JPH1078411A - Method and device for measuring magnetic powder concentration - Google Patents

Method and device for measuring magnetic powder concentration

Info

Publication number
JPH1078411A
JPH1078411A JP23376996A JP23376996A JPH1078411A JP H1078411 A JPH1078411 A JP H1078411A JP 23376996 A JP23376996 A JP 23376996A JP 23376996 A JP23376996 A JP 23376996A JP H1078411 A JPH1078411 A JP H1078411A
Authority
JP
Japan
Prior art keywords
sample
coil
magnetic powder
detection
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23376996A
Other languages
Japanese (ja)
Inventor
Masanori Miyoshi
雅徳 三好
Yoshinao Nozawa
義尚 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP23376996A priority Critical patent/JPH1078411A/en
Priority to KR1019960052782A priority patent/KR100427628B1/en
Priority to EP96308116A priority patent/EP0773440B1/en
Priority to DE69625777T priority patent/DE69625777T2/en
Priority to US08/748,471 priority patent/US5793199A/en
Priority to CN96123384A priority patent/CN1100262C/en
Priority to TW085114068A priority patent/TW310372B/zh
Publication of JPH1078411A publication Critical patent/JPH1078411A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and device for measuring magnetic powder concentration wherein accurate zero point correction is automatically performed regardless of zero point correction sense of an operator even in the case where a lubricant to be inspected of change of circumferential temperature and high temperature is measured as a sample, and magnetic powder concentration can be always accurately measured by performing measurement in a stable state. SOLUTION: A detection coil L3 is disposed in the magnetic path of an exciting coil 1 capable of inserting a magnetic powder mixed sample S, and magnetic powder concentration contained in the sample S is found on the basis of induced voltage induced in the detection coil L3. At the time when insertion and non-insertion states of the sample S in the exciting coil L1 are detected the non-insertion state is detected, zero point correction data are found, and at the time when the insertion stated is detected, zero point correction is automatically performed on the basis of the zero point correction data found just before detection. Magnetic powder concentration is found on the basis of the induced voltage induced in the detection coil L3 at a time point when insertion of the sample S is completed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種機械の軸受け
の摩耗損傷などの劣化を、潤滑油やグリース等の潤滑剤
に混入した鉄粉などの磁性粉濃度を測定することにより
間接的に診断する磁性粉濃度測定方法及びその装置に関
し、詳述すると、励磁コイル又は前記励磁コイルの磁路
に配置した検出コイルのうち少なくとも一方に磁性粉の
混入した試料を挿入可能に構成し、前記検出コイルに誘
起される誘導電圧に基づいて前記試料に含まれる磁性粉
濃度を求める磁性粉濃度測定方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention indirectly diagnoses deterioration such as abrasion damage of bearings of various machines by measuring the concentration of magnetic powder such as iron powder mixed in lubricant such as lubricating oil or grease. More specifically, the method and apparatus for measuring the concentration of magnetic powder to be described will be described in detail. To be more specific, a sample mixed with magnetic powder can be inserted into at least one of an excitation coil or a detection coil arranged in a magnetic path of the excitation coil, and the detection coil The present invention relates to a method and an apparatus for measuring the concentration of magnetic powder contained in a sample, based on an induced voltage induced in the sample.

【0002】[0002]

【従来の技術】従来、磁性粉濃度測定装置としては、励
磁コイル又は前記励磁コイルの磁路に配置した検出コイ
ルのうち少なくとも一方に磁性粉の混入した試料を挿入
可能に構成した計測手段と、前記検出コイルに誘起され
る誘導電圧に基づいて前記試料に含まれる磁性粉濃度を
出力する処理手段と、零点補正するための手動操作部を
備えて構成してあり、測定者は試料をコイルに挿入する
前に、前記手動操作部を操作して零点補正してから測定
していた。ここに、零点補正のための機構としては、検
出コイルからの出力を増幅処理する演算増幅器の基準電
圧調整や、オフセット電圧調整、さらには、演算増幅器
の出力段以降で零点変動分の減算処理などの各種の機構
で構成され、前記手動操作部は、上述の零点補正のため
の機構を作動させるためのボリウムやスイッチなどで構
成される。
2. Description of the Related Art Conventionally, as a magnetic powder concentration measuring device, a measuring means configured to insert a sample mixed with magnetic powder into at least one of an excitation coil and a detection coil arranged in a magnetic path of the excitation coil, A processing means for outputting the concentration of the magnetic powder contained in the sample based on the induced voltage induced in the detection coil, and a manual operation unit for zero correction are configured, and the measurer places the sample on the coil. Prior to insertion, the measurement was performed after the zero point was corrected by operating the manual operation unit. Here, the mechanism for zero point correction includes adjustment of the reference voltage of the operational amplifier for amplifying the output from the detection coil, adjustment of the offset voltage, and subtraction processing of the zero point fluctuation after the output stage of the operational amplifier. The manual operation unit is configured with a volume, a switch, and the like for operating the mechanism for zero point correction described above.

