval A, and the leg interval A satisfy the following expression: The complex permeability measuring device is characterized in that the leg interval A is determined.

A≧v/f+2×C
ただし、 C>0
第二の発明は、nを1以上の整数として、下記式を満足するように脚部間隔Aが決定されていることを特徴とする第一の発明に記載の磁性体の複素透磁率測定装置である。
A ≧ v / f + 2 × C
However, C> 0
According to a second aspect of the invention, the leg permeability A is determined so that n is an integer equal to or greater than 1, and the following formula is satisfied: It is.

A≧n×v/f+2×C
ただし、 C>0
第三の発明は、第一の発明または第二の発明に記載の複素透磁率測定装置を用いた複素透磁率の測定結果より、前記複素透磁率の測定結果と被測定磁性体の結晶粒径との相関関係を用いて、測定領域における被測定磁性体の平均化された結晶粒径を求めることを特徴とする磁性体の結晶粒径測定方法である。
A ≧ n × v / f + 2 × C
However, C> 0
According to a third invention, from the measurement result of the complex permeability using the complex permeability measurement device according to the first invention or the second invention, the measurement result of the complex permeability and the crystal grain size of the magnetic substance to be measured The average crystal grain size of the magnetic substance to be measured in the measurement region is obtained using the correlation between the magnetic substance and the crystal grain size of the magnetic substance.

第四の発明は、前記被測定磁性体は製造ライン通板中の電磁鋼板であり、該電磁鋼板の鉄損を前記電磁鋼板がライン通板中に測定することを特徴とする第一または第二の発明に記載の磁性体の複素透磁率測定装置である。   According to a fourth aspect of the present invention, the measured magnetic body is an electromagnetic steel plate in a production line passing plate, and the magnetic steel sheet measures the iron loss of the electromagnetic steel plate in the line passing plate. It is a complex permeability measuring device of a magnetic substance given in the 2nd invention.

第五の発明は、第一または第二の発明に記載の磁性体の複素透磁率測定装置を用いた電磁鋼板の製造方法であって、前記複素透磁率測定装置の測定結果と電磁鋼板の結晶粒径との相関関係から、前記電磁鋼板の測定領域における平均結晶粒径を求め、その求めた平均結晶粒径にもとづいて製造条件を制御する工程を具備することを特徴とする電磁鋼板の製造方法である。   A fifth invention is a method for manufacturing an electromagnetic steel sheet using the magnetic permeability measuring device for magnetic material according to the first or second invention, wherein the measurement result of the complex permeability measuring device and the crystal of the electromagnetic steel plate Obtaining an average crystal grain size in the measurement region of the electrical steel sheet from the correlation with the grain size, and comprising the steps of controlling production conditions based on the obtained average crystal grain size Is the method.

本件の関連技術の第一は断面コの字形強磁性体コアに交流励磁用コイルと検出用コイルとを巻回し、前記断面コの字形コアの脚部先端を被測定磁性体に近接対向させて該被測定磁性体の局所的な領域の複素透磁率を測定する磁気特性測定装置であって、前記脚部の並び方向に相対的に移動する前記被測定磁性体の移動速度v、および前記交流励磁コイルへの印加周波数fとから、前記脚部間隔Aが下記式を満足することを特徴とする。   The first related art in this case is to wind an AC excitation coil and a detection coil around a U-shaped ferromagnetic core, and make the tip of the leg of the U-shaped core close to and face the magnetic material to be measured. A magnetic characteristic measuring apparatus for measuring a complex magnetic permeability in a local region of the magnetic substance to be measured, the moving speed v of the magnetic substance to be moved relatively in the direction in which the legs are arranged, and the alternating current From the frequency f applied to the exciting coil, the leg interval A satisfies the following formula.

A≧v/f
関連技術の第二はnを1以上の整数として、脚部間隔Aが下記式を満足することを特徴とする。
A ≧ v / f
The second related art is characterized in that n is an integer of 1 or more and the leg interval A satisfies the following formula.

A=n×v/f       A = n × v / f

本発明によれば、センサ部に対し測定対象が相対的に移動する場合においても、精度良く安定に局所的な複素透磁率が測定可能となる。そのため、例えば磁性体の圧延方向の複素透磁率分布を簡便かつ正確に製造中に連続全長測定できるようになり、製造条件制御への質の高い(高精度、全長連続情報)フィードバックがほぼリアルタイムで実現でき、安定製造に貢献する。また高度な品質保証にも寄与できる。   According to the present invention, even when the object to be measured moves relative to the sensor unit, the local complex permeability can be measured accurately and stably. For this reason, for example, the complex permeability distribution in the rolling direction of a magnetic material can be measured easily and accurately during continuous full length measurement, and high quality (high accuracy, full length continuous information) feedback to manufacturing condition control is provided in near real time. Realize and contribute to stable manufacturing. It can also contribute to advanced quality assurance.

また、本発明のセンサ部は、断面コの字形コア、およびそのコアの背部に巻かれた交流励磁用コイルと検出用コイルからなる簡便な構成であるため、コンパクトで、製造コストも安く、かつメインテナンスも容易である。そのため、製造ライン中に組み込むことが容易となる。   In addition, the sensor unit of the present invention has a simple configuration comprising a U-shaped core in cross section, and an AC excitation coil and a detection coil wound around the back of the core, so it is compact and inexpensive to manufacture. Maintenance is also easy. Therefore, it becomes easy to incorporate in the production line.

本発明に係る磁気測定方法の基本的構成を示した模式図。The schematic diagram which showed the basic composition of the magnetism measuring method concerning the present invention. 脚部31近傍の感度低下領域を含めて本発明を示した模式図。The schematic diagram which showed this invention including the sensitivity fall area | region of the leg part 31 vicinity. 両脚部間の感度分布を示した図。The figure which showed the sensitivity distribution between both legs. 図3の結果を得るための測定方法を示した図。The figure which showed the measuring method for obtaining the result of FIG. 感度低下領域の幅C、脚部間隔AおよびリフトオフLの関係を示す図。The figure which shows the relationship between the width C of a sensitivity fall area | region, the leg part space | interval A, and the lift-off L. FIG. 電磁鋼板の鉄損の測定例を示した図。The figure which showed the example of a measurement of the iron loss of an electromagnetic steel plate. 外部印加交流磁界による被検体内のB−Hの変化ループを示した図。The figure which showed the change loop of BH in a subject by the externally applied alternating current magnetic field. 測定条件のうち、脚部間隔Aだけを変化させた場合の測定精度変化を示した模式図。The schematic diagram which showed the measurement accuracy change at the time of changing only leg space | interval A among measurement conditions.

