JP2014215082A - Measuring device and measuring method - Google Patents

Measuring device and measuring method Download PDF

Info

Publication number
JP2014215082A
JP2014215082A JP2013090379A JP2013090379A JP2014215082A JP 2014215082 A JP2014215082 A JP 2014215082A JP 2013090379 A JP2013090379 A JP 2013090379A JP 2013090379 A JP2013090379 A JP 2013090379A JP 2014215082 A JP2014215082 A JP 2014215082A
Authority
JP
Japan
Prior art keywords
coil
signal
measured
temperature
conversion circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013090379A
Other languages
Japanese (ja)
Inventor
隆二 古賀
Ryuji Koga
隆二 古賀
徹 池▲崎▼
Toru Ikezaki
徹 池▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Engineering Co Ltd filed Critical Nippon Steel and Sumikin Engineering Co Ltd
Priority to JP2013090379A priority Critical patent/JP2014215082A/en
Publication of JP2014215082A publication Critical patent/JP2014215082A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring device capable of measuring a distance with a conductive or semiconductive object to be measured and a temperature of the object to be measured in non-contact and with high precision.SOLUTION: The measuring device includes: a first coil 21 and a second coil 31 oppositely arranged on an object 10 to be measured; a first conversion circuit 22 for exciting the first coil 21 and outputting a first signal S1 relating to a change of an impedance of the first coil 21; and a second conversion circuit 32 for exciting the second coil 31 and outputting a second signal S2 relating to a change of an impedance of the second coil 31. The respective coils and conversion circuits measure and obtain respective characteristics of the first signal S1 and the second signal S2, and select and use the first coil 21, the first conversion circuit 22, a second coil 31, and the second conversion circuit 32 whose combination is the same level in absolute value. A distance D to the object 10 to be measured from each coil is calculated from the first signal S1 and the second signal S2.

Description

本発明は、交流電流で励磁されたコイルを導電性または半導電性の被測定体に近づけたときの前記コイルのインピーダンスの変化から、前記被測定体との距離や被測定体の温度を検出する測定装置及び測定方法に関する。   The present invention detects the distance to the object to be measured and the temperature of the object to be measured from the change in impedance of the coil when the coil excited by alternating current is brought close to the object to be measured which is conductive or semiconductive. The present invention relates to a measuring apparatus and a measuring method.

交流電流で励磁されたコイルを導電性または半導電性の被測定体に近づけると、コイルが発生する磁束によって前記被測定体の表面に渦電流が生ずる。この渦電流は、コイルが発生する磁束の変化を妨げる方向に生ずる。そのため、被測定体に近づくコイルは、被測定体の表面に生ずる渦電流の影響を受け、被測定体との距離に相応して、インピーダンスやインダクタンスが変化する。即ち、コイルのインピーダンスやインダクタンスは、被測定体までの距離と、相関を持つ。
したがって、被測定体に近づけたときのコイルのインピーダンス変化やインダクタンス変化に関与する変化量(例えば、電圧や、発信周波数などの一次測定量)を測定し、その測定量を解析することで、コイルと被測定体との距離を算出することが可能である。
When a coil excited by an alternating current is brought close to a conductive or semiconductive object to be measured, an eddy current is generated on the surface of the object to be measured by a magnetic flux generated by the coil. This eddy current is generated in a direction that prevents a change in magnetic flux generated by the coil. For this reason, the coil approaching the measurement object is affected by eddy current generated on the surface of the measurement object, and the impedance and inductance change according to the distance from the measurement object. That is, the impedance and inductance of the coil have a correlation with the distance to the object to be measured.
Therefore, by measuring the amount of change (for example, primary measurement amount such as voltage and transmission frequency) related to the impedance change and inductance change of the coil when it is close to the measured object, and analyzing the measurement amount, It is possible to calculate the distance between and the measured object.

また、被測定体を流れる渦電流の量は被測定体の透磁率や導電率と一定の相関を持ち、更に、被測定体の透磁率や導電率は、被測定体の温度と一定の相関を持つ。言い換えると、被測定体の温度変化は、渦電流の変化を招き、被測定体から一定の距離にあるコイルに、インピーダンスやインダクタンスの変化をもたらす。即ち、コイルのインピーダンスやインダクタンスは、被測定体の温度とも、相関を持つ。
従って、被測定体から一定の距離にあるコイルのインピーダンス変化やインダクタンス変化に関与する変化量を測定し、その測定量を解析することで、被測定体の温度を算出することも可能である。
In addition, the amount of eddy current flowing through the measured object has a certain correlation with the permeability and conductivity of the measured object, and the permeability and conductivity of the measured object have a certain correlation with the temperature of the measured object. have. In other words, a change in the temperature of the measured object causes a change in eddy current, causing a change in impedance and inductance in a coil at a certain distance from the measured object. That is, the impedance and inductance of the coil have a correlation with the temperature of the measured object.
Therefore, it is also possible to calculate the temperature of the measured object by measuring the amount of change involved in the impedance change or inductance change of the coil at a certain distance from the measured object and analyzing the measured value.

なお、図7は、コイルのインダクタンス変化に関与する変化量である発信周波数と、被測定体の温度との相関、コイルから被測定体までの距離との相関の一例を示したものである。
図7において、縦軸には、コイルのインダクタンス変化に関与する変化量である発信周波数(単位はHz)をとり、横軸にはコイルから被測定体までの距離(単位はmm)をとっている。図7において、特性線f1は、被測定体の温度が60℃のときの発信周波数とコイルから被測定体までの距離との相関を示す。また、図7において、特性線f2は、被測定体の温度が30℃のときの発信周波数とコイルから被測定体までの距離との相関を示す。
FIG. 7 shows an example of the correlation between the transmission frequency, which is the amount of change involved in the inductance change of the coil, the temperature of the object to be measured, and the distance from the coil to the object to be measured.
In FIG. 7, the vertical axis represents the transmission frequency (unit: Hz), which is the amount of change involved in the inductance change of the coil, and the horizontal axis represents the distance (unit: mm) from the coil to the measured object. Yes. In FIG. 7, a characteristic line f1 shows a correlation between the transmission frequency when the temperature of the measured object is 60 ° C. and the distance from the coil to the measured object. In FIG. 7, a characteristic line f2 indicates the correlation between the transmission frequency when the temperature of the measured object is 30 ° C. and the distance from the coil to the measured object.

図7において、コイルから被測定体までの距離が13mm以内となる領域A1では、被測定体の温度が60℃の場合と30℃の場合とでは、発信周波数が相異する。即ち、この領域A1は、被測定体の温度がコイルのインダクタンス変化に影響する度合いが大きい領域(以降、温度依存領域A1と呼ぶ)である。この温度依存領域A1では、被測定体までの距離と、被測定体の温度と、の双方が、コイルのインダクタンス変化に影響を及ぼす。
また、コイルから被測定体までの距離が13mmを超えた領域A2では、被測定体の温度が60℃の場合と30℃の場合のいずれの場合も、発信周波数はほぼ同一になる。即ち、この領域A2は、被測定体の温度がコイルのインダクタンス変化に影響する度合いが小さい(ほとんど影響しない)領域(以降、温度非依存領域A2と呼ぶ)である。この温度非依存領域A2では、被測定体までの距離のみが、コイルのインダクタンス変化に影響を及ぼす。
In FIG. 7, in the area A1 where the distance from the coil to the object to be measured is within 13 mm, the transmission frequency is different between the case where the temperature of the object to be measured is 60 ° C. and 30 ° C. That is, this area A1 is an area where the temperature of the measured object greatly affects the inductance change of the coil (hereinafter referred to as temperature-dependent area A1). In this temperature-dependent region A1, both the distance to the measurement object and the temperature of the measurement object affect the inductance change of the coil.
Further, in the region A2 where the distance from the coil to the object to be measured exceeds 13 mm, the transmission frequency is almost the same regardless of whether the temperature of the object to be measured is 60 ° C. or 30 ° C. That is, this region A2 is a region (hereinafter, referred to as a temperature-independent region A2) in which the degree of influence of the temperature of the measured object on the coil inductance change is small (has little influence). In this temperature-independent region A2, only the distance to the measurement object affects the coil inductance change.

下記特許文献1には、前記被測定体の表面に渦電流の変化の影響によるコイルのインダクタンス変化を利用して、前記被測定体との距離や、前記被測定体の温度を非接触で測定する測定装置が開示されている。   In the following Patent Document 1, the distance from the object to be measured and the temperature of the object to be measured are measured in a non-contact manner by utilizing the inductance change of the coil due to the influence of the change of eddy current on the surface of the object to be measured. A measuring device is disclosed.

