JPH10132790A - Apparatus for measuring concentration of magnetic powder - Google Patents

Apparatus for measuring concentration of magnetic powder

Info

Publication number
JPH10132790A
JPH10132790A JP28502496A JP28502496A JPH10132790A JP H10132790 A JPH10132790 A JP H10132790A JP 28502496 A JP28502496 A JP 28502496A JP 28502496 A JP28502496 A JP 28502496A JP H10132790 A JPH10132790 A JP H10132790A
Authority
JP
Japan
Prior art keywords
coil
magnetic powder
sample
detection coil
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28502496A
Other languages
Japanese (ja)
Inventor
Riichiro Kasahara
理一郎 笠原
Yoshinao Nozawa
義尚 野沢
Masanori Miyoshi
雅徳 三好
Osamu Kitamura
修 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP28502496A priority Critical patent/JPH10132790A/en
Priority to KR1019960052782A priority patent/KR100427628B1/en
Priority to US08/748,471 priority patent/US5793199A/en
Priority to DE69625777T priority patent/DE69625777T2/en
Priority to EP96308116A priority patent/EP0773440B1/en
Priority to CN96123384A priority patent/CN1100262C/en
Priority to TW085114068A priority patent/TW310372B/zh
Publication of JPH10132790A publication Critical patent/JPH10132790A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic powder concentration-measuring apparatus which can easily and correctly measure the concentration of magnetic powder without a manual adjustment, even when the ambient temperature of the apparatus changes. SOLUTION: The apparatus is constituted so that a sample with a magnetic powder mixed therein can be inserted to at least either of an exciting coil L1 and a detecting coil L3 arranged at a magnetic path of the exciting coil L1. A concentration of the magnetic powder included in the sample is obtained on the basis of an induced voltage induced to the detecting coil L3. A temperature-sensitive element showing an NTC characteristic (having a negative temperature coefficient whereby a resistance value decreases when a temperature rises) is connected in series to the coil L1, so that a current value flowing in the coil L1 is maintained constant irrespective of the ambient temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種機械の軸受け
の摩耗損傷などの劣化を、潤滑油やグリース等の潤滑剤
に混入した鉄粉などの磁性粉濃度を測定することにより
間接的に診断する磁性粉濃度測定装置に関し、詳述する
と、励磁コイル又は前記励磁コイルの磁路に配置した検
出コイルのうち少なくとも一方に磁性粉の混入した試料
を挿入可能に構成し、前記検出コイルに誘起される誘導
電圧に基づいて前記試料に含まれる磁性粉濃度を求める
電磁誘導法を用いた磁性粉濃度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention indirectly diagnoses deterioration such as abrasion damage of bearings of various machines by measuring the concentration of magnetic powder such as iron powder mixed in lubricant such as lubricating oil or grease. More specifically, the magnetic powder concentration measuring device is configured so that a sample mixed with magnetic powder can be inserted into at least one of an excitation coil or a detection coil disposed in a magnetic path of the excitation coil, and the sample is induced by the detection coil. The present invention relates to a magnetic powder concentration measuring device using an electromagnetic induction method for obtaining the concentration of magnetic powder contained in a sample based on an induced voltage.

【0002】[0002]