特許文献2の磁気特性測定装置を、相対的に移動する被測定磁性体に適用する際、どのような測定条件にて問題が出るかを検討した。   When applying the magnetic characteristic measuring apparatus of Patent Document 2 to a magnetic substance to be measured that moves relatively, it was examined what measurement conditions would cause a problem.

検討に際し、本発明に係る磁気特性測定装置の基本的な実施の形態の一例を、模式図として図1に示す。   In the examination, an example of a basic embodiment of the magnetic property measuring apparatus according to the present invention is shown in FIG. 1 as a schematic diagram.

磁気特性測定装置のセンサ部2は、2本の脚部31とその脚部を接続する背部32とからなる断面コの字形強磁性体コア3と、そのコア3の背部32に巻回されてなる励磁コイル4と検出コイル5と、から構成されている。2本の脚部31の間隔(即ち、有効測定範囲)はAとする。なお、本実施の形態では、2本の脚部が並び方向を被測定磁性体の移動する方向に略一致させ、その方向と直交する被測定磁性体の幅方向(紙面に垂直な方向)には、強磁性体コアは幅方向の必要とされる測定精度や分解能に対応した厚みをもったコアを有するセンサ部の形状となっている。なお、被測定磁性体の幅方向の複数箇所を測定したい場合には、センサ部2を幅方向各位置に複数個設置すればよく、これによって、当該被測定磁性体の移動方向および移動方向に直交する幅方向の複素透磁率分布を、簡便かつ正確に製造中に連続全長測定することができる。なお、特許文献2はコア脚部に励磁コイルが巻回され、図1はコア背部に巻回されている点で相違するが、原理的にはどちらの構成でもよく、本願発明ではどちらの構成に限定されるものではない。   The sensor unit 2 of the magnetic characteristic measuring apparatus is wound around a U-shaped ferromagnetic core 3 having two legs 31 and a back 32 connecting the legs, and the back 32 of the core 3. The excitation coil 4 and the detection coil 5 are configured as follows. The distance between the two legs 31 (that is, the effective measurement range) is A. In the present embodiment, the direction in which the two leg portions are aligned substantially coincides with the direction in which the magnetic substance to be measured moves, and in the width direction of the magnetic substance to be measured (direction perpendicular to the paper surface) perpendicular to that direction. The ferromagnetic core has the shape of a sensor unit having a core with a thickness corresponding to the required measurement accuracy and resolution in the width direction. In addition, when it is desired to measure a plurality of positions in the width direction of the magnetic substance to be measured, a plurality of sensor units 2 may be installed at each position in the width direction. The complex magnetic permeability distribution in the orthogonal width direction can be continuously and accurately measured during production in a simple and accurate manner. Although Patent Document 2 is different in that an exciting coil is wound around the core leg and FIG. 1 is wound around the back of the core, either configuration is possible in principle, and either configuration is used in the present invention. It is not limited to.

被測定磁性体1は、センサ部2に対し、当該断面コの字形コア3の脚部31の並び方向、即ち矢印の方向へ速度vにて相対的に移動している。また、断面コの字形コア3の脚部31先端部と被測定磁性体1表面との距離(以降、リフトオフと呼ぶ)はLとする。   The measured magnetic body 1 moves relative to the sensor portion 2 at a speed v in the direction in which the leg portions 31 of the U-shaped core 3 are arranged, that is, in the direction of the arrow. In addition, the distance (hereinafter referred to as lift-off) between the tip of the leg portion 31 of the U-shaped core 3 and the surface of the measured magnetic body 1 is L.

被測定磁性体1の複素透磁率の測定は、断面コの字形コアの脚部31の先端を被測定磁性体1に近接対向させて、当該断面コの字形コアの脚部31の先端をプローブとし、それから発振器6により周波数fで励磁コイル4に交流電流を供給し、次にロックインアンプ7で検出コイル5からの出力を同期検波し、同相あるいは位相成分を求め、その結果を8の演算装置で換算し、所要の複素透磁率を算出する。   The complex permeability of the magnetic body 1 to be measured is measured by making the tip of the leg 31 of the U-shaped core close to the magnetic body 1 to be measured and probing the tip of the leg 31 of the U-shaped core. Then, an alternating current is supplied to the exciting coil 4 at the frequency f by the oscillator 6, and then the output from the detection coil 5 is synchronously detected by the lock-in amplifier 7 to obtain the in-phase or phase component, and the result is calculated by 8 The required complex permeability is calculated by converting with an apparatus.

ロックインアンプ7にて、同期検波同相成分(COS成分)を測定することで鉄損値を求めることができる。さらに、鉄損値は、結晶粒径と直線的関係により近似的に求められるので、この鉄損から結晶粒径を求めることも可能となる。また、同期検波のSIN成分を測定することで、微分透磁率(複素透磁率の実数部)に相当する値を測定することができる。さらに、微分透磁率と結晶粒径は相関関係があるので、これにより結晶粒径も測定することも可能となる。   The iron loss value can be obtained by measuring the synchronous detection in-phase component (COS component) with the lock-in amplifier 7. Furthermore, since the iron loss value is approximately obtained by a linear relationship with the crystal grain size, the crystal grain size can be obtained from the iron loss. Further, by measuring the SIN component of the synchronous detection, a value corresponding to the differential permeability (the real part of the complex permeability) can be measured. Furthermore, since the differential magnetic permeability and the crystal grain size have a correlation, the crystal grain size can also be measured.