特許文献1に開示された測定装置の場合は、前記被測定体に対して図7の温度依存領域A1に対向配置されて交流電流により励磁される第1コイルと、該第1コイルを交流電流により励磁すると共に前記第1コイルの発信周波数を出力する第1発信回路と、前記被測定体に対して図7の温度非依存領域A2に対向配置されて交流電流により励磁される第2コイルと、該第2コイルを交流電流により励磁すると共に前記第2コイルの発信周波数を出力する第2発信回路と、第1発信回路及び第2発信回路の出力を演算処理する演算処理手段と、を備えている。   In the case of the measuring apparatus disclosed in Patent Document 1, a first coil that is disposed opposite to the object to be measured in the temperature-dependent region A1 in FIG. 7 and is excited by an alternating current, and the first coil that is an alternating current. And a second coil which is arranged opposite to the temperature-independent region A2 of FIG. 7 and is excited by an alternating current with respect to the measurement object. A second transmission circuit for exciting the second coil with an alternating current and outputting a transmission frequency of the second coil; and an arithmetic processing means for performing arithmetic processing on the outputs of the first transmission circuit and the second transmission circuit. ing.

下記特許文献1の測定装置の演算処理手段は、温度依存性の低い第2コイルの発信周波数と、該発信周波数の距離依存性を示す相関式とから、第2コイルと被測定体までの距離を算出し、更に、既知の第2コイルと第1コイルとの相対位置関係から、第1コイルから被測定体までの距離を算出する。   The arithmetic processing means of the measuring apparatus of Patent Document 1 below is based on the transmission frequency of the second coil having a low temperature dependency and the correlation equation indicating the distance dependency of the transmission frequency, and the distance from the second coil to the object to be measured. Further, the distance from the first coil to the measured object is calculated from the known relative positional relationship between the second coil and the first coil.

また、下記特許文献1の測定装置の演算処理手段は、先に算出した第1コイルから被測定体までの距離と、第1コイルの発信周波数の温度依存性を示す相関式とから、被測定体の温度を算出する。   In addition, the arithmetic processing means of the measuring device of Patent Document 1 below is based on the previously calculated distance from the first coil to the object to be measured and the correlation equation indicating the temperature dependence of the transmission frequency of the first coil. Calculate body temperature.

特開2005−207992号公報JP 2005-207992 A

ところで、図7に示した温度非依存領域A2では、温度依存性が小さくなるだけでなく、同時に、距離依存性も小さくなる。そのため、温度非依存領域A2に配置されている第2コイルの発信周波数から算出した距離は十分な精度が得られず、その距離を基に算出される被測定体の温度も、精度が低下する。即ち、特許文献1に開示の測定装置では、被測定体までの距離や被測定体の温度を高精度に測定することができないという問題があった。   Incidentally, in the temperature-independent region A2 shown in FIG. 7, not only the temperature dependency is reduced, but also the distance dependency is reduced at the same time. Therefore, the distance calculated from the transmission frequency of the second coil disposed in the temperature-independent region A2 cannot obtain sufficient accuracy, and the temperature of the measurement object calculated based on the distance also decreases. . That is, the measuring apparatus disclosed in Patent Document 1 has a problem that the distance to the object to be measured and the temperature of the object to be measured cannot be measured with high accuracy.

また、特許文献1の測定装置は、被測定体までの距離を算出する際に、発信周波数の距離依存性を示す相関式が必要で、被測定体までの距離を算出する演算処理が複雑化するという問題もあった。   In addition, when the distance to the object to be measured is calculated, the measuring apparatus of Patent Document 1 requires a correlation equation indicating the distance dependency of the transmission frequency, and the calculation processing for calculating the distance to the object to be measured is complicated. There was also a problem of doing.

そこで、本発明は、交流電流で励磁されたコイルを導電性または半導電性の被測定体に近づけたときの前記コイルのインピーダンスの変化から、前記被測定体との距離や被測定体の温度を非接触で高精度に測定することのできる測定装置及び測定方法を提供すること目的とする。   In view of this, the present invention provides the distance from the object to be measured and the temperature of the object to be measured from the change in impedance of the coil when the coil excited by the alternating current is brought close to the object to be measured or conductive. It is an object of the present invention to provide a measuring apparatus and a measuring method capable of measuring a high-precision without contact.

本発明は、上記課題を解決するために、以下の手段を採用する。
即ち、請求項1の発明は、導電性または半導電性の被測定体に距離を隔てて対向配置されて交流電流により励磁される第1コイルと、前記第1コイルを交流電流により励磁すると共に前記第1コイルのインピーダンスの変化に関与し且つ前記被測定体の温度に依存する変化量である第1信号を出力する第1変換回路と、前記被測定体に対して前記第1コイルと同一の離間距離で対向配置されて交流電流により励磁される第2コイルと、前記第2コイルを交流電流により励磁すると共に前記第2コイルのインピーダンスの変化に関与し且つ前記被測定体の温度に依存する変化量である第2信号を出力する第2変換回路と、 前記第1信号と前記第2信号とを受けて、これらの信号に所定の演算処理を実施する演算処理手段と、を備える測定装置である。そして、前記第1コイルと、前記第1変換回路と、前記第2コイルと、前記第2変換回路とは、前記第1信号と前記第2信号それぞれの特性を測定して求め、前記第1信号と前記第2信号の特性における極性が逆で絶対値が同程度とする組み合わせとなる前記第1コイルと、前記第1変換回路と、前記第2コイルと、前記第2変換回路を選定する。そして、前記演算処理手段により、前記第1信号と第2信号とから、前記被測定体と各コイルとの間の離間距離を算出することを特徴とする。
ここで、前記第1信号と前記第2信号の特性における絶対値が同程度とは、例えば第1信号の絶対値が「1」のときに第2の信号の絶対値が「0.7〜1.3」の範囲のものを言う。
The present invention employs the following means in order to solve the above problems.
That is, according to the first aspect of the present invention, there is provided a first coil which is disposed opposite to a conductive or semiconductive object to be measured at a distance and is excited by an alternating current, and the first coil is excited by an alternating current. A first conversion circuit that outputs a first signal that is involved in a change in impedance of the first coil and that depends on the temperature of the object to be measured; and the same as the first coil for the object to be measured And a second coil that is opposed to each other at a distance of 2 mm and is excited by an alternating current, and the second coil is excited by an alternating current and is involved in the impedance change of the second coil and depends on the temperature of the object to be measured A measurement circuit comprising: a second conversion circuit that outputs a second signal that is an amount of change to be received; and an arithmetic processing unit that receives the first signal and the second signal and performs predetermined arithmetic processing on these signals In the equipment is there. The first coil, the first conversion circuit, the second coil, and the second conversion circuit are obtained by measuring characteristics of the first signal and the second signal, respectively. The first coil, the first conversion circuit, the second coil, and the second conversion circuit are selected in a combination in which the polarities in the characteristics of the signal and the second signal are opposite and the absolute values are approximately the same. . Then, the arithmetic processing means calculates a separation distance between the measured object and each coil from the first signal and the second signal.
Here, the absolute value in the characteristics of the first signal and the second signal is about the same, for example, when the absolute value of the first signal is “1”, the absolute value of the second signal is “0.7˜ The one in the range of “1.3”.

当該測定装置では、被測定体に近づけた第1コイルのインピーダンス変化に関与する第1信号と、被測定体に近づけた第2コイルのインピーダンス変化に関与する第2信号とから、各コイルから前記被測定体までの距離を算出する。その際、第1信号を出力させる第1コイルや第2信号を出力させる第2コイルは、いずれも、被測定体に対する温度依存性の度合いに関係なく、被測定体に近づけることができる。即ち、当該測定装置では、第1信号及び第2信号において、距離依存性の大きな領域を使用して距離を算出することができるため、各コイルから被測定体までの距離を、非接触で高精度に測定することが可能になる。   In the measurement apparatus, the first signal related to the impedance change of the first coil close to the measurement object and the second signal related to the impedance change of the second coil close to the measurement object are obtained from each coil. The distance to the object to be measured is calculated. At that time, both the first coil for outputting the first signal and the second coil for outputting the second signal can be brought close to the measured object regardless of the degree of temperature dependence on the measured object. That is, in the measurement apparatus, since the distance can be calculated using a region having a large distance dependency in the first signal and the second signal, the distance from each coil to the measured object can be increased without contact. It becomes possible to measure with high accuracy.