【0003】[0003]

【発明が解決しようとする課題】上述した従来の磁性粉
濃度測定装置では、装置の雰囲気温度の変化によるコイ
ルのインピーダンスの変化や、処理手段を構成する回路
素子の温度特性により零点が変動するために、測定に先
立って零点補正するための手動操作部を操作して零点調
整しなければ測定値の信頼性が補償されないのである
が、測定の度に手動で零点補正する操作は極めて煩わし
いものであり、手動操作部の操作を忘れることも度々あ
った。さらには、回転機械等から試料である被検潤滑剤
を採取するときには、潤滑剤の温度が周囲温度より高い
ために、その潤滑剤の温度が周囲温度に低下するまでの
長時間にわたり測定値が安定しないという不都合があっ
た。本発明の目的は上述した従来の問題点に鑑みて、よ
り容易、且つ、正確な測定が可能となる磁性粉濃度測定
方法及びその装置を提供する点にある。
In the above-described conventional magnetic powder concentration measuring apparatus, the zero point fluctuates due to a change in impedance of the coil due to a change in the ambient temperature of the apparatus and a temperature characteristic of a circuit element constituting the processing means. In addition, the reliability of the measured value cannot be compensated unless the zero point is adjusted by operating the manual operation unit for zero correction prior to the measurement.However, the operation of manually performing the zero correction at each measurement is extremely troublesome. Yes, I often forgot to operate the manual operation unit. Furthermore, when collecting a test lubricant, which is a sample, from a rotating machine or the like, since the temperature of the lubricant is higher than the ambient temperature, measured values are taken for a long time until the temperature of the lubricant decreases to the ambient temperature. There was a disadvantage that it was not stable. SUMMARY OF THE INVENTION An object of the present invention is to provide a method and an apparatus for measuring the concentration of a magnetic powder, which can more easily and accurately measure in view of the above-mentioned conventional problems.

【0004】[0004]