この図1の構成にて、ある特定の測定条件を一つだけを変更し他の測定条件は一定にした場合の測定精度の傾向を、具体的に示すと以下のようになる。
(a)センサ部2を構成する断面コの字形コア31の脚部間隔Aは、大きい方が良い。
(b)センサ部2に対する被測定磁性体1の相対移動速度vは、小さい方が良い。
(c)周波数fは、高い方が特性を安定に測定できる。
(d)センサ部2(あるいは断面コの字形コア3の)脚部31と被測定磁性体1との距離L(リフトオフ)は、小さい方が良い。
断面コの字形コア3の脚部間隔Aのみを変化させた場合の、測定精度変化傾向の模式図を図8に示す。
In the configuration of FIG. 1, the tendency of the measurement accuracy when only one specific measurement condition is changed and the other measurement conditions are made constant is as follows.
(A) The leg portion interval A of the U-shaped core 31 constituting the sensor unit 2 is preferably large.
(B) The relative moving speed v of the magnetic substance 1 to be measured with respect to the sensor unit 2 is preferably small.
(C) The higher the frequency f, the more stable the characteristics can be measured.
(D) The distance L (lift-off) between the leg part 31 of the sensor part 2 (or the U-shaped core 3 in cross section) and the magnetic substance 1 to be measured should be small.
FIG. 8 shows a schematic diagram of the measurement accuracy changing tendency when only the leg interval A of the U-shaped core 3 is changed.

上記(a)に記したように、断面コの字形コア3の脚部間隔Aが大きい方が基本的に誤差が小さくなる(測定精度は良くなる)傾向は見て取れるが、さらに詳細にみると、誤差が大きく改善する点(p)が存在するという特徴があることが分かる。このように測定条件のある値付近で誤差が大きく変わるという特徴は、上記(b)、(c)、(d)共に見られるため、その背景には共通の物理的な事情があると推察される。   As described in the above (a), it can be seen that the larger the leg interval A of the U-shaped core 3 is, the smaller the error is (the measurement accuracy is improved). It can be seen that there is a feature that there is a point (p) where the error is greatly improved. As described above, the characteristics that the error greatly changes in the vicinity of a certain value of the measurement condition can be seen in the above (b), (c), and (d). Therefore, it is assumed that there is a common physical situation in the background. The

上記のような調査の結果、安定して測定できないもしくは妥当な測定結果を得ることができない原因を考察した結果、次のことが判明した。ある特定の周波数fに関する磁気的な特性を測るためには、それぞれの測定点に関し、外部から印加する交流磁場により生じる図7に示すようなBとHによる磁気ループを、できるだけ多くの周期を十分に経験する必要がある。しかし、周波数が低くなると(もしくは断面コの字形コア3の脚部間隔Aが狭くなると)、印加交流磁場が変化している間に、被測定磁性体1上の測定部位がセンサ部2の測定範囲外に移動してしまう、言い換えると、精度良く測定できる脚部31の間の中央部からはずれてしまう、という現象が生じる。   As a result of the investigation as described above, as a result of considering the reason why the measurement cannot be stably performed or the proper measurement result cannot be obtained, the following has been found. In order to measure the magnetic characteristics related to a specific frequency f, a magnetic loop of B and H as shown in FIG. 7 generated by an alternating magnetic field applied from the outside is sufficiently provided for each measurement point as much as possible. Need to experience. However, when the frequency is lowered (or the leg interval A of the U-shaped core 3 is reduced), the measurement site on the measured magnetic body 1 is measured by the sensor unit 2 while the applied AC magnetic field is changing. The phenomenon of moving out of the range, in other words, deviating from the central portion between the leg portions 31 that can be measured with high accuracy occurs.

被測定磁性体1とセンサ部2との相対的変位に沿って連続的に測定する際、測定点の内のある一点が移動に伴い経験する磁場変化の様子を検討すると、次の2つの要因がある。(A)励磁磁束の変化(励磁の周波数)。
(B)移動方向のセンサ部2の感度分布。
When continuously measuring along the relative displacement between the magnetic substance 1 to be measured and the sensor unit 2, the state of the magnetic field change that one point of the measurement point experiences as it moves is considered to be the following two factors: There is. (A) Change in excitation magnetic flux (excitation frequency).
(B) Sensitivity distribution of the sensor unit 2 in the moving direction.

上記のような測定精度に関する考察に従って、正確に測定するための(A)に関する条件を求めると以下のようになる。外部からの印加磁場の周期の内、ごく一部ではなく、できるだけ多くの周期を被測定部は経験する必要があるが、最低限、ループを1周期分経ることができればよい。具体的には、断面コの字形コア3の脚部31の並び方向に相対的に速度v[mm/s]で変化する場合に、周波数f[Hz]における特性を調べるためには、交流磁場を印加でき、安定に測定できる移動方向の長さが、1周期分相当の長さ(v/f)以上必要である。これは断面コの字形センサ部の脚部間隔Aを決定する上での重要な条件になり、式で表現すると以下のようになる。   In accordance with the above-described consideration regarding the measurement accuracy, the condition relating to (A) for accurate measurement is obtained as follows. The measured part needs to experience as many cycles as possible, not just a part of the period of the externally applied magnetic field, but it is sufficient that at least one cycle can be passed through the loop. Specifically, in order to investigate the characteristics at the frequency f [Hz] when the relative speed changes in the direction of arrangement of the leg portions 31 of the U-shaped core 3 at the speed v [mm / s], an alternating magnetic field is used. The length in the moving direction that can be applied and can be measured stably is equal to or longer than the length (v / f) corresponding to one cycle. This is an important condition for determining the leg interval A of the U-shaped sensor section, and is expressed as follows.