請求項2の発明は、請求項1の測定装置において、前記演算処理手段は、前記第1信号S1と前記第2信号S2との差分である偏差ΔS=S1−S2を算出し、更に、この偏差ΔSと前記被測定体の温度tとの相関、及び前記偏差ΔSと先に算出した離間距離との相関から、被測定体の温度tを算出することを特徴とする。   According to a second aspect of the present invention, in the measurement apparatus according to the first aspect, the arithmetic processing means calculates a deviation ΔS = S1−S2 which is a difference between the first signal S1 and the second signal S2, and The temperature t of the measured object is calculated from the correlation between the deviation ΔS and the temperature t of the measured object and the correlation between the deviation ΔS and the previously calculated separation distance.

当該測定装置において、第1信号S1と第2信号S2との偏差ΔSは、後述の(3)式の右辺に示すように、被測定体の温度tの一次関数であり、線形性を示す。即ち、偏差ΔSと被測定体の温度tとは、後述の(3)式に示す相関を持つ。   In the measurement apparatus, the deviation ΔS between the first signal S1 and the second signal S2 is a linear function of the temperature t of the measured object, as shown on the right side of the later-described equation (3), and exhibits linearity. That is, the deviation ΔS and the temperature t of the object to be measured have a correlation shown in the following equation (3).

そして、後述の(3)式における係数a及び定数bは、後述の(4)式、及び(5)式に示すように、コイルから被測定体までの離間距離Dの2次関数として、表すことができる(即ち、偏差ΔSは、離間距離Dに対して、後述の(4)式及び(5)式に示す相関を持つ)。   A coefficient a and a constant b in the later-described expression (3) are expressed as a quadratic function of the separation distance D from the coil to the measured object, as shown in the later-described expressions (4) and (5). (That is, the deviation ΔS has a correlation shown in the later-described equations (4) and (5) with respect to the separation distance D).

更に、被測定体の温度tは、後述の(6)式に表すことができる。
そこで、当該測定装置における演算処理手段は、後述の(6)式に、上記の(4)式及び(5)式で算出したa,bを代入する演算処理を行うことによって、被測定体の温度tを求める。後述の(6)式で温度tを算出する過程で使用する離間距離Dは、温度依存領域内に位置して距離依存性も高いコイルにより検出した高精度な第1信号S1及び第2信号S2から算出したものであるため、被測定体の温度tを高精度に測定することができる。
Furthermore, the temperature t of the measured object can be expressed by the following equation (6).
Therefore, the arithmetic processing means in the measurement apparatus performs arithmetic processing for substituting a and b calculated by the above formulas (4) and (5) into formula (6) described later, thereby Determine the temperature t. The separation distance D used in the process of calculating the temperature t in the later-described equation (6) is a highly accurate first signal S1 and second signal S2 detected by a coil located in the temperature-dependent region and having high distance dependency. Therefore, the temperature t of the measurement object can be measured with high accuracy.

請求項3の発明は、請求項1または2のいずれか1項に記載の測定装置において、前記演算処理手段の演算結果を表示する表示手段と、前記演算結果を記録する記録手段と、を備えたことを特徴とする。
これにより、演算結果であるコイルから被測定体までの離間距離D、あるいは被測定体の温度tを、表示手段で簡単に視認することができる。また、演算結果である被測定体までの離間距離D、あるいは被測定体の温度tを記録手段に残せるため、測定結果を後で評価することも容易になる。
According to a third aspect of the present invention, in the measurement apparatus according to any one of the first or second aspects, the display device displays a calculation result of the calculation processing unit, and a recording unit records the calculation result. It is characterized by that.
Thereby, the separation distance D from the coil to the measured object or the temperature t of the measured object can be easily visually recognized by the display means. Further, since the distance D to the measurement object or the temperature t of the measurement object, which is the calculation result, can be left in the recording means, the measurement result can be easily evaluated later.

請求項4の発明は、導電性または半導電性の被測定体に距離を隔てて対向配置されて交流電流により励磁される第1コイルと、前記第1コイルを交流電流により励磁すると共に前記第1コイルのインピーダンスの変化に関与し且つ前記被測定体の温度に依存する変化量である第1信号を出力する第1変換回路と、前記被測定体に対して前記第1コイルと同一の離間距離で対向配置されて交流電流により励磁される第2コイルと、前記第2コイルを交流電流により励磁すると共に前記第2コイルのインピーダンスの変化に関与し且つ前記被測定体の温度に依存する変化量である第2信号を出力する第2変換回路と、前記第1信号と前記第2信号とを受けて、これらの信号に所定の演算処理を実施する演算処理手段と、を備え、前記被測定体からの離間距離を測定する測定方法であって、前記第1コイルと、前記第1変換回路と、前記第2コイルと、前記第2変換回路とは、前記第1信号と前記第2信号それぞれの特性を測定して求め、前記第1信号と前記第2信号の特性における極性が逆で絶対値が同程度とする組み合わせとなる前記第1コイルと、前記第1変換回路と、前記第2コイルと、前記第2変換回路を選定したものを使用し、前記演算処理手段により、前記第1信号と第2信号とからそれぞれ求められる距離の平均値から、前記被測定体と前記各コイルとの間の離間距離を算出することを特徴とする。
当該測定方法では、請求項1の測定装置と同様に、第1、第2のコイルから被測定体までの距離を、非接触で高精度に測定することが可能になる。
According to a fourth aspect of the present invention, there is provided a first coil that is disposed opposite to a conductive or semiconductive object to be measured at a distance and is excited by an alternating current, the first coil is excited by an alternating current, and the first coil is excited. A first conversion circuit that outputs a first signal that is involved in a change in impedance of one coil and that depends on the temperature of the object to be measured; and the same separation as the first coil with respect to the object to be measured A second coil that is arranged oppositely and is excited by an alternating current, and a change that excites the second coil by an alternating current and that is involved in a change in impedance of the second coil and that depends on the temperature of the object to be measured. A second conversion circuit that outputs a second signal that is a quantity; and an arithmetic processing means that receives the first signal and the second signal and performs predetermined arithmetic processing on these signals; and From the measurement object A measurement method for measuring a separation distance, wherein the first coil, the first conversion circuit, the second coil, and the second conversion circuit have characteristics of the first signal and the second signal, respectively. The first coil, the first conversion circuit, and the second coil, which are obtained by measuring, and having a combination in which the polarities in the characteristics of the first signal and the second signal are opposite and the absolute values are approximately the same In this case, the selected one of the second conversion circuits is used, and an average value of distances obtained from the first signal and the second signal by the arithmetic processing unit is used to determine the distance between the measured object and each coil. The separation distance is calculated.
In the measurement method, similarly to the measurement apparatus according to the first aspect, the distance from the first and second coils to the measured object can be measured with high accuracy without contact.

請求項1の発明によれば、被測定体に近づけた第1コイルのインピーダンス変化に関与する第1信号と、被測定体に近づけた第2コイルのインピーダンス変化に関与する第2信号とから、各コイルから前記被測定体までの距離を算出する。その際、第1信号を出力させる第1コイルや第2信号を出力させる第2コイルは、いずれも、被測定体に対して、第1信号及び第2信号における温度依存性が大きくなる温度依存領域内に位置しているため、第1信号及び第2信号における距離依存性も大きくなる。即ち、当該測定装置では、距離依存性の大きな第1信号及び第2信号を基に距離を算出するため、各コイルから被測定体までの距離を、非接触で高精度に測定することが可能になる。   According to the first aspect of the present invention, from the first signal involved in the impedance change of the first coil approaching the measured object and the second signal involved in the impedance change of the second coil approached to the measured object, The distance from each coil to the measured object is calculated. At that time, both the first coil that outputs the first signal and the second coil that outputs the second signal have temperature dependence that increases the temperature dependence of the first signal and the second signal with respect to the measured object. Since it is located in the region, the distance dependency in the first signal and the second signal also increases. That is, in the measurement apparatus, the distance is calculated based on the first signal and the second signal having a large distance dependency, so that the distance from each coil to the measured object can be measured with high accuracy without contact. become.