【課題を解決するための手段】この目的を達成するた
め、本発明による磁性粉濃度測定方法の第一の特徴構成
は、特許請求の範囲の欄の請求項1に記載した通り、励
磁コイル又は前記励磁コイルの磁路に配置した検出コイ
ルのうち少なくとも一方に磁性粉の混入した試料を挿入
可能に構成し、前記検出コイルに誘起される誘導電圧に
基づいて前記試料に含まれる磁性粉濃度を求める磁性粉
濃度測定方法であって、前記コイルへの前記試料の挿
入、非挿入状態を検出し、非挿入状態と検出されている
ときに零点補正データを求めて、挿入状態と検出されて
いるときに該検出の直前に求められた零点補正データに
基づいて自動的に零点補正する点にある。本発明による
磁性粉濃度測定方法の第二の特徴構成は、特許請求の範
囲の欄の請求項2に記載した通り、上述の第一の特徴構
成に加えて、前記試料の前記コイルへの挿入が完了した
時点、または、前記試料の前記コイルへの挿入の後、所
定時間経過した時点における前記検出コイルで誘起され
る誘導電圧に基づいて前記試料に含まれる磁性粉濃度を
求める点にある。さらに、本発明による磁性粉濃度測定
装置の第一の特徴構成は、特許請求の範囲の欄の請求項
3に記載した通り、励磁コイル又は前記励磁コイルの磁
路に配置した検出コイルのうち少なくとも一方に磁性粉
の混入した試料を挿入可能に構成した計測手段と、前記
検出コイルに誘起される誘導電圧に基づいて前記試料に
含まれる磁性粉濃度を出力する処理手段とを備えてなる
磁性粉濃度測定装置であって、前記コイルへの前記試料
の挿入、非挿入状態を検出する試料検出手段と、非挿入
状態と検出されているときに零点補正データを入力し、
挿入状態と検出されているときに該検出の直前に入力さ
れた零点補正データに基づいて自動的に零点補正する補
正手段を設けてある点にある。本発明による磁性粉濃度
測定装置の第二の特徴構成は、特許請求の範囲の欄の請
求項4に記載した通り、上述の第一の特徴構成に加え
て、前記処理手段は、前記試料の前記コイルへの挿入が
完了した時点、または、前記試料の前記コイルへの挿入
の後、所定時間経過した時点における前記検出コイルで
誘起される誘導電圧に基づいて前記試料に含まれる磁性
粉濃度を求めるように構成してある点にある。本発明に
よる磁性粉濃度測定装置の第三の特徴構成は、特許請求
の範囲の欄の請求項5に記載した通り、上述の第一また
は第二の特徴構成に加えて、前記試料検出手段は、直列
に接続された一対の励磁コイルを、各励磁コイルによる
磁界が対向するように配置するとともに、前記一対の励
磁コイルによる合成磁界が零となる位置に検出コイルを
配置して、一方の励磁コイルに磁性粉の混入した試料を
挿脱自在に構成されたものである点にある。
In order to achieve this object, a first characteristic configuration of the magnetic powder concentration measuring method according to the present invention is as described in claim 1 of the claims. A sample mixed with magnetic powder is inserted into at least one of the detection coils arranged in the magnetic path of the exciting coil, and the concentration of the magnetic powder contained in the sample is determined based on an induced voltage induced in the detection coil. A method for measuring the concentration of magnetic powder to be determined, wherein the insertion of the sample into the coil, a non-insertion state is detected, and when the non-insertion state is detected, zero point correction data is obtained and the insertion state is detected. Sometimes, the zero correction is automatically performed based on the zero correction data obtained immediately before the detection. A second characteristic configuration of the magnetic powder concentration measuring method according to the present invention is, as described in claim 2 of the claims section, in addition to the above-described first characteristic configuration, insertion of the sample into the coil. Is completed, or the concentration of the magnetic powder contained in the sample is determined based on the induced voltage induced by the detection coil at the time when a predetermined time has elapsed after the insertion of the sample into the coil. Furthermore, the first characteristic configuration of the magnetic powder concentration measuring device according to the present invention is, as described in claim 3 of the claims section, at least one of an excitation coil and a detection coil arranged in a magnetic path of the excitation coil. On the other hand, a magnetic powder comprising: a measuring means configured to be able to insert a sample mixed with magnetic powder; and a processing means for outputting the concentration of magnetic powder contained in the sample based on an induced voltage induced in the detection coil. A concentration measuring apparatus, wherein the sample is inserted into the coil, sample detection means for detecting a non-insertion state, and input zero point correction data when the non-insertion state is detected,
When the insertion state is detected, a correction means for automatically performing zero correction based on zero point correction data input immediately before the detection is provided. The second characteristic configuration of the magnetic powder concentration measuring apparatus according to the present invention is, as described in claim 4 of the claims section, in addition to the above-mentioned first characteristic configuration, the processing means further comprises: At the time when the insertion into the coil is completed, or after the insertion of the sample into the coil, the concentration of the magnetic powder contained in the sample is determined based on the induced voltage induced by the detection coil at the time when a predetermined time has elapsed. The point is that it is configured so as to be obtained. The third characteristic configuration of the magnetic powder concentration measuring device according to the present invention is, as described in claim 5 of the claims section, in addition to the above-described first or second characteristic configuration, A pair of excitation coils connected in series is arranged so that the magnetic fields of the respective excitation coils face each other, and a detection coil is arranged at a position where the combined magnetic field of the pair of excitation coils becomes zero. The point is that the sample in which the magnetic powder is mixed into the coil is configured to be freely inserted and removed.