A≧v/f ・・・ (1)
ただし、この条件を満たすだけでは不十分な場合もある。それは(B)の要因が大きく作用する場合である。センサ部2に対し被測定磁性体1が相対的に移動するため、(B)により、被測定磁性体1の被測定部は移動するにつれて、センサ部2の測定範囲内の感度の異なる領域を経験することになる。この感度分布は、図3に例示するように、コの字形コア3の両脚部間中央で最も大きく、中央部を離れるに従い小さくなっていく。この内、正規化感度が0.8以下となる領域を、感度低下領域と設定する。なお図3は、図4に示した構成にて測定を行った結果である。即ち、被測定磁性体1として電磁鋼板を用い、当該電磁鋼板1やセンサ部2の大きさに比べ小さな欠陥9を設けた電磁鋼板1を、脚部31の並び方向(矢印の方向)に移動させながらセンサ部2で測定した。この時、センサ部2の脚部間隔Aの中央(g−g’軸)から水平方向に離れた位置rを設定し、向かって左方向を負、向かって右方向を正とした。また、センサ部2の脚部31の内側の端の位置は、負側をE1、正側をE2とした。測定結果は、上記位置rに対し、電磁鋼板1に欠陥9が無い場合の測定結果からの変化分としてプロットした。
A ≧ v / f (1)
However, there are cases where it is not sufficient to satisfy this condition. This is the case when the factor (B) acts greatly. Since the magnetic substance 1 to be measured moves relative to the sensor unit 2, as shown in (B), as the measured part of the magnetic substance 1 to be measured moves, regions having different sensitivities within the measurement range of the sensor unit 2 are displayed. Will experience. As illustrated in FIG. 3, this sensitivity distribution is greatest at the center between both leg portions of the U-shaped core 3 and decreases as the center portion is separated. Among these, a region where the normalized sensitivity is 0.8 or less is set as a sensitivity reduction region. FIG. 3 shows the results of measurement with the configuration shown in FIG. That is, an electromagnetic steel plate is used as the magnetic body 1 to be measured, and the electromagnetic steel plate 1 provided with a defect 9 smaller than the size of the electromagnetic steel plate 1 or the sensor unit 2 is moved in the direction in which the legs 31 are arranged (the direction of the arrow). The measurement was performed with the sensor unit 2. At this time, a position r was set in the horizontal direction away from the center (g-g 'axis) of the leg interval A of the sensor unit 2, and the left direction toward the negative was negative, and the right direction toward the right was positive. Further, the position of the inner end of the leg portion 31 of the sensor unit 2 is E1 on the negative side and E2 on the positive side. The measurement result was plotted as a change from the measurement result when there was no defect 9 in the electromagnetic steel sheet 1 with respect to the position r.

上述したように、脚部31の内側の端より断面コの字形コア3の中央側には、感度の低下領域が幅Cにて存在する。この感度低下領域を考慮した場合について、図2を元に説明する。図1および図4の場合と同一のものは同一の符号を付し、詳細な説明は省略する。   As described above, a sensitivity reduction region exists with a width C on the center side of the U-shaped core 3 in section from the inner end of the leg portion 31. A case where this sensitivity reduction region is considered will be described with reference to FIG. The same components as those in FIGS. 1 and 4 are denoted by the same reference numerals, and detailed description thereof is omitted.

この感度低下領域は、交流磁気測定においては、印加磁界の振幅が小さくなり、本来測定したい振幅条件から離れてしまう、また振幅が小さいため信号レベルとしては中間部に比べ小さくなる領域である。この領域の幅Cは、センサ部2の脚間隔Aや脚部31と被測定磁性体1とのリフトオフL等の要因によって変化する。このような脚部31より断面コの字形コア3の中央側の感度低下領域は、上記のように信号出力としては小さいため、それ以外の部分の測定値に対する寄与が十分に大きければ測定全体に悪影響を及ぼすことはない。そこで、それぞれの測定対象部が1周期(v/f)以上の磁場変化を経験するような脚部間隔Aを求めることを考えると、脚部間隔Aの内、感度低下領域は除外して考えればよい。言い換えれば、脚部間隔Aから感度低下領域の幅C(脚部が2ヶ所あるので合計は2×C)の部分を除いたDの部分が、v/fより大きくなれば良い。具体的には、図2に模式的に示した通りである。   This sensitivity reduction region is a region in which the amplitude of the applied magnetic field is small in AC magnetic measurement, which is far from the amplitude condition to be originally measured, and the signal level is small compared to the intermediate portion because the amplitude is small. The width C of this region varies depending on factors such as the leg interval A of the sensor unit 2 and the lift-off L between the leg unit 31 and the measured magnetic body 1. Since the sensitivity reduction region on the central side of the U-shaped core 3 with respect to the leg portion 31 is small as a signal output as described above, if the contribution to the measurement values in other portions is sufficiently large, the entire measurement is performed. There is no adverse effect. Therefore, considering that the leg spacing A is such that each measurement target part experiences a magnetic field change of one period (v / f) or more, it is possible to exclude the sensitivity reduction area from the leg spacing A. That's fine. In other words, the portion of D, excluding the width C of the sensitivity reduction region from the leg interval A (the total is 2 × C because there are two legs), should be larger than v / f. Specifically, it is as schematically shown in FIG.

つまりセンサ部2と被測定磁性体1との相互の位置が、断面コの字形コア3の脚部31の並び方向に相対的に速度v[mm/s]で変化する場合に、リフトオフL[mm]にて、周波数f[Hz]における特性を調べるために、断面コの字形コア3の脚部31の脚部間隔A[mm]を、センサ部の感度低下領域の幅をC(合計2×C)[mm]としたときに、
A≧v/f+2×C ・・・ (3)
ただし、 C>0
の関係を満たすように設定する。なおCはAとLによりほぼ決定される。
That is, when the mutual position of the sensor unit 2 and the magnetic substance 1 to be measured changes at a velocity v [mm / s] relative to the arrangement direction of the leg portions 31 of the U-shaped core 3 in cross section, the lift-off L [ mm], in order to investigate the characteristics at the frequency f [Hz], the leg spacing A [mm] of the leg 31 of the U-shaped core 3 in cross section, the width of the sensitivity reduction region of the sensor section C (total 2) × C) When [mm]
A ≧ v / f + 2 × C (3)
However, C> 0
Set to satisfy the relationship. C is almost determined by A and L.