【従来の技術】従来、磁性粉濃度測定装置としては、共
通磁路に単一の励磁コイルと単一の検出コイルを配置し
たシンプルな電磁誘導法を採用するもの、直列に接続さ
れた一対の等価な励磁コイルを、各励磁コイルによる磁
界が対向するように共通軸芯上に配置するとともに、そ
の共通軸芯上で前記一対の励磁コイルによる合成磁界が
零となる位置に検出コイルを配置した磁気バランス式の
電磁誘導法を採用するもの、共通軸心上に、単一の励磁
コイルを一対の検出コイルで挟んで構成した差動検出コ
イル式の電磁誘導法を採用するものがあった。
2. Description of the Related Art Conventionally, a magnetic powder concentration measuring apparatus employs a simple electromagnetic induction method in which a single excitation coil and a single detection coil are arranged in a common magnetic path, and a pair of serially connected magnetic powders. Equivalent excitation coils were arranged on a common axis so that the magnetic fields of the respective excitation coils faced each other, and a detection coil was arranged on the common axis at a position where the combined magnetic field of the pair of excitation coils became zero. Some employ a magnetic balance type electromagnetic induction method, and some employ a differential detection coil type electromagnetic induction method in which a single excitation coil is sandwiched between a pair of detection coils on a common axis.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の磁性粉
濃度測定装置では、予め基準試料の測定等により零点調
節やスパン調整を行っているのであるが、装置の雰囲気
温度の変化によるコイルのインピーダンスの変化に起因
して、調整された後であっても零点や出力スパンのいず
れかまたは双方が変動するために、測定に先立って再調
整しなければ測定値の信頼性が補償されず、さらには、
回転機械等から試料である被検潤滑剤を採取するときに
は、潤滑剤の温度が周囲温度より高いために、その温度
が周囲温度に低下するまでの長時間にわたり測定値が安
定しないという不都合があった。そこで、従来は、測定
の度に手動で再調整する極めて煩わしい操作が要求さ
れ、その操作を忘れることも度々あった。例えば、零点
補正のための機構としては、検出コイルからの出力を増
幅処理する演算増幅器の基準電圧を調整する回路や、試
料が挿入されていないときの出力段のデータを、実際の
計測データから減算するための零点補正データとして記
憶する記憶手段を設けたものがあり、それら機構を作動
させるためのボリウムやスイッチなどの手動操作部を設
けて、その操作部の手動操作により再調整を行うもので
ある。本発明の目的は上述した従来の問題点に鑑みて、
装置の周囲温度が変化した場合であっても、手動調整の
必要が無く、より容易、且つ、正確な測定が可能となる
磁性粉濃度測定装置を提供する点にある。
In the conventional magnetic powder concentration measuring apparatus described above, the zero point adjustment and the span adjustment are performed in advance by measuring a reference sample or the like. Due to the change of the zero point and / or the output span even after the adjustment, the reliability of the measured value cannot be compensated unless readjusted before the measurement. Is
When a sample lubricant to be sampled is sampled from a rotating machine or the like, since the temperature of the lubricant is higher than the ambient temperature, there is an inconvenience that the measured value is not stable for a long time until the temperature drops to the ambient temperature. Was. Therefore, conventionally, an extremely troublesome operation of manually re-adjusting every measurement is required, and the operation is often forgotten. For example, as a mechanism for zero point correction, a circuit that adjusts the reference voltage of an operational amplifier that amplifies the output from the detection coil, or the data of the output stage when no sample is inserted, is obtained from actual measurement data. There are those provided with storage means for storing as zero-point correction data for subtraction, and a manual operation unit such as a volume or a switch for operating those mechanisms is provided, and readjustment is performed by manual operation of the operation unit. It is. The object of the present invention, in view of the above-mentioned conventional problems,
It is an object of the present invention to provide a magnetic powder concentration measurement device that does not require manual adjustment even when the ambient temperature of the device changes, and enables easier and more accurate measurement.

【0004】[0004]

【課題を解決するための手段】この目的を達成するた
め、本発明による磁性粉濃度測定装置の第一の特徴構成
は、特許請求の範囲の欄の請求項1に記載した通り、励
磁コイル又は前記励磁コイルの磁路に配置した検出コイ
ルのうち少なくとも一方に磁性粉の混入した試料を挿入
可能に構成し、前記検出コイルに誘起される誘導電圧に
基づいて前記試料に含まれる磁性粉濃度を求める磁性粉
濃度測定装置であって、前記コイルにNTC特性を示す
感温素子を直列に接続し、周囲温度に関わらず前記コイ
ルに流れる電流値を一定に保つように構成してある点に
ある。第二の特徴構成は、特許請求の範囲の欄の請求項
2に記載した通り、励磁コイル又は前記励磁コイルの磁
路に配置した検出コイルのうち少なくとも一方に磁性粉
の混入した試料を挿入可能に構成し、前記検出コイルに
誘起される誘導電圧に基づいて前記試料に含まれる磁性
粉濃度を求める磁性粉濃度測定装置であって、前記励磁
コイルへの励磁用電源を定電流源で構成してある点にあ
る。第三の特徴構成は、特許請求の範囲の欄の請求項3
に記載した通り、励磁コイル又は前記励磁コイルの磁路
に配置した検出コイルのうち少なくとも一方に磁性粉の
混入した試料を挿入可能に構成し、前記検出コイルに誘
起される誘導電圧に基づいて前記試料に含まれる磁性粉
濃度を求める磁性粉濃度測定装置であって、前記コイル
を、抵抗成分の温度係数が5×10-5以下である線材を
用いて構成してある点にある。第四の特徴構成は、特許
請求の範囲の欄の請求項4に記載した通り、励磁コイル
又は前記励磁コイルの磁路に配置した検出コイルのうち
少なくとも一方に磁性粉の混入した試料を挿入可能に構
成し、前記検出コイルに誘起される誘導電圧に基づいて
前記試料に含まれる磁性粉濃度を求める磁性粉濃度測定
装置であって、前記励磁コイルへの励磁用電流源を方形
波電流を出力するように構成するとともに、前記検出コ
イルで共振回路を構成してある点にある。
In order to achieve this object, a first characteristic configuration of the magnetic powder concentration measuring device according to the present invention is as described in claim 1 of the claims. A sample mixed with magnetic powder is inserted into at least one of the detection coils arranged in the magnetic path of the exciting coil, and the concentration of the magnetic powder contained in the sample is determined based on an induced voltage induced in the detection coil. A magnetic powder concentration measuring device to be sought, wherein a temperature-sensitive element exhibiting NTC characteristics is connected in series to the coil, and the current value flowing through the coil is kept constant regardless of the ambient temperature. . A second characteristic configuration is that, as described in claim 2 of the claims, a sample mixed with magnetic powder can be inserted into at least one of the excitation coil and the detection coil arranged in the magnetic path of the excitation coil. A magnetic powder concentration measuring device for determining the concentration of magnetic powder contained in the sample based on an induced voltage induced in the detection coil, wherein a power supply for excitation to the excitation coil is constituted by a constant current source. There is a point. The third characteristic configuration is claim 3 in the claims section.
As described in, the excitation coil or the detection coil arranged in the magnetic path of the excitation coil is configured to be able to insert a sample mixed with magnetic powder into at least one of the detection coil, based on the induced voltage induced in the detection coil A magnetic powder concentration measuring device for determining the concentration of magnetic powder contained in a sample, wherein the coil is formed using a wire having a temperature coefficient of a resistance component of 5 × 10 −5 or less. The fourth characteristic configuration is such that, as described in claim 4 of the claims, a sample mixed with magnetic powder can be inserted into at least one of the excitation coil and the detection coil arranged in the magnetic path of the excitation coil. A magnetic powder concentration measuring device for obtaining the concentration of magnetic powder contained in the sample based on an induced voltage induced in the detection coil, wherein the exciting current source to the exciting coil outputs a square wave current And the detection coil forms a resonance circuit.