【0005】以下にその作用を説明する。補正手段は、
コイルへ前記試料が挿入されていないことが試料検出手
段により検出されているときに、常時、または、定期的
に零点補正データ、つまり、検出コイルの出力を零にす
るためのデータを入力する。コイルへ前記試料が挿入さ
れたことが試料検出手段により検出されたときには、操
作者の零点補正の意識の有無に拘わらず、その直前に入
力された零点補正データに基づいて自動的に零点補正す
る。従って、常に、計測時点で適切な零点補正がなされ
るのである。処理手段による計測は、試料がコイルへ確
実に挿入された後に行われるべきであるが、確実に挿入
されたか否かの判断を正確に行えない場合や、上述した
ように、回転機械等から採取された高温の被検潤滑剤で
ある試料がコイルへ挿入されると、コイルの周囲温度が
変動して零点が変動する場合がある。そのような場合、
装置の出力が時々刻々変動するために操作者が出力を読
み取るのが困難になる。そこで、試料のコイルへの挿入
が完了した時点、または、試料のコイルへの挿入の後、
所定時間経過した時点で、検出コイルで誘起される誘導
電圧に基づいて前記試料に含まれる磁性粉濃度を求める
ことにより、正確に磁性粉濃度が計測されるのである。
ここに、試料のコイルへの挿入の完了時点、または、試
料のコイルへの挿入の後、所定時間経過した時点とは、
例えば、前記検出手段により試料の挿入が検出された時
点、計測された磁性粉濃度値の安定が確認された時点、
前記検出手段により試料の挿入が検出された時点から所
定時間経過した時点をいう。検出手段として、直列に接
続された一対の励磁コイルを、各励磁コイルによる磁界
が対向するように配置するとともに、前記一対の励磁コ
イルによる合成磁界が零となる位置に検出コイルを配置
して、一方の励磁コイルに磁性粉の混入した試料を挿脱
自在に構成したものを用いれば、高温の試料を挿入した
側の励磁コイルで局部的温度変動があり、内部抵抗の変
化により励磁電流が変化しても、一対の励磁コイルが直
列に接続されているために、他方の励磁コイルの励磁電
流も同様に変化して磁気バランスに変動はなく、従っ
て、零点の変動要因を減少させることができるのであ
る。その結果、回転機械から周囲温度より高い被検潤滑
剤を採取した場合であっても、潤滑剤の温度が安定する
まで待たなくとも精度良く磁性粉濃度を測定することが
できるのである。
The operation will be described below. The correction means
When the sample detection means detects that the sample has not been inserted into the coil, zero point correction data, that is, data for making the output of the detection coil zero, is input constantly or periodically. When the insertion of the sample into the coil is detected by the sample detection means, the zero point is automatically corrected based on the zero point correction data input immediately before, regardless of whether the operator is conscious of zero point correction. . Therefore, appropriate zero correction is always performed at the time of measurement. The measurement by the processing means should be performed after the sample is securely inserted into the coil.However, when it cannot be accurately determined whether or not the sample has been securely inserted, or as described above, the sample is collected from a rotating machine or the like. When the sample, which is the high-temperature test lubricant, is inserted into the coil, the ambient temperature of the coil may fluctuate and the zero point may fluctuate. In such a case,
The output of the device fluctuates from time to time, making it difficult for an operator to read the output. Therefore, when the insertion of the sample into the coil is completed, or after the insertion of the sample into the coil,
When the predetermined time has elapsed, the concentration of the magnetic powder contained in the sample is obtained based on the induced voltage induced by the detection coil, so that the concentration of the magnetic powder can be accurately measured.
Here, the time when the insertion of the sample into the coil is completed, or the time when a predetermined time has elapsed after the insertion of the sample into the coil,
For example, when the insertion of the sample is detected by the detection means, when the stability of the measured magnetic powder concentration value is confirmed,
This refers to a point in time when a predetermined time has elapsed from the point in time when the insertion of the sample is detected by the detection means. As detection means, a pair of excitation coils connected in series, and arranged so that the magnetic field of each excitation coil is opposed, and a detection coil is disposed at a position where the combined magnetic field by the pair of excitation coils becomes zero, If a sample containing magnetic powder mixed into one of the excitation coils can be inserted and removed freely, there will be local temperature fluctuations in the excitation coil on the side where the high-temperature sample is inserted, and the excitation current will change due to changes in internal resistance. However, since the pair of exciting coils are connected in series, the exciting current of the other exciting coil also changes, so that the magnetic balance does not fluctuate. Therefore, the fluctuation factor of the zero point can be reduced. It is. As a result, even when a test lubricant higher than the ambient temperature is collected from the rotating machine, the magnetic powder concentration can be measured accurately without waiting for the lubricant temperature to stabilize.