上記Cに関しては、具体的には、例えば、以下のように決めることができる。図2中に、g−g’軸で示した脚部31間の中央(図2から図4においてr=0mmの位置)の最大感度値の8割(2割減)までの範囲を測定可能範囲し、その範囲内で磁気ループが十分に経験させられれば使用可能であるとする。この前提で、脚部間隔Aを変化させた場合の、リフトオフLに対する感度低下領域幅C[mm]を求めグラフを作成する(図5参照)。このデータを整理すると、Cは以下のように表現される。   Specifically, the above C can be determined as follows, for example. In Fig. 2, the range of up to 80% (20% reduction) of the maximum sensitivity value at the center (position r = 0mm in Figs. 2 to 4) between the legs 31 indicated by the gg 'axis can be measured. It is assumed that it can be used if the magnetic loop is sufficiently experienced within the range. Under this premise, a graph is created by obtaining the sensitivity reduction region width C [mm] with respect to the lift-off L when the leg interval A is changed (see FIG. 5). If this data is arranged, C is expressed as follows.

C=q(L,A) (q(L,A)>0のとき)
C=0 (q(L,A)≦0のとき)
ここで、
q(L,A)=(0.0043×A+0.29)×(L+0.076×A−10) ・・・(5)
なお、q(L,A)≦0の場合C=0となるのは、脚部間隔A以上に測定領域が広がることは実質的に考えなくて良いためである。
C = q (L, A) (when q (L, A)> 0)
C = 0 (when q (L, A) ≤ 0)
here,
q (L, A) = (0.0043 × A + 0.29) × (L + 0.076 × A−10) (5)
Note that C = 0 when q (L, A) ≦ 0 because it is not necessary to substantially consider that the measurement region is widened beyond the leg interval A.

また、上記(5)式を脚部間隔Aを規定する上記(3)式に代入すると(3)式はAの2次関数として表示され、Cによらない式となる。即ち、Aはゼロ超えの有限の長さであるからこの数値の範囲で測定対象や必要とする測定精度により設定される数値となる。そして、Aの数値が決まれば(5)式によりCが決定される。このプロセスを何度か繰り返すことにより感度低下領域幅Cの比率が小さい脚部間隔Aを求めることができる。   Further, when the above equation (5) is substituted into the above equation (3) that defines the leg interval A, the equation (3) is displayed as a quadratic function of A and becomes an equation independent of C. In other words, since A is a finite length exceeding zero, it is a numerical value set according to the measurement object and the required measurement accuracy within this numerical range. And if the numerical value of A is decided, C will be decided by (5) Formula. By repeating this process several times, the leg interval A having a small ratio of the reduced sensitivity region width C can be obtained.

上記(3)式は、精度の点で測定に適したリフトオフ範囲(20mmくらいまで)において、図5に示すように、3種の脚部間隔(測定に求められる局所性などの条件から考えて適当な範囲)に対し、測定値の近似直線を求め、その近似直線群を一般的に表現したものである。   In the lift-off range (up to about 20mm) suitable for measurement in terms of accuracy, the above equation (3) is considered from the three leg spacings (locality required for measurement, etc.) as shown in FIG. An approximate straight line of measured values is obtained for an appropriate range), and the approximate straight line group is generally expressed.

なお、q(L,A)≦0の場合C=0とするのは、Cが負であるということは脚部間隔A以上に測定領域が広がることを数値上は意味するが、実際は測定領域の最大値は脚部間隔Aと考えられ、その場合Cはq(L,A)ではなく、ゼロとするのが妥当であるからである。   In addition, when q (L, A) ≦ 0, C = 0 means that C is negative means that the measurement area extends more than the leg interval A, but in reality the measurement area This is because the maximum value of is considered to be the leg interval A, in which case C is not q (L, A), and it is appropriate to set it to zero.

なお、本実施の形態ではセンサ部2に対する被測定磁性体1の相対的移動方向と、断面コの字形コア3の脚部31の並び方向が一致している場合について、安定に測定するための諸条件を明らかにしたが、本発明はこれに限定されない。同様の考え方は、断面コの字形コアの脚部31の並び方向がセンサ部2に対する被測定磁性体1の相対的移動方向と垂直な場合、あるいは、上記2例の中間的な方向(脚部の向きが鋼板移動方向と斜めの方向)の場合にも、適用することができる。即ち、脚部31の並び方向に関わらず、正確な測定を実現するための、センサ部2の形状を含んだ測定諸条件を決定することは可能である。   In the present embodiment, the relative movement direction of the magnetic substance 1 to be measured with respect to the sensor unit 2 and the arrangement direction of the leg portions 31 of the U-shaped core 3 in section are the same for stable measurement. Although various conditions were clarified, the present invention is not limited to this. A similar idea is that the direction in which the leg portions 31 of the U-shaped core are perpendicular to the relative movement direction of the magnetic substance 1 to be measured with respect to the sensor portion 2, or the intermediate direction (leg portion) of the above two examples. This can also be applied to the case where the direction of is a direction oblique to the steel plate moving direction. That is, regardless of the arrangement direction of the leg portions 31, it is possible to determine various measurement conditions including the shape of the sensor portion 2 for realizing accurate measurement.

例えば、渦電流分を含まない条件での測定をするためには、高周波で測定して、渦電流寄与分を何らかの形で評価して除くということは可能ではあるが、手間がかかる、精度が悪くなるという問題点があり、本願発明ではそのような場合でも測定可能であることを以下実施例に説明する。   For example, in order to measure under conditions that do not include eddy currents, it is possible to measure at high frequencies and evaluate and remove the eddy current contribution in some way, but this takes time and accuracy. In the following examples, it will be described that measurement is possible even in such a case.

実施例として、方向性電磁鋼板の鉄損を電磁鋼板の製造ラインで測定する方法について図1を参照しながら説明する。   As an example, a method for measuring the iron loss of a grain-oriented electrical steel sheet on the production line of the electrical steel sheet will be described with reference to FIG.