【0005】以下にその作用を説明する。一般にコイル
の抵抗成分Rは次式で表される。 R=R0 (1+αΔT) ここに、R0 は特定温度におけるコイルの抵抗値であ
り、αはコイルの温度係数であり、ΔTは温度変化を示
す。そこで、第一の特徴構成によれば、コイルにNTC
特性(温度が上昇すると抵抗値が下がる負の温度係数を
有する特性)を示す感温素子、例えばサーミスタを直列
に接続すれば、コイル温度の上昇に伴いコイル抵抗は大
きくなるが感温素子の抵抗値が小さくなるために全体と
して抵抗値を一定に維持でき、その場合にはコイルに流
れる電流値を一定に維持することができるのである。第
二の特徴構成によれば、励磁コイルへの励磁用電源を定
電流源で構成してあるために、励磁コイルの温度上昇に
伴う抵抗変化が生じても、コイル電流を一定に維持でき
るのである。第三の特徴構成によれば、抵抗値の温度係
数が極めて小さい、例えばマンガニン線(Mn-Ni-Cu
合金)のような線材を用いてコイルを構成することによ
り、通常の使用条件での温度の影響を極力押さえること
が可能となるのである。第四の特徴構成によれば、前記
励磁コイルへの励磁用電流源を方形波電流を出力する安
価な方形波出力電源で構成しながらも、検出コイルに例
えば容量素子と抵抗素子を並列接続して共振回路とし、
その出力を取り出すように構成すれば、検出コイル単独
での出力に現れる寄生振動によるノイズの発生を回避し
つつ正弦波出力を得ることができるのである。
The operation will be described below. Generally, the resistance component R of a coil is represented by the following equation. R = R 0 (1 + αΔT) Here, R 0 is a resistance value of the coil at a specific temperature, α is a temperature coefficient of the coil, and ΔT indicates a temperature change. Therefore, according to the first characteristic configuration, the coil is NTC
If a temperature-sensitive element exhibiting characteristics (a characteristic having a negative temperature coefficient in which the resistance value decreases as the temperature increases), for example, a thermistor is connected in series, the coil resistance increases as the coil temperature increases, but the resistance of the temperature-sensitive element increases. Since the value becomes small, the resistance value can be kept constant as a whole, and in that case, the current value flowing through the coil can be kept constant. According to the second characteristic configuration, since the excitation power supply to the excitation coil is configured by the constant current source, the coil current can be maintained constant even if the resistance changes due to the temperature rise of the excitation coil. is there. According to the third characteristic configuration, the temperature coefficient of the resistance value is extremely small, for example, a manganin wire (Mn-Ni-Cu).
By using a wire such as an alloy), it is possible to minimize the influence of temperature under normal use conditions. According to the fourth characteristic configuration, for example, a capacitance element and a resistance element are connected in parallel to the detection coil while the excitation current source for the excitation coil is configured by an inexpensive square wave output power supply that outputs a square wave current. To form a resonance circuit,
If the output is taken out, it is possible to obtain a sine wave output while avoiding generation of noise due to parasitic vibration appearing in the output of the detection coil alone.

【0006】[0006]

【発明の効果】従って、第一から第三の特徴構成によれ
ば、周囲温度の変化や高温の被検潤滑剤を試料として測
定する場合であっても、操作者は何らの再調整操作を行
わなくとも、自動的に零点、出力スパン調整が行われ、
常に安定した状態で計測することができる磁性粉濃度測
定装置を提供することができるようになり、第四の特徴
構成によれば、安価な電源を使用しながらもノイズの発
生を押さえながら正確に測定できる磁性粉濃度測定装置
を提供することができるようになった。
Therefore, according to the first to third features, even when the ambient temperature is changed or the lubricant at a high temperature is measured as a sample, the operator does not need to perform any readjustment operation. Even without performing, zero point and output span adjustment are performed automatically,
It is possible to provide a magnetic powder concentration measurement device that can always measure in a stable state, and according to the fourth characteristic configuration, it is possible to accurately generate noise while suppressing the generation of noise while using an inexpensive power supply. It has become possible to provide a magnetic powder concentration measuring device that can be measured.