【0006】[0006]

【発明の効果】従って、本発明によれば、周囲温度の変
化や高温の被検潤滑剤を試料として測定する場合であっ
ても、操作者の零点補正意識の有無に拘わらず自動的に
正確な零点補正が行われ、さらには、安定した状態で計
測が行われるので、常に正確に磁性粉濃度を計測するこ
とができる磁性粉濃度測定方法及びその装置を提供する
ことができるようになった。
Therefore, according to the present invention, even when the ambient temperature changes or a high-temperature lubricant to be measured is measured as a sample, it is automatically accurate regardless of the operator's awareness of zero point correction. Since the zero point correction is performed and the measurement is performed in a stable state, it is possible to provide a magnetic powder concentration measuring method and a device capable of always accurately measuring the magnetic powder concentration. .

【0007】[0007]

【発明の実施の形態】以下、本発明に係る磁性粉濃度測
定方法及びその装置の実施の形態を説明する。磁性粉濃
度測定装置は、図1に示すように、筐体1の内部に、直
列に接続された一対の等価な励磁コイルL1,L2を、
各励磁コイルL1,L2による磁界が対向するように垂
直な共通軸芯P上に配置するとともに、その共通軸芯P
上で前記一対の励磁コイルL1,L2による合成磁界が
零となる位置、つまり、両コイルL1,L2の中央部で
前記共通軸芯Pと軸芯が重なるように検出コイルL3を
配置して、前記一対の励磁コイルL1,L2及び前記検
出コイルL3の周囲を磁気シールド部材で囲繞して計測
手段を構成し、前記励磁コイルL1,L2に励磁電流を
供給する電源手段2を設けるとともに、前記検出コイル
L3の出力信号から磁性粉濃度を演算導出する処理手段
3を設けて構成してある。前記筐体1の上面には、磁性
粉の混入した試料Sが封入された硝子、樹脂等の非金属
製試料容器を挿入する挿入孔1aが形成されており、そ
の挿入孔1aから挿入された前記試料容器は、上端に形
成されたフランジ部が前記筐体1の支持部1b上面で支
持された状態で、前記挿入孔1aの直下にある一方の励
磁コイルL1の内部に挿入されるように励磁コイルL1
が配置されている。さらに、前記支持部1bには光電式
センサでなる試料検出手段4を設けてあり、前記励磁コ
イルL1への試料容器の挿入、非挿入状態を検出可能に
構成してある。尚、試料検出手段4としては、光電式セ
ンサ以外にマイクロSW等のメカニカルなセンサで構成
することも可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the magnetic powder concentration measuring method and apparatus according to the present invention will be described below. As shown in FIG. 1, the magnetic powder concentration measuring device includes a pair of equivalent exciting coils L1 and L2 connected in series inside a housing 1,
The magnets are arranged on a vertical common axis P so that the magnetic fields generated by the exciting coils L1 and L2 face each other.
Above, the detection coil L3 is disposed such that the combined magnetic field by the pair of excitation coils L1 and L2 becomes zero, that is, the common axis P and the axis overlap at the center of both coils L1 and L2. A pair of exciting coils L1, L2 and the detecting coil L3 are surrounded by a magnetic shield member to constitute a measuring means, and a power supply means 2 for supplying an exciting current to the exciting coils L1, L2 is provided. Processing means 3 for calculating and deriving the magnetic powder concentration from the output signal of the coil L3 is provided. An insertion hole 1a for inserting a non-metallic sample container made of glass, resin or the like in which the sample S mixed with the magnetic powder is sealed is formed on the upper surface of the housing 1, and the insertion hole 1a is inserted through the insertion hole 1a. The sample container is inserted into one of the excitation coils L1 immediately below the insertion hole 1a in a state where the flange formed at the upper end is supported on the upper surface of the support portion 1b of the housing 1. Excitation coil L1
Is arranged. Further, the support portion 1b is provided with a sample detecting means 4 composed of a photoelectric sensor, and is configured to be able to detect whether the sample container is inserted into or not inserted into the exciting coil L1. Incidentally, the sample detecting means 4 can be constituted by a mechanical sensor such as a micro SW other than the photoelectric sensor.