請求項2の発明によれば、第1信号S1と第2信号S2との偏差ΔSは、後述の(3)式の右辺に示すように、被測定体の温度tの一次関数であり、線形性を示す。そして、後述の(3)式における係数a及び定数bは、後述の(4)式、及び(5)式に示すように、コイルから被測定体までの離間距離Dの2次関数として、表すことができる。更に、被測定体の温度tは、後述の(6)式に表すことができる。
そこで、請求項2の発明における演算処理手段は、後述の(6)式に、後述の(4)式及び(5)式で算出したa,bを代入する演算処理を行うことによって、被測定体の温度tを求める。後述の(6)式で温度tを算出する過程で使用する離間距離Dは、温度依存領域内に位置して距離依存性も高いコイルにより検出した高精度な第1信号S1及び第2信号S2から算出したものであるため、被測定体の温度tを高精度に測定することができる。
According to the invention of claim 2, the deviation ΔS between the first signal S1 and the second signal S2 is a linear function of the temperature t of the measured object, as shown on the right side of the later-described equation (3), and is linear. Showing gender. A coefficient a and a constant b in the later-described expression (3) are expressed as a quadratic function of the separation distance D from the coil to the measured object, as shown in the later-described expressions (4) and (5). be able to. Furthermore, the temperature t of the measured object can be expressed by the following equation (6).
Therefore, the arithmetic processing means in the invention of claim 2 performs the arithmetic processing by substituting a and b calculated in the later-described equations (4) and (5) into the later-described equation (6), thereby measuring Find body temperature t. The separation distance D used in the process of calculating the temperature t in the later-described equation (6) is a highly accurate first signal S1 and second signal S2 detected by a coil located in the temperature-dependent region and having high distance dependency. Therefore, the temperature t of the measurement object can be measured with high accuracy.

請求項3の発明によれば、演算結果であるコイルから被測定体までの離間距離、あるいは被測定体の温度tを、表示手段で簡単に視認することができる。また、演算結果である被測定体までの離間距離D、あるいは被測定体の温度tを記録手段に残せるため、測定結果を後で評価することも容易になる。   According to the third aspect of the present invention, the distance from the coil to the object to be measured or the temperature t of the object to be measured, which is the calculation result, can be easily visually recognized by the display means. Further, since the distance D to the measurement object or the temperature t of the measurement object, which is the calculation result, can be left in the recording means, the measurement result can be easily evaluated later.

請求項4の発明によれば、請求項1の測定装置と同様に、第1、第2のコイルから被測定体までの距離を、非接触で高精度に測定することが可能になる。   According to the fourth aspect of the present invention, the distance from the first and second coils to the object to be measured can be measured with high accuracy in a non-contact manner, similarly to the measurement apparatus of the first aspect.

本発明に係る一実施形態における測定装置の概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a measuring device in one embodiment concerning the present invention. 図1の第1変換回路の具体的な回路構成を示すブロック図である。FIG. 2 is a block diagram illustrating a specific circuit configuration of a first conversion circuit in FIG. 1. 図1の第2変換回路の具体的な回路構成を示すブロック図である。FIG. 3 is a block diagram illustrating a specific circuit configuration of a second conversion circuit in FIG. 1. 本発明の一実施形態の測定装置が検出する第1信号及び第2信号と、コイルと被測定体との間の離間距離Dと、被測定体の温度tとの相関を示すグラフである。It is a graph which shows the correlation with the 1st signal and 2nd signal which the measuring apparatus of one Embodiment of this invention detects, the separation distance D between a coil and a to-be-measured body, and the temperature t of a to-be-measured body. 本発明の一実施形態の測定装置において、第1信号S1と第2信号S2との偏差ΔSの傾きa及び切片bと、被測定体までの離間距離Dと間の相関を示すグラフである。In the measuring apparatus of one embodiment of the present invention, it is a graph which shows correlation between slope a and intercept b of deviation delta S of 1st signal S1 and 2nd signal S2, and separation distance D to a to-be-measured object. 本発明の一実施形態の測定装置において、被測定体までの離間距離D及び被測定体の温度を測定する手順を示したフローチャートである。5 is a flowchart illustrating a procedure for measuring a separation distance D to a measurement object and a temperature of the measurement object in the measurement apparatus according to the embodiment of the present invention. 励磁コイルの温度依存性と距離依存性が、被測定体までの離間距離によって変化する傾向を示したグラフである。It is the graph which showed the tendency for the temperature dependence and distance dependence of an exciting coil to change with the separation distance to a to-be-measured body.

以下、本発明に係る測定装置の一実施形態について、図面を参照して詳細に説明する。
図1は、本発明に係る一実施形態における測定装置の概略構成を示す模式図である。図2は、図1の第1変換回路の具体的な回路構成を示すブロック図である。また、図3は、図1の第2変換回路の具体的な回路構成を示すブロック図である。
Hereinafter, one embodiment of a measuring device concerning the present invention is described in detail with reference to drawings.
FIG. 1 is a schematic diagram showing a schematic configuration of a measuring apparatus according to an embodiment of the present invention. FIG. 2 is a block diagram showing a specific circuit configuration of the first conversion circuit of FIG. FIG. 3 is a block diagram showing a specific circuit configuration of the second conversion circuit of FIG.

この一実施形態の測定装置1は、導電性または半導電性の被測定体10に距離を隔てて対向配置される第1回路20及び第2回路30と、これらの第1回路20及び第2回路30の出力信号を演算処理する演算処理手段40と、この演算処理手段40における演算処理過程や演算結果の表示及び記録を行う表示・記録部50と、を備えている。   The measuring apparatus 1 according to this embodiment includes a first circuit 20 and a second circuit 30 that are arranged to face a conductive or semiconductive object to be measured 10 at a distance, and the first circuit 20 and the second circuit 30. An arithmetic processing unit 40 that performs arithmetic processing on the output signal of the circuit 30 and a display / recording unit 50 that displays and records the arithmetic processing process and the arithmetic result in the arithmetic processing unit 40 are provided.

第1回路20は、図1に示すように、被測定体10に離間距離Dを隔てて対向配置されて交流電流により励磁される第1コイル(第1誘導素子)21と、この第1コイル21を交流電流により励磁する第1変換回路22と、を備えている。   As shown in FIG. 1, the first circuit 20 includes a first coil (first inductive element) 21 that is opposed to the measured object 10 with a separation distance D and is excited by an alternating current, and the first coil. And a first conversion circuit 22 that excites 21 with an alternating current.

第1変換回路22は、第1コイル21を励磁する一方で、被測定体10に生ずる渦電流の影響による第1コイル21のインピーダンスの変化に関与し且つ被測定体10の温度に依存する変化量である第1信号S1を出力する。
本実施形態の第1変換回路22は、図2に示すように、第1コイル21を交流電流によって励磁して第1コイル21を含む共振回路を形成する発振回路61と、発振回路61から得られる共振電圧(単位:V)を検出して出力する検波回路62と、検波回路62の出力する共振電圧を増幅して出力する増幅回路63と、を備えている。増幅回路63の出力する信号が、上記の第1信号S1である。
While the first conversion circuit 22 excites the first coil 21, the first conversion circuit 22 is involved in a change in impedance of the first coil 21 due to the influence of eddy current generated in the measured object 10 and changes depending on the temperature of the measured object 10. The first signal S1, which is a quantity, is output.
As shown in FIG. 2, the first conversion circuit 22 of the present embodiment is obtained from an oscillation circuit 61 that excites the first coil 21 with an alternating current to form a resonance circuit including the first coil 21, and the oscillation circuit 61. A detection circuit 62 that detects and outputs the resonance voltage (unit: V), and an amplification circuit 63 that amplifies and outputs the resonance voltage output from the detection circuit 62. The signal output from the amplifier circuit 63 is the first signal S1.

第2回路30は、図1に示すように、被測定体10に対して第1コイル21と同一の離間距離Dを隔てて対向配置されて交流電流により励磁される第2コイル(第2誘導素子)31と、この第2コイル31を交流電流により励磁する第2変換回路32と、を備えている。   As shown in FIG. 1, the second circuit 30 is disposed opposite to the device under test 10 with the same separation distance D as the first coil 21 and is excited by an alternating current (second induction). Element) 31 and a second conversion circuit 32 for exciting the second coil 31 with an alternating current.

第2変換回路32は、第2コイル31を励磁する一方で、被測定体10に生ずる渦電流の影響による第2コイル31のインピーダンスの変化に関与し且つ被測定体10の温度に依存する変化量である第2信号S2を出力する。
本実施形態の第2変換回路32は、第1変換回路22と同様の機能構成で、図3に示すように、第2コイル31を交流電流によって励磁して第2コイル31を含む共振回路を形成する発振回路65と、発振回路65から得られる共振電圧(単位:V)を検出して出力する検波回路66と、検波回路66の出力する共振電圧を増幅して出力する増幅回路67と、を備えている。増幅回路67の出力する信号が、上記の第2信号S2である。
While the second conversion circuit 32 excites the second coil 31, the second conversion circuit 32 is involved in the change in impedance of the second coil 31 due to the influence of the eddy current generated in the measured object 10 and changes depending on the temperature of the measured object 10. The second signal S2, which is a quantity, is output.
The second conversion circuit 32 of the present embodiment has a functional configuration similar to that of the first conversion circuit 22 and, as shown in FIG. 3, a resonance circuit including the second coil 31 by exciting the second coil 31 with an alternating current. An oscillation circuit 65 to be formed; a detection circuit 66 that detects and outputs a resonance voltage (unit: V) obtained from the oscillation circuit 65; an amplification circuit 67 that amplifies and outputs the resonance voltage output from the detection circuit 66; It has. The signal output from the amplifier circuit 67 is the second signal S2.