【0007】[0007]

【発明の実施の形態】以下、本発明に係る磁性粉濃度測
定装置の実施の形態を説明する。磁性粉濃度測定装置
は、図1に示すように、サーミスタThが直列に接続さ
れた励磁コイルL1と、前記励磁コイルL1と共通軸芯
P上、つまり前記励磁コイルL1の磁路に配置された検
出コイルL3とを磁気シールド部材で囲繞した計測手段
と、前記励磁コイルL1に励磁電流を供給する電源手段
2と、前記検出コイルL3の出力信号から磁性粉濃度を
演算導出する処理手段3とを筐体1の内部に設けて構成
してある。前記筐体1の上面には、磁性粉の混入した試
料Sが封入された硝子、樹脂等の非金属製試料容器を挿
入する挿入孔1aが形成されており、その挿入孔1aか
ら挿入された前記試料容器の上端に形成されたフランジ
部が前記筐体1の支持部1b上面で支持された状態で、
前記挿入孔1aの直下にある励磁コイルL1の内部に挿
入される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a magnetic powder concentration measuring device according to the present invention will be described below. As shown in FIG. 1, the magnetic powder concentration measuring device is provided with an exciting coil L1 to which a thermistor Th is connected in series, and on a common axis P with the exciting coil L1, that is, in a magnetic path of the exciting coil L1. Measuring means surrounding the detecting coil L3 with a magnetic shield member, power supply means 2 for supplying an exciting current to the exciting coil L1, and processing means 3 for calculating and deriving a magnetic powder concentration from an output signal of the detecting coil L3. It is configured to be provided inside the housing 1. An insertion hole 1a for inserting a non-metallic sample container made of glass, resin or the like in which the sample S mixed with the magnetic powder is sealed is formed on the upper surface of the housing 1, and the insertion hole 1a is inserted through the insertion hole 1a. In a state where a flange portion formed at the upper end of the sample container is supported on the upper surface of the support portion 1b of the housing 1,
It is inserted into the exciting coil L1 immediately below the insertion hole 1a.

【0008】前記電源手段2は、乾電池を備えた電源供
給回路2aと、その電源供給回路2aから供給される直
流電力から約30kHz〜200kHzの交流の励磁電
流を出力する発振回路2bを備えて構成してあり、前記
処理手段3は、前記検出コイルL3の出力交流信号を増
幅する第一増幅回路3aと、増幅された交流信号を前記
発振回路2bの出力信号で同期検波して直流電圧を出力
する同期検波回路3bと、前記同期検波回路3bの出力
を増幅する第二増幅回路3cと、前記第二増幅回路3c
による増幅信号を量子化するA/D変換回路3dと、量
子化されたデータを所定の換算式に基づいて前記試料S
に含まれる磁性粉濃度として演算導出する演算処理部3
eと、前記演算処理部3eによる演算結果を表示する例
えば液晶などを用いた表示部3fを備えて構成してあ
り、以て、前記試料Sに含まれる磁性粉濃度に応じた前
記励磁コイルL1内部の透磁率の変化による磁束の変動
を、前記検出コイルL3の誘導電圧の計測により求め、
前記試料Sに含まれる磁性粉濃度に換算する。
The power supply means 2 comprises a power supply circuit 2a having a dry cell, and an oscillation circuit 2b for outputting an alternating current of about 30 kHz to 200 kHz from the DC power supplied from the power supply circuit 2a. The processing means 3 includes a first amplifying circuit 3a for amplifying an output AC signal of the detection coil L3, and synchronously detecting the amplified AC signal with an output signal of the oscillation circuit 2b to output a DC voltage. Synchronous detecting circuit 3b, a second amplifying circuit 3c for amplifying the output of the synchronous detecting circuit 3b, and a second amplifying circuit 3c.
A / D conversion circuit 3d for quantizing the amplified signal by the above-mentioned method, and the sample S based on the quantized data based on a predetermined conversion formula.
Processing unit 3 for calculating and deriving the magnetic powder concentration contained in
e, and a display unit 3f using a liquid crystal or the like, for example, for displaying a calculation result by the calculation processing unit 3e. Thus, the excitation coil L1 corresponding to the concentration of the magnetic powder contained in the sample S is provided. A change in magnetic flux due to a change in internal magnetic permeability is obtained by measuring an induced voltage of the detection coil L3,
It is converted to the concentration of the magnetic powder contained in the sample S.