【0008】前記電源手段2は、電源供給回路2aと、
約30kHz〜200kHzの交流の励磁電流を出力す
る発信回路2bなどで構成してあり、前記処理手段3
は、前記検出コイルL3の出力信号を増幅する第一増幅
回路3aと、増幅された信号を前記発信回路2bの出力
信号で同期検波して直流電圧を出力する同期検波回路3
bと、前記同期検波回路3bの出力を増幅する第二増幅
回路3cと、前記第二増幅回路3cによる増幅信号を量
子化するA/D変換回路3dと、量子化されたデータを
所定の換算式に基づいて前記試料Sに含まれる磁性粉濃
度として演算導出する演算処理部3eと、前記試料検出
手段4を駆動してその試料検出手段4からの前記試料容
器の検出信号を前記演算処理部3eに入力する試料検出
手段駆動部3gと、前記演算処理部3eによる演算結果
を表示する例えば液晶などを用いた表示部3fなどで構
成してあり、以て、前記試料Sに含まれる磁性粉濃度に
応じた前記励磁コイルL1内部の透磁率の変化による磁
気バランスの変動を、前記検出コイルL3の誘導電圧の
計測により求め、前記試料Sに含まれる磁性粉濃度に換
算する。
The power supply means 2 comprises a power supply circuit 2a,
A transmitting circuit 2b for outputting an AC exciting current of about 30 kHz to 200 kHz;
Is a first amplifier circuit 3a for amplifying the output signal of the detection coil L3, and a synchronous detection circuit 3 for synchronously detecting the amplified signal with the output signal of the transmission circuit 2b and outputting a DC voltage.
b, a second amplification circuit 3c for amplifying the output of the synchronous detection circuit 3b, an A / D conversion circuit 3d for quantizing the signal amplified by the second amplification circuit 3c, and a predetermined conversion of the quantized data. An arithmetic processing unit 3e for calculating and deriving the concentration of the magnetic powder contained in the sample S based on the equation; and a driving unit for driving the sample detecting unit 4 to detect a detection signal of the sample container from the sample detecting unit 4 in the arithmetic processing unit. A sample detecting means driving unit 3g input to the sample processing unit 3e and a display unit 3f using, for example, a liquid crystal for displaying the calculation result by the calculation processing unit 3e. A change in magnetic balance due to a change in the magnetic permeability inside the excitation coil L1 according to the concentration is obtained by measuring the induced voltage of the detection coil L3, and is converted into the concentration of the magnetic powder contained in the sample S.

【0009】前記検出コイルL3には、周部に螺条が形
成された鉄芯FCとしてのフェライトコアを螺合してあ
り、前記励磁コイルL1に前記試料Sを挿入しない状
態、又は、挿入された前記試料Sに磁性粉が含まれない
状態において、前記検出コイルL3の位置ずれ等の原因
で前記検出コイルL3に誘導電圧が生じる場合に、製造
段階において前記検出コイルL3の位置を変更すること
なく、前記鉄芯FCの前記軸芯P方向への位置調節によ
り容易に零点調節が行え、しかも、前記検出コイルL3
内の磁気抵抗を減少させて検出感度を向上させるように
構成してある。尚、前記筐体1には自己復帰型のスパン
調整用スイッチ(図示せず)が取り付けられており、そ
の信号が前記演算処理部3eに入力されている。
The detection coil L3 is screwed with a ferrite core as an iron core FC having a thread formed on a peripheral portion thereof. The sample S is not inserted into the excitation coil L1 or is inserted. When an induced voltage is generated in the detection coil L3 due to a displacement of the detection coil L3 in a state where the sample S does not include the magnetic powder, the position of the detection coil L3 is changed in a manufacturing stage. The zero point can be easily adjusted by adjusting the position of the iron core FC in the direction of the axis P, and the detection coil L3
It is configured to reduce the magnetic resistance inside and improve the detection sensitivity. Note that a self-resetting type span adjustment switch (not shown) is attached to the housing 1, and a signal thereof is input to the arithmetic processing unit 3 e.