上記の第1コイル21及び第2コイル31は、増幅回路63,67から出力される第1信号及び第2信号における温度依存性が大きくなるように、被測定体10に対して温度依存領域(図7に示した温度依存領域A1)内に配置される。   The first coil 21 and the second coil 31 have a temperature dependent region (with respect to the measured object 10) so that the temperature dependency in the first signal and the second signal output from the amplifier circuits 63 and 67 is increased. It is arranged in the temperature dependent region A1) shown in FIG.

また、第1コイル21と、第1変換回路22と、第2コイル31と、第2変換回路32とは、第1信号S1と第2信号S2それぞれの特性を測定して求め、第1信号S1と第2信号S2の特性における極性が逆で、且つ、絶対値が同程度とする組み合わせとなる第1コイル21と、第1変換回路22と、第2コイル31と、第2変換回路32を選定したものを使用している。   In addition, the first coil 21, the first conversion circuit 22, the second coil 31, and the second conversion circuit 32 are obtained by measuring the characteristics of the first signal S1 and the second signal S2, respectively. The first coil 21, the first conversion circuit 22, the second coil 31, and the second conversion circuit 32 have a combination in which the polarities in the characteristics of the S1 and the second signal S2 are opposite and have the same absolute value. Is selected.

第1信号S1及び第2信号S2の極性や大きさは、コイル21,31の大きさ、コイル21,31の巻数、コイル21,31の鉄心の材質、発振周波数、変換回路22,32における信号処理方法等で変化し、製造メーカーや型式によって様々である。そのため、第1コイル21と、第1変換回路22と、第2コイル31と、第2変換回路32とは、被測定体10の温度に対する温度依存性を把握した上で、被測定体10の温度変化に対応して出力される共振電圧の絶対値が同程度とし、且つ、被測定体の温度変化にして出力される共振電圧の極性が逆となるように、第1回路20と第2回路30とを構築する。   The polarity and magnitude of the first signal S1 and the second signal S2 are the magnitude of the coils 21 and 31, the number of turns of the coils 21 and 31, the material of the iron core of the coils 21 and 31, the oscillation frequency, and the signal in the conversion circuits 22 and 32. It varies depending on the processing method, etc., and varies depending on the manufacturer and model. For this reason, the first coil 21, the first conversion circuit 22, the second coil 31, and the second conversion circuit 32 understand the temperature dependence on the temperature of the device under test 10 and then determine the temperature of the device under test 10. The first circuit 20 and the second circuit 20 have the same absolute value of the resonance voltage output in response to the temperature change, and the polarity of the resonance voltage output in response to the temperature change of the measured object is reversed. A circuit 30 is constructed.

本実施形態では、第1回路20は、例えばエヌエスディ株式会社の製品で、型式GPS-2818Mの第1コイル21と、型式GTN-121VNの第1変換回路22と、を備えている。
そして、第1回路20に組み合わせる第2回路30は、例えば株式会社キーエンスの製品で、型式AH-440の第2コイル31と、型式AS-440の前記第2変換回路32と、を備えている。
この第1回路20と第2回路30との組み合わせでは、第1信号S1と第2信号S2との極性が逆になり、且つ、第1信号S1と第2信号S2との絶対値が同程度(近似)とする。
In the present embodiment, the first circuit 20 is, for example, a product of NSD Corporation, and includes a first coil 21 of model GPS-2818M and a first conversion circuit 22 of model GTN-121VN.
The second circuit 30 combined with the first circuit 20 is, for example, a product of Keyence Corporation, and includes the second coil 31 of the model AH-440 and the second conversion circuit 32 of the model AS-440. .
In the combination of the first circuit 20 and the second circuit 30, the polarities of the first signal S1 and the second signal S2 are reversed, and the absolute values of the first signal S1 and the second signal S2 are approximately the same. (Approximate).

第1変換回路22の検波回路62から出力される共振電圧、及び第2変換回路32の検波回路66から出力される共振電圧は、いずれも、コイル21,31のインピーダンスの変化に相応して変化し、且つ、被測定体10の温度に依存する変化量である。
第1変換回路22の増幅回路63及び第2変換回路32の67は、検波回路62,66から出力される共振電圧値を、被測定体10から各コイルまでの離間距離Dに相応して1V/mmの比率で増幅して、第1信号S1及び第2信号S2とする。増幅回路が出力する第1信号及び第2信号は、被測定体からコイルまでの距離に相応して1V/mmの比率で電圧値を増幅処理したことで、被測定体からコイルまでの距離に相関するデータとなる。そして、第1信号と第2信号との平均値が、それぞれのコイルから被測定体までの離間距離D(単位mm)に対応させることができ、演算処理手段は、距離依存性を示す相関式の解析を行わずに、第1信号と第2信号との平均値を算出するという簡単な演算処理で、コイルから被測定体までの離間距離Dを求めることができ、距離の算出を高速化することができる。
The resonance voltage output from the detection circuit 62 of the first conversion circuit 22 and the resonance voltage output from the detection circuit 66 of the second conversion circuit 32 both change in accordance with the change in impedance of the coils 21 and 31. And the amount of change depending on the temperature of the DUT 10.
The amplification circuit 63 of the first conversion circuit 22 and the 67 of the second conversion circuit 32 set the resonance voltage value output from the detection circuits 62 and 66 to 1 V corresponding to the separation distance D from the measured object 10 to each coil. The first signal S1 and the second signal S2 are amplified at a ratio of / mm. The first signal and the second signal output from the amplifier circuit are amplified to a distance from the measured object to the coil by amplifying the voltage value at a rate of 1 V / mm corresponding to the distance from the measured object to the coil. Correlated data. Then, the average value of the first signal and the second signal can correspond to the separation distance D (unit: mm) from each coil to the object to be measured, and the arithmetic processing means is a correlation equation indicating distance dependency. The distance D from the coil to the object to be measured can be obtained by a simple calculation process of calculating the average value of the first signal and the second signal without analyzing the above, thereby speeding up the calculation of the distance can do.

次に、上記構成の測定装置によって被測定体との離間距離を測定する測定方法について説明する。
図4は、図1に示す一実施形態の装置構成において、各コイル21,31から被測定体10までの離間距離Dを、0.95mm、1.95mm、2.95mm、4.95mmの4通りに変えて、それぞれの離間距離Dについて、第1信号S1及び第2信号S2の測定結果をグラフにまとめたものである。
Next, a measurement method for measuring the separation distance from the measurement object using the measurement apparatus having the above configuration will be described.
FIG. 4 shows an apparatus configuration of one embodiment shown in FIG. 1 in which the distance D from each of the coils 21 and 31 to the DUT 10 is 4 of 0.95 mm, 1.95 mm, 2.95 mm, and 4.95 mm. In other words, the measurement results of the first signal S1 and the second signal S2 are summarized in a graph for each separation distance D.

図4中の左側のグラフは、それぞれの離間距離D毎に、被測定体10の温度tを20℃〜80℃まで変化させ、それぞれの温度条件下で検出した第1信号S1と、第2信号S2と、これらの第1信号S1と第2信号S2の平均値と、それぞれの離間距離D毎にプロットしたものである。図4中の左側のそれぞれのグラフは、縦軸には電圧値(単位:V)を、横軸には被測定体10の温度tをそれぞれとっている。   In the graph on the left side in FIG. 4, the first signal S1 detected by changing the temperature t of the measured object 10 from 20 ° C. to 80 ° C. for each separation distance D from each of the temperature conditions, and the second signal. The signal S2, the average value of the first signal S1 and the second signal S2, and the respective separation distances D are plotted. In each graph on the left side in FIG. 4, the vertical axis represents the voltage value (unit: V), and the horizontal axis represents the temperature t of the measured object 10.