比較的直流に近い、低周波数領域での鉄損値(50Hzなど)を測定する場合を考える。低周波数領域での鉄損値を評価するためには、渦電流損の大きな測定条件で測定すると、何らかの方法で補正をしても測定精度は改善されず、測定精度劣化の原因となるため、渦電流損の小さな条件(低周波数)で測定する必要がある。しかし、本発明者らは、求めたい特性値の周波数と全く同じ励磁周波数で測定を実施する必要はなく、測定に使用する周波数での鉄損と求めたい鉄損値が精度上必要なレベルで一致していれば良いとの知見を得て、本実施例では同じ50Hzにて測定することとした。   Consider the case of measuring iron loss values (such as 50 Hz) in a low frequency range that is relatively close to direct current. In order to evaluate the iron loss value in the low-frequency region, if measurement is performed under measurement conditions with large eddy current loss, the measurement accuracy will not be improved even if correction is performed by any method, causing measurement accuracy to deteriorate. It is necessary to measure under low eddy current loss conditions (low frequency). However, the present inventors do not need to perform measurement at exactly the same excitation frequency as the frequency of the characteristic value to be obtained, and the iron loss at the frequency used for measurement and the iron loss value to be obtained are at a level required for accuracy. In the present example, it was decided to measure at the same 50 Hz by obtaining the knowledge that they should match.

センサ部2の脚部31先端は、測定対象である電磁鋼板1に対向するように配置する。2本の脚部31の並び方向は、電磁鋼板1の移動方向、即ち圧延方向と一致しており、その結果、測定される磁気特性は圧延方向に磁場を印加した場合のものとなる。   The tip of the leg 31 of the sensor unit 2 is disposed so as to face the electromagnetic steel plate 1 that is the measurement target. The arrangement direction of the two leg portions 31 coincides with the moving direction of the electromagnetic steel sheet 1, that is, the rolling direction, and as a result, the measured magnetic properties are those when a magnetic field is applied in the rolling direction.

電磁鋼板1の移動速度(圧延ラインの速度)vは2000mm/s、リフトオフLは10mmとした。よって、センサ部2の脚部間隔A(脚部間の内側の距離)は(1)式に従うと、2000[mm/s]/50[Hz]=40[mm]以上となる。   The moving speed (rolling line speed) v of the electromagnetic steel sheet 1 was 2000 mm / s, and the lift-off L was 10 mm. Accordingly, the leg interval A (inner distance between the leg portions) of the sensor unit 2 is 2000 [mm / s] / 50 [Hz] = 40 [mm] or more according to the equation (1).

一方、(3)式を適用する必要があるかどうかは、求める測定精度や感度低下領域の幅Cに関係する。   On the other hand, whether or not the expression (3) needs to be applied is related to the required measurement accuracy and the width C of the sensitivity reduction region.

感度低下領域の幅Cは、図3と図4のようなやり方で実測して求めてもよいし、または(5)式を使用して求めても良い。仮にA=40mmとして、(5)式に基づき計算すると、2×C=2.8[mm]となる。   The width C of the sensitivity reduction region may be obtained by actual measurement in the manner as shown in FIGS. 3 and 4, or may be obtained by using equation (5). Assuming that A = 40 mm and calculating based on equation (5), 2 × C = 2.8 [mm].

すると、感度低下領域の全幅2Cである2.8mmに対し、脚部間隔Aの40mmは十分大きいので、この場合は(1)式から脚部間隔Aを決めても問題は無い。   Then, 40 mm of the leg interval A is sufficiently larger than 2.8 mm which is the entire width 2C of the sensitivity reduction region. In this case, there is no problem even if the leg interval A is determined from the equation (1).

より良い条件とするならば(3)式より不等式を解けば良く、脚部間隔Aは43mm以上あれば良いことになる。周期(v/f)の整数倍であれば、前述のBとHによる磁気ループの整数倍に相当するので、測定領域各箇所がBとHによる磁気ループを均等に経験するので、そのような条件が望ましいが、周期数がある程度あれば、平均化の効果により整数倍ではない部分の影響は軽微に抑えられる。   If the conditions are better, it is sufficient to solve the inequality from the expression (3), and the leg interval A should be 43 mm or more. If it is an integral multiple of the period (v / f), it corresponds to an integral multiple of the magnetic loop of B and H described above, so each part of the measurement region experiences a magnetic loop of B and H evenly. Conditions are desirable, but if there is a certain number of periods, the influence of non-integer multiples can be minimized by the effect of averaging.

例えば、脚部間隔Aを283mmに設定した場合、感度低下領域を除いた有効測定範囲Dが増え、ほぼ印加磁化の7周期分のデータが採取できるため精度が向上する。しかし一方で、鋼板圧延方向および幅方向の測定範囲が広がる、言い換えると、小さいセンサ部の場合と比べてより広い範囲の平均的な値しか測定できなくなる点、センサ部2のサイズが大きくかつ重量も増し、センサ部2のハンドリングがより困難になる点等の望ましくない点も発生する。   For example, when the leg interval A is set to 283 mm, the effective measurement range D excluding the sensitivity reduction region is increased, and data can be collected for almost seven cycles of applied magnetization, so that accuracy is improved. However, on the other hand, the measurement range in the steel sheet rolling direction and the width direction is expanded, in other words, only an average value in a wider range can be measured as compared with the case of the small sensor unit, the size of the sensor unit 2 is large and the weight In addition, an undesirable point such as a point that the handling of the sensor unit 2 becomes more difficult occurs.

そこで、本実施例では脚部間隔Aは123mmと設定した。これは測定範囲Dが、印加磁化の3周期分に相当する。   Therefore, in this embodiment, the leg interval A is set to 123 mm. This corresponds to a measurement range D corresponding to three periods of applied magnetization.