【0009】前記コイルL1に直列接続されたサーミス
タは、NTC特性、即ち、温度が上昇すると抵抗値が下
がる負の温度係数を有する特性を示す感温素子であり、
装置の周囲温度変化や高温の試料容器の挿入等によるコ
イル温度の上昇に伴い大きくなるコイル抵抗に対して、
感温素子の抵抗値が小さくなるために全体として抵抗値
を一定に維持することによりコイルに流れる電流値を一
定に維持し、以て、零点変動や出力スパン変動を防止す
る。尚、感温素子としてはサーミスタ以外に半導体のP
N接合部の温度特性を利用するものであってもよい。こ
こに、NTC特性を有する感温素子が直列接続されるコ
イルは励磁コイルL1に限らず検出コイルL3にも設け
ることで、より温度補償効果を高めることができる。
The thermistor connected in series to the coil L1 is a temperature sensitive element exhibiting NTC characteristics, that is, characteristics having a negative temperature coefficient in which the resistance value decreases as the temperature increases.
The coil resistance increases as the coil temperature rises due to changes in the ambient temperature of the device or insertion of a high-temperature sample container.
Since the resistance value of the temperature sensing element is reduced, the current value flowing through the coil is maintained constant by keeping the resistance value constant as a whole, thereby preventing zero point fluctuation and output span fluctuation. In addition, besides thermistors, semiconductor P
The temperature characteristics of the N junction may be used. Here, the temperature compensation effect can be further enhanced by providing the coil to which the temperature-sensitive element having the NTC characteristic is connected in series not only in the exciting coil L1 but also in the detection coil L3.

【0010】次に、本発明に係る磁性粉濃度測定装置の
その他の実施の形態を説明する。先の実施形態におい
て、温度補償用の感温素子を用いるものを説明したが、
温度補償用の感温素子を用いる代わりに、電源手段2と
して定電流電源を用いるものであってもよい。つまり、
コイル温度の上昇に伴いコイル抵抗は大きくなるが、励
磁電流に定電流源を用いればコイルに流れる電流値を一
定に維持することができるのである。尚、上述のよう
に、NTC特性を有する感温素子を検出コイルL3に直
列接続することにより、より温度補償効果を高めること
もできる。
Next, another embodiment of the magnetic powder concentration measuring apparatus according to the present invention will be described. In the previous embodiment, the one using the temperature sensing element for temperature compensation has been described.
Instead of using a temperature sensing element for temperature compensation, a constant current power supply may be used as the power supply means 2. That is,
Although the coil resistance increases as the coil temperature increases, the value of the current flowing through the coil can be kept constant by using a constant current source for the exciting current. As described above, the temperature compensation effect can be further enhanced by connecting the temperature-sensitive element having NTC characteristics in series to the detection coil L3.

【0011】先の実施形態において、温度補償用の感温
素子を用いるものを説明したが、温度補償用の感温素子
を用いる代わりに、前記コイルL1,L3を、抵抗成分
の温度係数が小さい、例えば、マンガニン線(Mn-Ni-
Cu 合金)のような線材を用いてコイルを構成すること
により、通常の使用条件である約−20℃〜60℃とい
う使用範囲で温度の影響を極力押さえるように構成して
もよい。
In the above embodiment, the temperature compensation element using the temperature compensation element has been described. Instead of using the temperature compensation element for temperature compensation, the coils L1 and L3 have a small temperature coefficient of a resistance component. For example, a manganin wire (Mn-Ni-
By configuring the coil using a wire such as a Cu alloy), the effect of temperature may be suppressed as much as possible in a normal use condition of about -20 ° C to 60 ° C.