【0010】以下に、上述の磁性粉濃度測定装置の使用
方法を、図2に示すフローチャートに基づいて説明す
る。装置の電源スイッチ(図示せず)が投入されると、
先ず、前記A/D変換回路3dから前記演算処理部3e
に入力された前記検出コイルL3のデータを入力する
(S1)。前記試料検出手段4により試料容器の挿入が
検出されていない状態で(S2)、前記入力データを零
点補正データとして前記演算処理部3eに設けられた記
憶回路(図示せず)に格納するとともに、前記表示部3
fに磁性粉濃度を“0%”と表示する(S3,S4)。
前記零点補正データの入力は所定時間毎、例えば数百ミ
リ秒毎に行い、常に最新のデータに更新する。これは、
製造段階で前記鉄芯FCの位置調節により調整された零
点のその後の変動や、前記計測手段や処理手段3の環境
温度に起因する変動を是正するためである。前記試料検
出手段4により試料容器の挿入が検出されている状態で
(S2)、前記スパン調整用スイッチ(図示せず)が操
作されているか否かを検出し、オンエッジを検出すると
スパン調整フラグをセットする(S6)。入力データか
ら前記零点補正データを減算して零点補正し(S7)、
前記スパン調整フラグがセットされているならばスパン
調整工程に入る。詳述すると、操作者は、前記スパン調
整用スイッチをオンした後に基準濃度(磁性粉濃度5%
の試料)の試料容器を前記励磁コイルL1へ挿入するの
であるが、そのときの零点補正後の入力データに対して
所定の換算式を用いて磁性粉濃度を演算導出し、その結
果が5%となるように前記換算式を補正し、結果が5%
を示せばその値を前記表示部3fに磁性粉濃度を“5
%”と表示して、前記スパン調整フラグをリセットする
(S9〜S13)。具体的には、濃度5%の基準試料を
挿入したときに入力データ(入力電圧)から演算導出さ
れた電圧データが所定の値となるように調整する。ステ
ップS8でスパン調整フラグがリセットされている場合
には、スパン調整が完了していると判断して、零点補正
後の入力データに対して所定の換算式を用いて磁性粉濃
度を演算導出し、その結果を前記表示部3fに表示する
(S14,S15)。前記検出コイルL3からのデータ
入力は数百ミリ秒(例えば300ミリ秒)毎に行い、前
回の入力データと今回の入力データが変動している間は
データの入力を繰り返し、数回(例えば3回)連続して
変化量又は変化率が所定値以下のデータが入力されたと
きには、安定したと判断してその濃度値を前記演算処理
部3eに設けられた記憶回路(図示せず)に格納すると
ともに、格納された濃度値を前記表示部3fに表示する
ことによって、以後の入力データが変動しても表示デー
タを変化させず操作者の読み取りを容易にする。
Hereinafter, a method of using the above-described magnetic powder concentration measuring device will be described with reference to a flowchart shown in FIG. When the power switch (not shown) of the device is turned on,
First, the A / D conversion circuit 3d to the arithmetic processing unit 3e
Then, the data of the detection coil L3 input to (1) is input (S1). In a state where the insertion of the sample container is not detected by the sample detecting means 4 (S2), the input data is stored as zero point correction data in a storage circuit (not shown) provided in the arithmetic processing unit 3e, The display unit 3
The magnetic powder concentration is displayed as "0%" in f (S3, S4).
The input of the zero point correction data is performed every predetermined time, for example, every several hundred milliseconds, and is always updated to the latest data. this is,
This is to correct the subsequent fluctuation of the zero point adjusted by adjusting the position of the iron core FC in the manufacturing stage and the fluctuation caused by the environmental temperature of the measuring means and the processing means 3. While the insertion of the sample container is detected by the sample detecting means 4 (S2), it is detected whether or not the span adjustment switch (not shown) is operated. Set (S6). The zero point correction data is subtracted from the input data to perform zero point correction (S7),
If the span adjustment flag is set, the process proceeds to the span adjustment step. More specifically, after turning on the span adjustment switch, the operator sets the reference concentration (magnetic powder concentration 5%).
Is inserted into the excitation coil L1. At this time, a magnetic powder concentration is calculated and derived from the input data after the zero point correction using a predetermined conversion formula, and the result is 5%. Correct the conversion formula so that
Is displayed on the display unit 3f, the magnetic powder concentration is set to "5".
% "And resets the span adjustment flag (S9 to S13). Specifically, voltage data calculated and derived from input data (input voltage) when a reference sample having a concentration of 5% is inserted. If the span adjustment flag has been reset in step S8, it is determined that span adjustment has been completed, and a predetermined conversion formula is applied to the input data after zero correction. Is used to calculate and derive the magnetic powder concentration, and display the result on the display unit 3f (S14, S15) .Data input from the detection coil L3 is performed every several hundred milliseconds (for example, 300 milliseconds). The input of data is repeated while the previous input data and the present input data are fluctuating, and when data having a change amount or change rate of less than a predetermined value is input several times (for example, three times) continuously, the data is stable. did Judgment is made, the density value is stored in a storage circuit (not shown) provided in the arithmetic processing unit 3e, and the stored density value is displayed on the display unit 3f, so that the subsequent input data varies. Even if the display data is not changed, the operator can easily read the data.