発振器6により50Hzの周波数の交流電流を励磁コイル4に供給し、励磁4コイルで磁束をコアに沿って鋼板1に流し、その反応を検出コイル5にて測定する。ロックインアンプ7にて同期検波し、同相成分(検出用コイルで位相が90度回るため)を求めた。この同相成分結果は、複素透磁率の虚数成分(損失)と関係付けられる。そこで、演算装置8で、複数の標準サンプルの測定結果からあらかじめ求めておいた換算係数から鉄損値を算出した。得られた鉄損値を図6に示す。図6のセンサ出力を示す縦軸は、任意の値を基準にした相対的な単位の、a.u.(arbitrary unitの略で、任意単位)で示している。この結果より、測定対象が移動中であっても測定できていることがわかる。そして、このようにして求められた鉄損は、センサ部の測定する範囲が空間的に(幅方向にも、移動方向にも)限定されているため、局所的な領域の測定値になっている。   An alternating current having a frequency of 50 Hz is supplied to the exciting coil 4 by the oscillator 6, and a magnetic flux is caused to flow through the steel plate 1 along the core by the exciting 4 coil, and the reaction is measured by the detection coil 5. Synchronous detection was performed with the lock-in amplifier 7 to obtain an in-phase component (because the phase rotates 90 degrees with the detection coil). This in-phase component result is related to the imaginary component (loss) of the complex permeability. Accordingly, the iron loss value was calculated by the arithmetic unit 8 from the conversion coefficient obtained in advance from the measurement results of the plurality of standard samples. The obtained iron loss value is shown in FIG. The vertical axis indicating the sensor output in FIG. 6 is a.u. (abbreviation of arbitrary unit), which is a relative unit based on an arbitrary value. From this result, it can be seen that measurement is possible even when the measurement object is moving. And the iron loss calculated | required in this way becomes the measured value of a local area | region since the range which a sensor part measures is limited spatially (in a width direction and a moving direction). Yes.

以上の結果から、本発明を適用することで、測定対象が移動中において、局所的な磁気特性を精度良く測定することが可能であることが明確になった。   From the above results, it became clear that the application of the present invention makes it possible to accurately measure local magnetic characteristics while the measurement target is moving.

1 被測定磁性体(電磁鋼板)
2 センサ部
3 断面コの字形コア
31 断面コの字形コア(あるいはセンサ部)の脚部
32 断面コの字形コアの背部
4 1次(励磁)コイル
5 2次(検出)コイル
6 発振器
7 ロックインアンプ
8 演算装置
9 欠陥
A 断面コの字形コア(あるいはセンサ部)の脚部の間隔
B 外部から印加する磁束密度
C センサ部の感度低下領域の幅
D 脚部間隔Aから感度低下領域を除いた部分
E 断面コの字形コアの脚部の内側の端
f 測定周波数
H 外部から印加する交流磁界
L 断面コの字形コアの脚部と磁性体の距離(リフトオフ)
v センサ部に対する磁性体の相対速度
r センサ部の脚部間隔Aの中央から水平方向へ離れた位置(中央を0とする)
δ 交流磁界Hと磁束密度Bの位相遅れ
1 Magnetic material to be measured (Electromagnetic steel plate)
2 Sensor section 3 U-shaped core 31 Cross section U-shaped core (or sensor section) leg section 32 Back section of U-shaped core 4 Primary (excitation) coil 5 Secondary (detection) coil 6 Oscillator 7 Lock-in Amplifier 8 Arithmetic unit 9 Defect A Distance between leg portions of U-shaped core (or sensor part) B Magnetic flux density applied from outside C Width of sensitivity reduction region of sensor part D Sensitivity reduction region is excluded from leg interval A Part E End of the leg of the U-shaped core in the cross section f Measurement frequency H AC magnetic field applied from the outside L Distance between the leg of the U-shaped core in the cross section and the magnetic material (lift-off)
v Relative velocity of the magnetic body with respect to the sensor unit r Position away from the center of the leg interval A of the sensor unit in the horizontal direction (the center is 0)
δ Phase lag of AC magnetic field H and magnetic flux density B

Claims (5)

断面コの字形強磁性体コアに交流励磁用コイルと検出用コイルを巻回し、前記断面コの字形コアの脚部先端を移動する被測定磁性体に予め定めたリフトオフを以って近接対向させて該被測定磁性体の複素透磁率を測定する磁気特性測定装置において、前記脚部の並び方向に相対的に移動する前記被測定磁性体の移動速度v、前記交流励磁コイルへの印加周波数f、予め定めたリフトオフと前記脚部間隔Aとの関数として表される前記脚部間における検出感度低下領域の幅C、および前記脚部間隔Aとが下記式を満足するように前記脚部間隔Aが決定されていることを特徴とする複素透磁率測定装置。
A≧v/f+2×C
ただし、 C>0
An AC excitation coil and a detection coil are wound around a U-shaped ferromagnetic core, and a magnetic material to be measured that moves the tip of the leg of the U-shaped core is placed in close proximity to each other with a predetermined lift-off. In the magnetic characteristic measuring apparatus for measuring the complex magnetic permeability of the magnetic material to be measured, the moving speed v of the magnetic material to be measured relatively moving in the direction in which the legs are arranged, and the frequency f applied to the AC excitation coil The leg spacing is such that the width C of the detection sensitivity reduction region between the legs expressed as a function of a predetermined lift-off and the leg spacing A, and the leg spacing A satisfies the following equation: A complex permeability measuring device, wherein A is determined.
A ≧ v / f + 2 × C
However, C> 0
nを1以上の整数として、下記式を満足するように脚部間隔Aが決定されていることを特徴とする請求項1に記載の磁性体の複素透磁率測定装置。
A≧n×v/f+2×C
ただし、 C>0
The apparatus of claim 1, wherein the leg interval A is determined so that n is an integer equal to or greater than 1, and the following formula is satisfied.
A ≧ n × v / f + 2 × C
However, C> 0
請求項1または2に記載の複素透磁率測定装置を用いた複素透磁率の測定結果より、前記複素透磁率の測定結果と被測定磁性体の結晶粒径との相関関係を用いて、測定領域における被測定磁性体の平均化された結晶粒径を求めることを特徴とする磁性体の結晶粒径測定方法。   From the measurement result of the complex permeability using the complex permeability measurement device according to claim 1 or 2, a measurement region is obtained by using a correlation between the measurement result of the complex permeability and the crystal grain size of the magnetic substance to be measured. A method for measuring a crystal grain size of a magnetic material, comprising: obtaining an average crystal grain size of a magnetic material to be measured in 前記被測定磁性体は製造ライン通板中の電磁鋼板であり、該電磁鋼板の鉄損を前記電磁鋼板がライン通板中に測定することを特徴とする請求項1または2に記載の磁性体の複素透磁率測定装置。   The magnetic body according to claim 1 or 2, wherein the magnetic body to be measured is an electromagnetic steel plate in a production line passing plate, and the iron loss of the electromagnetic steel plate is measured by the electromagnetic steel plate in the line passing plate. Complex permeability measuring device. 請求項1または2に記載の磁性体の複素透磁率測定装置を用いた電磁鋼板の製造方法であって、前記複素透磁率測定装置の測定結果と電磁鋼板の結晶粒径との相関関係から、前記電磁鋼板の測定領域における平均結晶粒径を求め、その求めた平均結晶粒径にもとづいて製造条件を制御する工程を具備することを特徴とする電磁鋼板の製造方法。   It is a manufacturing method of the magnetic steel sheet using the complex permeability measuring device of the magnetic substance according to claim 1 or 2, Comprising: From the correlation between the measurement result of the complex permeability measuring device and the crystal grain size of the magnetic steel plate, A method for producing an electrical steel sheet, comprising: obtaining an average crystal grain size in a measurement region of the electrical steel sheet, and controlling production conditions based on the obtained average crystal grain size.
JP2011016243A 2011-01-28 2011-01-28 Apparatus for measuring complex permeability of magnetic material and method for measuring crystal grain size of magnetic material using the same Active JP5293755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011016243A JP5293755B2 (en) 2011-01-28 2011-01-28 Apparatus for measuring complex permeability of magnetic material and method for measuring crystal grain size of magnetic material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011016243A JP5293755B2 (en) 2011-01-28 2011-01-28 Apparatus for measuring complex permeability of magnetic material and method for measuring crystal grain size of magnetic material using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006005793A Division JP4736811B2 (en) 2006-01-13 2006-01-13 Method for determining leg interval of complex magnetic permeability measuring device of magnetic material