【0012】上述した実施の形態では、単一の励磁コイ
ルL1と単一の検出コイルL3により計測手段を構成す
るものを説明したが、計測手段としては、電磁誘導法を
用いる構成であれば任意の構成を採用することができ
る。即ち、図2に示すように、筐体1の内部に、直列に
接続された一対の等価な励磁コイルL1,L2を、各励
磁コイルL1,L2による磁界が対向するように垂直な
共通軸芯P上に配置するとともに、その共通軸芯P上で
前記一対の励磁コイルL1,L2による合成磁界が零と
なる位置、つまり、両コイルL1,L2の中央部で前記
共通軸芯Pと軸芯が重なるように検出コイルL3を配置
して、前記一対の励磁コイルL1,L2及び前記検出コ
イルL3の周囲を磁気シールド部材で囲繞して計測手段
を構成したものに、上述の第一から第三の実施の形態で
説明した温度補償機構を採用するものであってもよい。
ここに、前記検出コイルL3には、周部に螺条が形成さ
れた鉄芯FCとしてのフェライトコアを螺合して、前記
励磁コイルL1に前記試料Sを挿入しない状態、又は、
挿入された前記試料Sに磁性粉が含まれない状態におい
て、前記検出コイルL3の位置ずれ等の原因で前記検出
コイルL3に誘導電圧が生じる場合に、製造段階におい
て前記検出コイルL3の位置を変更することなく、前記
鉄芯FCの前記軸芯P方向への位置調節により容易に零
点調節が行え、しかも、前記検出コイルL3内の磁気抵
抗を減少させて検出感度を向上させるように構成してあ
る。さらに、図3に示すように、共通軸心上に、単一の
励磁コイルL1を一対の検出コイルL3,L4で挟んで
構成した差動検出コイル式の電磁誘導法を採用したもの
に、上述の第一から第三の実施の形態で説明した温度補
償機構を採用するものであってもよい。
In the above-described embodiment, the case where the measuring means is constituted by the single excitation coil L1 and the single detecting coil L3 has been described. However, the measuring means may be any as long as it employs the electromagnetic induction method. Can be adopted. That is, as shown in FIG. 2, a pair of equivalent exciting coils L1 and L2 connected in series are provided inside the casing 1 by a vertical common axis center such that the magnetic fields generated by the exciting coils L1 and L2 face each other. P, and a position where the combined magnetic field of the pair of exciting coils L1 and L2 is zero on the common axis P, that is, the common axis P and the axis at the center of both coils L1 and L2. The detection coil L3 is disposed such that the measurement coils are overlapped with each other, and the measurement means is configured by surrounding the pair of excitation coils L1 and L2 and the detection coil L3 with a magnetic shield member. The temperature compensation mechanism described in the embodiment may be adopted.
Here, the detection coil L3 is screwed with a ferrite core as an iron core FC having a thread formed in a peripheral portion, and the sample S is not inserted into the excitation coil L1, or
When an induced voltage is generated in the detection coil L3 due to a displacement or the like of the detection coil L3 in a state where the inserted sample S does not include the magnetic powder, the position of the detection coil L3 is changed in a manufacturing stage. Without performing, the zero point can be easily adjusted by adjusting the position of the iron core FC in the direction of the axis P, and the magnetic resistance in the detection coil L3 is reduced to improve the detection sensitivity. is there. Further, as shown in FIG. 3, a differential detection coil type electromagnetic induction method in which a single excitation coil L1 is sandwiched between a pair of detection coils L3 and L4 on a common axis is adopted as described above. The temperature compensation mechanism described in the first to third embodiments may be adopted.

【0013】上述した実施の形態に加えて、励磁コイル
への励磁用電流源である電源手段2としては、正弦波電
流を出力するものでなくともよく、例えば、乾電池等を
備えた電源供給回路と、発振子を備えた発振回路と、そ
の出力を分周する分周回路と、分周回路の出力端子に接
続されたドライバ回路等を備えて方形波電流を出力する
ような安価な回路構成を採用するものであってもよい。
この場合には、検出コイルに容量素子と抵抗素子とを並
列接続して共振回路を構成すれば、検出コイル単独での
出力に現れる寄生振動によるノイズの発生を回避しつつ
容易に正弦波出力を得ることができ、その出力を電源出
力で同期検波するように構成すれば高精度の出力を得る
ことが可能となる。
In addition to the above-described embodiment, the power supply means 2, which is a current source for exciting the exciting coil, does not have to output a sine-wave current. For example, a power supply circuit having a dry cell or the like may be used. And an inexpensive circuit configuration including an oscillator circuit having an oscillator, a frequency divider circuit for dividing the output thereof, and a driver circuit connected to the output terminal of the frequency divider circuit for outputting a square wave current May be adopted.
In this case, if a resonance circuit is configured by connecting a capacitance element and a resistance element in parallel to the detection coil, a sine wave output can be easily generated while avoiding the occurrence of noise due to parasitic vibration appearing in the output of the detection coil alone. If the output is synchronously detected by the power supply output, a highly accurate output can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁性粉濃度測定装置の構成図FIG. 1 is a configuration diagram of a magnetic powder concentration measuring device.

【図2】別実施形態を示す磁性粉濃度測定装置の要部の
構成図
FIG. 2 is a configuration diagram of a main part of a magnetic powder concentration measuring apparatus showing another embodiment.

【図3】別実施形態を示す磁性粉濃度測定装置の要部の
構成図
FIG. 3 is a configuration diagram of a main part of a magnetic powder concentration measuring apparatus showing another embodiment.

【符号の説明】[Explanation of symbols]