図4中の左側の各グラフに示した第1信号と第2信号との平均値の電圧値は、被測定体10から各コイルまでの離間距離Dの値に一致する。これは、増幅回路63,67が、被測定体10からコイルまでの離間距離Dに相応して1V/mmの比率で共振電圧を増幅処理したことによる。そこで、本実施形態の演算処理手段40は、第1回路20及び第2回路30から第1信号S1及び第2信号S2とを受けると、これらの信号を下記(1)式に示す演算処理をして、処理結果を、コイル21,31から被測定体10までの離間距離Dとする。
D=(S1+S2)/2 ……(1)
The average voltage value of the first signal and the second signal shown in each graph on the left side in FIG. 4 matches the value of the separation distance D from the measured object 10 to each coil. This is because the amplification circuits 63 and 67 amplify the resonance voltage at a rate of 1 V / mm corresponding to the separation distance D from the DUT 10 to the coil. Therefore, when the arithmetic processing means 40 of this embodiment receives the first signal S1 and the second signal S2 from the first circuit 20 and the second circuit 30, the arithmetic processing means 40 performs arithmetic processing shown in the following equation (1). Then, the processing result is defined as a separation distance D from the coils 21 and 31 to the measured object 10.
D = (S1 + S2) / 2 (1)

図4中の右側のグラフは、それぞれの離間距離D毎に、被測定体10の温度tを20℃〜80℃まで変化させ、それぞれの温度条件下で検出した第1信号S1と第2信号S2との偏差ΔSを算出して、それぞれの離間距離D毎にプロットしたものである。図4中の右側のそれぞれのグラフは、縦軸には偏差ΔS(単位:V)を、横軸には被測定体10の温度tをとっている。偏差ΔSは、第1信号S1と第2信号S2との差分で、次の(2)式で表される。
ΔS=S1−S2 ……(2)
The graph on the right side in FIG. 4 shows the first signal S1 and the second signal detected under the respective temperature conditions by changing the temperature t of the measured object 10 from 20 ° C. to 80 ° C. for each separation distance D. The deviation ΔS from S2 is calculated and plotted for each separation distance D. In each graph on the right side in FIG. 4, the vertical axis represents the deviation ΔS (unit: V), and the horizontal axis represents the temperature t of the measured object 10. The deviation ΔS is a difference between the first signal S1 and the second signal S2, and is expressed by the following equation (2).
ΔS = S1-S2 (2)

図4中の右側のグラフで明らかなように、第1信号S1と第2信号S2との偏差ΔSは、被測定体10の温度tの一次関数であり、線形性を示す。従って、偏差ΔSと被測定体の温度tとは、下記の(3)式に示す相関を持つ。
ΔS=S1−S2=a×t+b ……(3)
As apparent from the graph on the right side in FIG. 4, the deviation ΔS between the first signal S1 and the second signal S2 is a linear function of the temperature t of the device under test 10 and exhibits linearity. Accordingly, the deviation ΔS and the temperature t of the measured object have a correlation shown in the following equation (3).
ΔS = S1-S2 = a × t + b (3)

上記の(3)式において、係数aは、特性線ΔSの傾き(単位は、V/℃)である。また、上記の(3)式において、定数bは、上記の(3)式においてt=0のときに縦軸との交差点となる切片(単位は、V)である。   In the above equation (3), the coefficient a is the slope of the characteristic line ΔS (the unit is V / ° C.). In the above equation (3), the constant b is an intercept (unit: V) that is an intersection with the vertical axis when t = 0 in the above equation (3).

上記の(3)式における傾きa及び切片bの離間距離Dとの相関は、下記の表1に示す如くである。   The correlation between the slope a and the separation distance D of the intercept b in the above equation (3) is as shown in Table 1 below.

Figure 2014215082
Figure 2014215082

上記の表1に示した傾きa、及び切片bは、グラフにプロットすると、図5に示すように、放物線の特性を示す。従って、これらの傾きa、及び切片bは、次の(4)式、及び(5)式に示すように、コイル21,31から被測定体10までの離間距離Dの2次関数として、表すことができる(即ち、傾きa、及び切片bは、離間距離Dに対して、次の(4)式及び(5)式に示す相関を持つ)。
a=-7.883×10−5+9.226×10−4D+1.494×10−3 ……(4)
b=-0.962×10−2+1.702×10−2D+7.016×10−2 ……(5)
When the slope a and the intercept b shown in Table 1 are plotted on a graph, the characteristics of the parabola are shown as shown in FIG. Therefore, the inclination a and the intercept b are expressed as a quadratic function of the separation distance D from the coils 21 and 31 to the measured object 10 as shown in the following equations (4) and (5). (That is, the slope a and the intercept b have the correlation shown in the following equations (4) and (5) with respect to the separation distance D).
a = -7.883 × 10 −5 D 2 + 9.226 × 10 −4 D + 1.494 × 10 −3 (4)
b = -0.962 × 10 −2 D 2 + 1.702 × 10 −2 D + 7.016 × 10 −2 (5)

また、被測定体10の温度tは、上述の(3)式を変形することで、次の(6)式に表すことができる。
t=(ΔS−b)/a ……(6)
Further, the temperature t of the measured object 10 can be expressed by the following equation (6) by modifying the above equation (3).
t = (ΔS−b) / a (6)

当該測定装置における演算処理手段は、上記の(6)式に、上記の(4)式及び(5)式で算出したa,bを代入する演算処理を行うことによって、被測定体10の温度tを求める。その際、上記の(6)式で温度tを算出する過程で使用するDは、温度依存領域内に位置して距離依存性も高いコイル21,31により検出した高精度な第1信号S1及び第2信号S2から算出したものであるため、被測定体の温度tを高精度に算出することができる。   The arithmetic processing means in the measuring apparatus performs the arithmetic processing by substituting a and b calculated by the above formulas (4) and (5) into the above formula (6), thereby obtaining the temperature of the measured object 10. t is obtained. At this time, D used in the process of calculating the temperature t by the above equation (6) is a highly accurate first signal S1 detected by the coils 21 and 31 that are located in the temperature-dependent region and have high distance dependency. Since it is calculated from the second signal S2, the temperature t of the measured object can be calculated with high accuracy.

表示・記録部50は、図1に示すように、この演算処理手段40における演算処理過程や演算結果の表示を行う表示手段51と、演算処理手段40における演算処理過程や演算結果の記録を行う記録手段52と、を備えている。   As shown in FIG. 1, the display / recording unit 50 displays the calculation processing process and calculation results in the calculation processing means 40 and the display means 51 that displays the calculation processing processes and calculation results in the calculation processing means 40. Recording means 52.

以上に説明した測定装置1は、図6に示す手順で、第1コイル21及び第2コイル31から被測定体10までの離間距離Dと、被測定体10の温度tを測定する。
測定処理を開始すると、まず、ステップS101で、第1回路20の出力信号である第1信号S1と、第2回路30の出力信号である第2信号S2の平均値から、被測定体10までの離間距離Dを求める。
次いで、次のステップS102では、ステップS101で算出した離間距離Dを、上記の(4)式、及び(5)式に代入して、傾きa及び切片bを求める。
次いで、次のステップS103では、上記の(3)式から、偏差ΔSを求める。
次いで、次のステップS104では、上記の(6)式に基づいて、被測定体10の温度を算出する。
以上のステップS101〜ステップS104に示した演算処理は、演算処理手段40により行われる。
次いで、次のステップS105で、算出された被測定体10の温度tを、表示手段51に表示すると共に、記録手段52に記録すると、一連の処理の終了となる。
The measuring apparatus 1 described above measures the separation distance D from the first coil 21 and the second coil 31 to the measured object 10 and the temperature t of the measured object 10 according to the procedure shown in FIG.
When the measurement process is started, first, in step S101, from the average value of the first signal S1 that is the output signal of the first circuit 20 and the second signal S2 that is the output signal of the second circuit 30 to the device under test 10. Is determined.
Next, in the next step S102, the separation distance D calculated in step S101 is substituted into the above equations (4) and (5) to obtain the inclination a and the intercept b.
Next, in the next step S103, the deviation ΔS is obtained from the above equation (3).
Next, in the next step S104, the temperature of the DUT 10 is calculated based on the above equation (6).
The arithmetic processing shown in steps S101 to S104 above is performed by the arithmetic processing means 40.
Next, when the calculated temperature t of the measured object 10 is displayed on the display means 51 and recorded in the recording means 52 in the next step S105, a series of processing ends.