Publications (2)

Publication Number Publication Date
JP2011123081A JP2011123081A (en) 2011-06-23
JP5293755B2 true JP5293755B2 (en) 2013-09-18

Family

ID=44287057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011016243A Active JP5293755B2 (en) 2011-01-28 2011-01-28 Apparatus for measuring complex permeability of magnetic material and method for measuring crystal grain size of magnetic material using the same

Country Status (1)

Country Link
JP (1) JP5293755B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728579A (en) * 2014-01-15 2014-04-16 大全集团有限公司 Alternating current contactor iron core dynamic suction detection device and detection method
US8772327B2 (en) 2008-04-28 2014-07-08 Asahi Kasei Pharma Corporation Phenylpropionic acid derivative and use thereof
CN106597267A (en) * 2016-11-15 2017-04-26 西安交通大学 Uniform magnetic field generation and control system and method for vacuum arc experiment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6908213B1 (en) * 2019-12-20 2021-07-21 Jfeスチール株式会社 Leakage magnetic inspection equipment and defect inspection method
CN112735784B (en) * 2021-01-27 2023-03-21 西安交通大学 Parallel reactor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219127A (en) * 1988-02-26 1989-09-01 Sumitomo Metal Ind Ltd Method for operating continuous annealing furnace
JP2707841B2 (en) * 1991-01-14 1998-02-04 住友金属工業株式会社 Method for controlling plastic strain ratio of continuously heat-treated thin steel sheet
JPH07190991A (en) * 1993-12-27 1995-07-28 Nkk Corp Transformation rate-measuring method and device
JP2003121419A (en) * 2001-10-11 2003-04-23 Toppan Printing Co Ltd Permeability measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772327B2 (en) 2008-04-28 2014-07-08 Asahi Kasei Pharma Corporation Phenylpropionic acid derivative and use thereof
CN103728579A (en) * 2014-01-15 2014-04-16 大全集团有限公司 Alternating current contactor iron core dynamic suction detection device and detection method
CN103728579B (en) * 2014-01-15 2016-03-16 南京大全电气研究院有限公司 A.C. contactor iron core dynamic suction pick-up unit and detection method
CN106597267A (en) * 2016-11-15 2017-04-26 西安交通大学 Uniform magnetic field generation and control system and method for vacuum arc experiment
CN106597267B (en) * 2016-11-15 2019-02-05 西安交通大学 A kind of uniform magnetic field generation and regulator control system and method for vacuum arc experiment

Also Published As

Publication number Publication date
JP2011123081A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
KR101941241B1 (en) Electromagnetic sensor and calibration thereof
JP5262436B2 (en) Magnetic measurement method and apparatus
JP4487082B1 (en) Magnetic flux leakage flaw detection method and apparatus
JP5293755B2 (en) Apparatus for measuring complex permeability of magnetic material and method for measuring crystal grain size of magnetic material using the same
JP6289732B2 (en) Rope damage diagnostic inspection apparatus and rope damage diagnostic inspection method
JP4736811B2 (en) Method for determining leg interval of complex magnetic permeability measuring device of magnetic material
CN105806202A (en) Probe of electrical vortex sensor and electrical vortex sensor
Cheng Nondestructive testing of back-side local wall-thinning by means of low strength magnetization and highly sensitive magneto-impedance sensors
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
JP5266695B2 (en) Method and apparatus for detecting magnetic property fluctuation site of grain-oriented electrical steel sheet
JP2004279055A (en) Method and apparatus for measuring carburization depth on inner surface of steel pipe
JP6562055B2 (en) Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet
JP4192708B2 (en) Magnetic sensor
JP3707547B2 (en) Method for measuring Si concentration in steel material and method for producing electrical steel sheet
JP6607242B2 (en) Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet
JP2017090312A (en) Magnetic core for current sensors
Jászfi et al. Indirect yoke-based BH hysteresis measurement method determining the magnetic properties of macroscopic ferromagnetic samples part I: Room temperature
JP6015518B2 (en) Magnetic property measuring method and apparatus
JP4029400B2 (en) Method for measuring carburization depth on the inner surface of steel pipe
JP3948594B2 (en) Method for measuring Si concentration in steel
Takahashi et al. Development of the 2-D single-sheet tester using diagonal exciting coil and the measurement of magnetic properties of grain-oriented electrical steel sheet
JP2005315732A (en) Instrument for measuring displacement of ferromagnetic body
JP2014215082A (en) Measuring device and measuring method
JP2012184931A (en) Method of measuring fraction of structure in steel plate
JP2021043161A (en) Hardness measuring device, hardness measuring method and program

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Ref document number: 5293755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250