L1 励磁コイル L3 検出コイル L1 excitation coil L3 detection coil

フロントページの続き (72)発明者 三好 雅徳 大阪府大阪市淀川区三津屋中2丁目5番4 号 新コスモス電機株式会社内 (72)発明者 北村 修 兵庫県西宮市甲東園1丁目2番25号Continuing from the front page (72) Inventor Masanori Miyoshi 2-5-4 Mitsuyanaka, Yodogawa-ku, Osaka-shi, Osaka Inside New Cosmos Electric Co., Ltd. (72) Osamu Kitamura 1-2-2, Kotoen, Nishinomiya-shi, Hyogo Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 励磁コイル又は前記励磁コイルの磁路に
配置した検出コイルのうち少なくとも一方に磁性粉の混
入した試料を挿入可能に構成し、前記検出コイルに誘起
される誘導電圧に基づいて前記試料に含まれる磁性粉濃
度を求める磁性粉濃度測定装置であって、 前記コイルにNTC特性を示す感温素子を直列に接続
し、周囲温度に関わらず前記コイルに流れる電流値を一
定に保つように構成してある磁性粉濃度測定装置。
1. A structure in which a sample mixed with magnetic powder is inserted into at least one of an excitation coil and a detection coil arranged in a magnetic path of the excitation coil, and the detection coil is configured to detect the voltage based on an induced voltage induced in the detection coil. A magnetic powder concentration measuring device for determining the concentration of magnetic powder contained in a sample, wherein a temperature-sensitive element exhibiting NTC characteristics is connected in series to said coil, and a current value flowing through said coil is kept constant regardless of an ambient temperature. Magnetic powder concentration measuring device configured as above.
【請求項2】 励磁コイル又は前記励磁コイルの磁路に
配置した検出コイルのうち少なくとも一方に磁性粉の混
入した試料を挿入可能に構成し、前記検出コイルに誘起
される誘導電圧に基づいて前記試料に含まれる磁性粉濃
度を求める磁性粉濃度測定装置であって、 前記励磁コイルへの励磁用電源を定電流源で構成してあ
る磁性粉濃度測定装置。
2. A structure in which a sample mixed with magnetic powder is insertable into at least one of an excitation coil and a detection coil disposed in a magnetic path of the excitation coil, and wherein the sample is formed based on an induced voltage induced in the detection coil. What is claimed is: 1. A magnetic powder concentration measuring device for determining the concentration of magnetic powder contained in a sample, wherein a power source for exciting the exciting coil is constituted by a constant current source.
【請求項3】 励磁コイル又は前記励磁コイルの磁路に
配置した検出コイルのうち少なくとも一方に磁性粉の混
入した試料を挿入可能に構成し、前記検出コイルに誘起
される誘導電圧に基づいて前記試料に含まれる磁性粉濃
度を求める磁性粉濃度測定装置であって、 前記コイルを、抵抗成分の温度係数が5×10-5以下で
ある線材を用いて構成してある磁性粉濃度測定装置。
3. A configuration in which a sample mixed with magnetic powder is insertable into at least one of an excitation coil and a detection coil arranged in a magnetic path of the excitation coil, and based on an induced voltage induced in the detection coil, A magnetic powder concentration measuring device for determining the concentration of magnetic powder contained in a sample, wherein the coil is formed using a wire having a temperature coefficient of a resistance component of 5 × 10 −5 or less.
【請求項4】 励磁コイル又は前記励磁コイルの磁路に
配置した検出コイルのうち少なくとも一方に磁性粉の混
入した試料を挿入可能に構成し、前記検出コイルに誘起
される誘導電圧に基づいて前記試料に含まれる磁性粉濃
度を求める磁性粉濃度測定装置であって、 前記励磁コイルへの励磁用電流源を方形波電流を出力す
るように構成するとともに、前記検出コイルで共振回路
を構成してある磁性粉濃度測定装置。
4. A structure in which a sample mixed with magnetic powder is insertable into at least one of an excitation coil and a detection coil arranged in a magnetic path of the excitation coil, and based on an induced voltage induced in the detection coil, A magnetic powder concentration measuring device for determining the concentration of magnetic powder contained in a sample, wherein an excitation current source to the excitation coil is configured to output a square wave current, and a resonance circuit is configured by the detection coil. A magnetic powder concentration measurement device.
JP28502496A 1995-11-10 1996-10-28 Apparatus for measuring concentration of magnetic powder Pending JPH10132790A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP28502496A JPH10132790A (en) 1996-10-28 1996-10-28 Apparatus for measuring concentration of magnetic powder
KR1019960052782A KR100427628B1 (en) 1995-11-10 1996-11-08 Magnetic concentration measurement method and device
US08/748,471 US5793199A (en) 1995-11-10 1996-11-08 Method and apparatus for determining magnetic powder concentration by using the electromagnetic induction method
DE69625777T DE69625777T2 (en) 1995-11-10 1996-11-08 Method for determining the concentration of a magnetic powder and device therefor
EP96308116A EP0773440B1 (en) 1995-11-10 1996-11-08 Method of determining magnetic powder concentration and apparatus used for the method
CN96123384A CN1100262C (en) 1995-11-10 1996-11-09 Method of determining magnetic powder concentration and apparatus use for method
TW085114068A TW310372B (en) 1995-11-10 1996-11-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28502496A JPH10132790A (en) 1996-10-28 1996-10-28 Apparatus for measuring concentration of magnetic powder

Publications (1)

Publication Number Publication Date
JPH10132790A true JPH10132790A (en) 1998-05-22

Family

ID=17686176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28502496A Pending JPH10132790A (en) 1995-11-10 1996-10-28 Apparatus for measuring concentration of magnetic powder