以上に説明した本発明の一実施形態では、被測定体10に近づけた第1コイル21のインピーダンス変化に関与する第1信号S1と、被測定体10に近づけた第2コイル31のインピーダンス変化に関与する第2信号S2とから、各コイル21,31から前記被測定体10までの離間距離Dを算出する。その際、第1信号S1を出力させる第1コイル21や第2信号S2を出力させる第2コイル31は、いずれも、被測定体10に対して、第1信号S1及び第2信号S2における温度依存性が大きくなる温度依存領域内に位置しているため、第1信号S1及び第2信号S2における距離依存性も大きくなる。即ち、一実施形態の測定装置1では、距離依存性の大きな第1信号S1及び第2信号S2を基に距離を算出するため、各コイルから被測定体10までの離間距離Dを、非接触で高精度に測定することが可能になる。   In the embodiment of the present invention described above, the first signal S1 related to the impedance change of the first coil 21 close to the measured object 10 and the impedance change of the second coil 31 close to the measured object 10 are used. A distance D from each of the coils 21 and 31 to the measured object 10 is calculated from the second signal S2 involved. At that time, the first coil 21 that outputs the first signal S1 and the second coil 31 that outputs the second signal S2 both have the temperature in the first signal S1 and the second signal S2 with respect to the measured object 10. Since it is located in the temperature dependent region where the dependency becomes large, the distance dependency in the first signal S1 and the second signal S2 also increases. That is, in the measurement apparatus 1 according to the embodiment, since the distance is calculated based on the first signal S1 and the second signal S2 having a large distance dependency, the separation distance D from each coil to the measured object 10 is determined in a non-contact manner. It becomes possible to measure with high accuracy.

また、本実施形態では、増幅回路63,67が出力する第1信号S1及び第2信号S2は、被測定体10からコイルまでの距離に相応して1V/mmの比率で共振電圧値を増幅処理したことで、被測定体10からコイル21,31までの離間距離Dに相関するデータとなる。そして、第1信号S1と第2信号S2との平均値が、それぞれのコイル21,31から被測定体10までの離間距離D(単位mm)に一致する。従って、演算処理手段40は、距離依存性を示す相関式の解析を行わずに、前述の(1)式で示す第1信号S1と第2信号S2との平均値を算出するという簡単な演算処理で、コイル21,31から被測定体10までの離間距離Dを求めることができ、距離の算出を高速化することができる。   In the present embodiment, the first signal S1 and the second signal S2 output from the amplifier circuits 63 and 67 amplify the resonance voltage value at a rate of 1 V / mm according to the distance from the measured object 10 to the coil. By performing the processing, the data correlates with the separation distance D from the measured object 10 to the coils 21 and 31. And the average value of 1st signal S1 and 2nd signal S2 corresponds to the separation distance D (unit mm) from each coil 21 and 31 to the to-be-measured body 10. FIG. Therefore, the arithmetic processing means 40 does not analyze the correlation equation indicating the distance dependence, and calculates a simple calculation that calculates the average value of the first signal S1 and the second signal S2 expressed by the above-described equation (1). In the processing, the separation distance D from the coils 21 and 31 to the measured object 10 can be obtained, and the calculation of the distance can be speeded up.

また、本実施形態では、第1信号S1と第2信号S2との偏差ΔSは、前述の(3)式の右辺に示すように、被測定体10の温度tの一次関数であり、線形性を示す。即ち、偏差ΔSと被測定体10の温度tとは、前述の(3)式に示す相関を持つ。
なお、前述の(3)式において、係数aは、特性線ΔSの傾き(単位は、V/℃)であり、定数bは、前述の(3)式においてt=0のときに縦軸との交差点となる切片(単位は、V)である。
そして、上記係数a及び定数bは、前述の(4)式、及び(5)式に示すように、コイルから被測定体10までの離間距離Dの2次関数として、表すことができる(即ち、偏差ΔSは、離間距離Dに対して、前述の(4)式及び(5)式に示す相関を持つ)。
また、被測定体10の温度tは、前述の(2)式を変形することで、前述の(6)式に表すことができる。
そこで、当該測定装置1における演算処理手段40は、前述の(6)式に、上記の(4)式及び(5)式で算出したa,bを代入する演算処理を行うことによって、被測定体10の温度tを求める。前述の(6)式で温度tを算出する過程で使用するDは、温度依存領域内に位置して距離依存性も高いコイル21,31により検出した高精度な第1信号S1及び第2信号S2から算出したものであるため、被測定体10の温度tを高精度に測定することができる。
Further, in the present embodiment, the deviation ΔS between the first signal S1 and the second signal S2 is a linear function of the temperature t of the measured object 10, as shown on the right side of the above-described equation (3). Indicates. That is, the deviation ΔS and the temperature t of the measured object 10 have a correlation shown in the above-described equation (3).
In the above equation (3), the coefficient a is the slope of the characteristic line ΔS (unit is V / ° C.), and the constant b is the vertical axis when t = 0 in the above equation (3). Is the intercept (unit is V).
Then, the coefficient a and the constant b can be expressed as a quadratic function of the separation distance D from the coil to the measured object 10 as shown in the above equations (4) and (5) (ie, The deviation ΔS has the correlation shown in the above-described equations (4) and (5) with respect to the separation distance D).
Further, the temperature t of the DUT 10 can be expressed by the above formula (6) by modifying the above formula (2).
Therefore, the arithmetic processing means 40 in the measurement apparatus 1 performs arithmetic processing by substituting a and b calculated in the above formulas (4) and (5) into the above formula (6), thereby measuring The temperature t of the body 10 is obtained. D used in the process of calculating the temperature t in the above-described equation (6) is a highly accurate first signal S1 and second signal detected by the coils 21 and 31 that are located in the temperature-dependent region and have high distance dependency. Since it is calculated from S2, the temperature t of the measured object 10 can be measured with high accuracy.

また、本実施形態では、演算結果であるコイル21,31から被測定体10までの離間距離D、あるいは被測定体10の温度tを、表示手段51で簡単に視認することができる。また、演算結果である被測定体10までの離間距離D、あるいは被測定体10の温度tを記録手段52に残せるため、測定結果を後で評価することも容易になる。   In this embodiment, the distance D from the coils 21 and 31 to the measured object 10 or the temperature t of the measured object 10 as the calculation result can be easily visually recognized by the display means 51. Moreover, since the separation distance D to the measured object 10 or the temperature t of the measured object 10 which is the calculation result can be left in the recording means 52, the measurement result can be easily evaluated later.

また、本実施形態では、測定装置1の構成要素となっているエヌエスディ株式会社の製品である第1回路20と、株式会社キーエンスの製品である第2回路30とは、それぞれの回路の出力信号である第1信号S1と第2信号S2との極性が逆で、且つ、絶対値が同程度となる回路である。そのため、これらの第1回路20と第2回路30とを組み合わせることで、第1信号S1と第2信号S2との極性が逆で、且つ、絶対値が同程度となる装置構成を簡単に構築することができ、導電性または半導電性の被測定体10との間の離間距離Dや被測定体10の温度tを、非接触で高精度に測定することが可能になる。   Moreover, in this embodiment, the 1st circuit 20 which is a product of NS Inc. which is a component of the measuring apparatus 1 and the second circuit 30 which is a product of Keyence Corporation are the outputs of the respective circuits. This is a circuit in which the first signal S1 and the second signal S2, which are signals, have opposite polarities and have the same absolute value. Therefore, by combining the first circuit 20 and the second circuit 30, a device configuration in which the polarities of the first signal S1 and the second signal S2 are opposite and the absolute values are almost the same can be easily constructed. Therefore, the distance D between the conductive or semiconductive measured object 10 and the temperature t of the measured object 10 can be measured with high accuracy without contact.