Country Status (1)

Country Link
JP (1) JPH10132790A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220638A (en) * 2002-01-29 2003-08-05 Sumitomo Heavy Ind Ltd Lubrication system for injection molding machine
JP2008256664A (en) * 2007-04-09 2008-10-23 Diesel United:Kk Electric conductor concentration measuring apparatus and method
WO2011077603A1 (en) * 2009-12-24 2011-06-30 株式会社Ihi Method for detecting concentration of particles and device therefor
JP2014224741A (en) * 2013-05-16 2014-12-04 国立大学法人豊橋技術科学大学 Magnetic particulate detecting device and magnetic particulate detecting method
KR20170030238A (en) * 2015-09-09 2017-03-17 한온시스템 주식회사 Electromagnetic clutch for compressor
JP2018173331A (en) * 2017-03-31 2018-11-08 国立大学法人 筑波大学 Method for measuring magnetic characteristic of magnetic material and device for measuring magnetic characteristic of magnetic material
CN112014889A (en) * 2019-05-31 2020-12-01 株式会社日立大厦系统 Metal impurity inspection device
KR20220116841A (en) * 2021-02-16 2022-08-23 한국기술교육대학교 산학협력단 Infrared inspection device for friction welding of vehicle engine valve

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003220638A (en) * 2002-01-29 2003-08-05 Sumitomo Heavy Ind Ltd Lubrication system for injection molding machine
JP2008256664A (en) * 2007-04-09 2008-10-23 Diesel United:Kk Electric conductor concentration measuring apparatus and method
WO2011077603A1 (en) * 2009-12-24 2011-06-30 株式会社Ihi Method for detecting concentration of particles and device therefor
JP2011133292A (en) * 2009-12-24 2011-07-07 Ihi Corp Method and device for detecting concentration of particles
KR101369826B1 (en) * 2009-12-24 2014-03-06 가부시키가이샤 디젤 유나이티드 Method for detecting concentration of particles and device therefor
US8816674B2 (en) 2009-12-24 2014-08-26 Ihi Corporation Method for detecting concentration of particles and device therefor
JP2014224741A (en) * 2013-05-16 2014-12-04 国立大学法人豊橋技術科学大学 Magnetic particulate detecting device and magnetic particulate detecting method
KR20170030238A (en) * 2015-09-09 2017-03-17 한온시스템 주식회사 Electromagnetic clutch for compressor
JP2018173331A (en) * 2017-03-31 2018-11-08 国立大学法人 筑波大学 Method for measuring magnetic characteristic of magnetic material and device for measuring magnetic characteristic of magnetic material
CN112014889A (en) * 2019-05-31 2020-12-01 株式会社日立大厦系统 Metal impurity inspection device
KR20220116841A (en) * 2021-02-16 2022-08-23 한국기술교육대학교 산학협력단 Infrared inspection device for friction welding of vehicle engine valve

Similar Documents

Publication Publication Date Title
KR100427628B1 (en) Magnetic concentration measurement method and device
US5307690A (en) Temperature compensating device for torque measuring apparatus
US8729886B2 (en) Device for measuring alternating current magnetic susceptibility and method of measuring the same
US3534606A (en) Fuel gage
JPH09502267A (en) Magnetic flowmeter with empty pipe detector
JPH075137A (en) Electric detection device that measures iron particle in fluid by using series resonance oscillator and microprocessor
JPH10132790A (en) Apparatus for measuring concentration of magnetic powder
US3252084A (en) Measuring device using impedance variation of r. f. bridge coils with temperature compensation by flowing d.c. current through the coils
Soulen et al. Simple instrumentation for the inductive detection of superconductivity
US2866336A (en) Liquid level gage
US20040119470A1 (en) Winding type magnetic sensor device and coin discriminating sensor device
US3002383A (en) Electromagnetic induction flowmeter
US4078201A (en) Oscillator circuit for generating a signal whose frequency is representative of the phase shift of a four terminal network
JP4312438B2 (en) Wire wound type magnetic sensor
US6079266A (en) Fluid-level measurement by dynamic excitation of a pressure- and fluid-load-sensitive diaphragm
JPH1078411A (en) Method and device for measuring magnetic powder concentration
JP4072030B2 (en) Sensor capacity detection device and sensor capacity detection method
EP0157533A2 (en) Pressure measuring apparatus, e.g. a barometer
JPH08271204A (en) Eddy current type displacement sensor
JP3377348B2 (en) Method and apparatus for measuring magnetic powder concentration
US3260927A (en) Instrument for measuring the thickness of a non-conducting film on a base metal with compensation for base resistivity and ambient temperature
US2769959A (en) Dynamometer instrument
US3522528A (en) Noncontacting capacitance distance gauge having a servosystem and a position sensor
Iafolla et al. One axis gravity gradiometer for the measurement of Newton's gravitational constant G
JP2566687B2 (en) Torque measuring device temperature compensation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040409

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050210