10 被測定体
21 第1コイル
22 第1変換回路
31 第2コイル
32 第2変換回路
40 演算処理手段
50 表示・記録部
51 表示手段
52 記録手段
D 離間距離
S1 第1信号
S2 第2信号
t 温度
DESCRIPTION OF SYMBOLS 10 to-be-measured object 21 1st coil 22 1st conversion circuit 31 2nd coil 32 2nd conversion circuit 40 Arithmetic processing means 50 Display / recording part 51 Display means 52 Recording means D Separation distance S1 1st signal S2 2nd signal t Temperature

Claims (4)

導電性または半導電性の被測定体に距離を隔てて対向配置されて交流電流により励磁される第1コイルと、
前記第1コイルを交流電流により励磁すると共に前記第1コイルのインピーダンスの変化に関与し且つ前記被測定体の温度に依存する変化量である第1信号を出力する第1変換回路と、
前記被測定体に対して前記第1コイルと同一の離間距離で対向配置されて交流電流により励磁される第2コイルと、
前記第2コイルを交流電流により励磁すると共に前記第2コイルのインピーダンスの変化に関与し且つ前記被測定体の温度に依存する変化量である第2信号を出力する第2変換回路と、
前記第1信号と前記第2信号とを受けて、これらの信号に所定の演算処理を実施する演算処理手段と、
を備え、
前記第1コイルと、前記第1変換回路と、前記第2コイルと、前記第2変換回路とは、前記第1信号と前記第2信号それぞれの特性を測定して求め、前記第1信号と前記第2信号の特性における極性が逆で絶対値が同程度とする組み合わせとなる前記第1コイルと、前記第1変換回路と、前記第2コイルと、前記第2変換回路を選定したものを使用し、
前記演算処理手段は、前記第1信号と第2信号とから、前記被測定体と各コイルとの間の離間距離を算出することを特徴とする測定装置。
A first coil that is disposed opposite to a conductive or semiconductive object to be measured at a distance and is excited by an alternating current;
A first conversion circuit that excites the first coil with an alternating current and outputs a first signal that is involved in a change in the impedance of the first coil and that is a change amount that depends on the temperature of the measured object;
A second coil that is arranged opposite to the object to be measured at the same separation distance as the first coil and is excited by an alternating current;
A second conversion circuit that excites the second coil with an alternating current and outputs a second signal that is involved in a change in impedance of the second coil and that depends on the temperature of the object to be measured;
Arithmetic processing means for receiving the first signal and the second signal and performing predetermined arithmetic processing on these signals;
With
The first coil, the first conversion circuit, the second coil, and the second conversion circuit are obtained by measuring characteristics of the first signal and the second signal, and the first signal, A selection of the first coil, the first conversion circuit, the second coil, and the second conversion circuit in which the polarities in the characteristics of the second signal are reversed and the absolute values are about the same. use,
The measurement apparatus is characterized in that the arithmetic processing means calculates a separation distance between the measured object and each coil from the first signal and the second signal.
前記演算処理手段は、前記第1信号S1と前記第2信号S2との差分である偏差ΔS=S1−S2を算出し、更に、この偏差ΔSと前記被測定体の温度tとの相関、及び前記偏差ΔSと先に算出した離間距離との相関から、被測定体の温度tを算出することを特徴とする請求項1に記載の測定装置。   The arithmetic processing means calculates a deviation ΔS = S1-S2 which is a difference between the first signal S1 and the second signal S2, and further, a correlation between the deviation ΔS and the temperature t of the measured object, and The measuring apparatus according to claim 1, wherein the temperature t of the object to be measured is calculated from the correlation between the deviation ΔS and the previously calculated separation distance. 前記演算処理手段の演算結果を表示する表示手段と、前記演算結果を記録する記録手段と、を備えたことを特徴とする請求項1または2のいずれか1項に記載の測定装置。   The measuring apparatus according to claim 1, further comprising: a display unit that displays a calculation result of the calculation processing unit; and a recording unit that records the calculation result. 導電性または半導電性の被測定体に距離を隔てて対向配置されて交流電流により励磁される第1コイルと、
前記第1コイルを交流電流により励磁すると共に前記第1コイルのインピーダンスの変化に関与し且つ前記被測定体の温度に依存する変化量である第1信号を出力する第1変換回路と、
前記被測定体に対して前記第1コイルと同一の離間距離で対向配置されて交流電流により励磁される第2コイルと、
前記第2コイルを交流電流により励磁すると共に前記第2コイルのインピーダンスの変化に関与し且つ前記被測定体の温度に依存する変化量である第2信号を出力する第2変換回路と、
前記第1信号と前記第2信号とを受けて、これらの信号に所定の演算処理を実施する演算処理手段と、
を備え、前記被測定体からの離間距離を測定する測定方法であって、
前記第1コイルと、前記第1変換回路と、前記第2コイルと、前記第2変換回路とは、前記第1信号と前記第2信号それぞれの特性を測定して求め、前記第1信号と前記第2信号の特性における極性が逆で絶対値が同程度とする組み合わせとなる前記第1コイルと、前記第1変換回路と、前記第2コイルと、前記第2変換回路を選定したものを使用し、
前記演算処理手段により、前記第1信号と第2信号とからそれぞれ求められる距離の平均値から、前記被測定体と前記各コイルとの間の離間距離を算出することを特徴とする測定方法。
A first coil that is disposed opposite to a conductive or semiconductive object to be measured at a distance and is excited by an alternating current;
A first conversion circuit that excites the first coil with an alternating current and outputs a first signal that is involved in a change in the impedance of the first coil and that is a change amount that depends on the temperature of the measured object;
A second coil that is arranged opposite to the object to be measured at the same separation distance as the first coil and is excited by an alternating current;
A second conversion circuit that excites the second coil with an alternating current and outputs a second signal that is involved in a change in impedance of the second coil and that depends on the temperature of the object to be measured;
Arithmetic processing means for receiving the first signal and the second signal and performing predetermined arithmetic processing on these signals;
A measuring method for measuring a separation distance from the measured object,
The first coil, the first conversion circuit, the second coil, and the second conversion circuit are obtained by measuring characteristics of the first signal and the second signal, and the first signal, A selection of the first coil, the first conversion circuit, the second coil, and the second conversion circuit in which the polarities in the characteristics of the second signal are reversed and the absolute values are about the same. use,
A measurement method characterized in that the arithmetic processing means calculates a separation distance between the measured object and each coil from an average value of distances obtained from the first signal and the second signal, respectively.
JP2013090379A 2013-04-23 2013-04-23 Measuring device and measuring method Pending JP2014215082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013090379A JP2014215082A (en) 2013-04-23 2013-04-23 Measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013090379A JP2014215082A (en) 2013-04-23 2013-04-23 Measuring device and measuring method

Publications (1)

Publication Number Publication Date
JP2014215082A true JP2014215082A (en) 2014-11-17

Family

ID=51940983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013090379A Pending JP2014215082A (en) 2013-04-23 2013-04-23 Measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP2014215082A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115949A (en) * 2017-01-18 2018-07-26 株式会社荏原製作所 Fluid machine
US20210074905A1 (en) * 2019-09-10 2021-03-11 Hitachi Metals, Ltd. Magnetostrictive type sensor temperature detecting circuit, magnetostrictive type sensor, and temperature detecting method for magnetostrictive type sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115949A (en) * 2017-01-18 2018-07-26 株式会社荏原製作所 Fluid machine
JP6994830B2 (en) 2017-01-18 2022-01-14 株式会社荏原製作所 Fluid machine
US20210074905A1 (en) * 2019-09-10 2021-03-11 Hitachi Metals, Ltd. Magnetostrictive type sensor temperature detecting circuit, magnetostrictive type sensor, and temperature detecting method for magnetostrictive type sensor
US11495733B2 (en) * 2019-09-10 2022-11-08 Hitachi Metals, Ltd. Magnetostrictive type sensor temperature detecting circuit, magnetostrictive type sensor, and temperature detecting method for magnetostrictive type sensor

Similar Documents

Publication Publication Date Title
JP5606941B2 (en) Fluxgate sensor
JP2009210406A (en) Current sensor and watthour meter
JP2010164306A (en) Method and device for hardened depth
JP5106704B2 (en) Method and apparatus for measuring the thickness of a metal layer provided on a metal object
JP2014215082A (en) Measuring device and measuring method
US3002383A (en) Electromagnetic induction flowmeter
JP5293755B2 (en) Apparatus for measuring complex permeability of magnetic material and method for measuring crystal grain size of magnetic material using the same
JP4736811B2 (en) Method for determining leg interval of complex magnetic permeability measuring device of magnetic material
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
JP6388672B2 (en) Coin detection system
JP2000337809A (en) Differential type eddy current range finder
JP4879518B2 (en) Measurement test method for machining depth using eddy current and measurement test apparatus using the same
JP4369909B2 (en) Magnetic property measuring method and measuring instrument
US20140002069A1 (en) Eddy current probe
JPH10132790A (en) Apparatus for measuring concentration of magnetic powder
CN219265217U (en) Constant-current magnetic induction measuring circuit
US10060763B2 (en) Sensor assembly for measuring the relative position of a control rod connected to a lead screw within a nuclear reactor
US9804286B2 (en) Method of optimising the output of a sensor for indicating the relative location of a mettalic object
CN107076805B (en) Magnetic field measuring device
JP6135924B2 (en) Electromagnetic flow meter
JP2020038113A (en) Current measuring device and current measuring method
RU2528031C2 (en) Method to measure thermodynamic temperature
JP2005315732A (en) Instrument for measuring displacement of ferromagnetic body
RU2490611C1 (en) Device to measure pressure inside pipelines made of ferromagnetics
US20150369584A1 (en) Sensor