【0011】ここに、検出濃度値が安定しているか否か
の判断は、上述したように入力データの変化量又は変化
率が数回にわたり所定値以下となるという条件を満たす
か否かで判断するものを示したが、これは試料が励磁コ
イルへ確実に挿入された後に測定を行うべきであるとこ
ろ、前記試料検出手段4により試料容器の挿入が検出さ
れているものの、試料が所定位置に確実に挿入されたか
否かの判断を正確に行えない場合や、回転機械等から採
取された高温の被検潤滑剤である試料が励磁コイルへ挿
入されると、コイルの周囲温度が変動して零点が変動す
る場合があり、そのような場合、装置の出力が時々刻々
変動するために操作者が正確な出力を読み取るのが困難
になるという不都合を回避するためである。即ち、前記
試料検出手段4により試料容器の挿入開始が検出された
後、数回(例えば3回)連続して変化量又は変化率が所
定値以下となるデータが入力されたときに試料容器の所
定位置へのセットが完了したと判断して、そのときの値
を保持して表示するとともに、その後の温度変動に起因
する入力データの変動により濃度値の表示データが変動
することを回避するのである。
Here, the determination as to whether or not the detected density value is stable is based on whether or not the condition that the amount of change or the rate of change of the input data becomes a predetermined value or less several times as described above. Although the measurement should be performed after the sample is securely inserted into the excitation coil, the insertion of the sample container is detected by the sample detection means 4, but the sample is not positioned at a predetermined position. If it is not possible to accurately determine whether or not the plug has been inserted correctly, or if a sample, which is a high-temperature lubricant sample collected from a rotating machine, is inserted into the excitation coil, the ambient temperature of the coil will fluctuate. The zero point may fluctuate, and in such a case, it is to avoid the inconvenience that it becomes difficult for an operator to read an accurate output because the output of the apparatus fluctuates every moment. That is, after the insertion of the sample container is detected by the sample detection means 4, several times (for example, three times), when data in which the amount of change or the rate of change is less than the predetermined value is input continuously, the sample container is detected. Since it is determined that the setting to the predetermined position is completed, the value at that time is held and displayed, and the display data of the density value is prevented from fluctuating due to the fluctuation of the input data due to the subsequent temperature fluctuation. is there.

【0012】従って、上述の問題点を回避するために
は、試料容器の前記励磁コイルL1への挿入が完了した
時点、または、試料容器の励磁コイルL1への挿入の
後、所定時間経過した時点で、検出コイルL3で誘起さ
れる誘導電圧に基づいて試料に含まれる磁性粉濃度を求
めてその値を保持するものであれば、上述の手順に限定
するものではない。例えば、図3に示すように、光電式
センサでなる前記試料検出手段4を前記励磁コイルL1
の端部であって前記検出コイルL3側に設置することに
より、試料容器の挿入が完了した時点で検出されるよう
に構成して、その検出時の入力データに基づいて演算導
出されたデータを保持するように構成してもよい。この
場合には、試料容器の挿入途中に零点補正データがサン
プリングされるおそれがあるので、前記励磁コイルL1
の端部であって前記挿入口1a側に第二の試料検出手段
4’を設けて第二の試料検出手段4’による試料容器の
検出時の直前に入力されたデータを零点補正データとす
ることが好ましい。さらには、前記検出手段4により試
料の挿入が検出された時点から所定位置へのセットが完
了する迄の所定時間経過した時点で入力されたデータに
基づいて演算導出されたデータを保持するように構成し
てもよい。前記試料検出手段4により試料容器が引き抜
かれたことが検出されるとステップS1に戻り、次回の
計測に備える(S18)。
Therefore, in order to avoid the above-mentioned problems, it is necessary to set the time when the insertion of the sample container into the excitation coil L1 is completed or the time when a predetermined time has elapsed after the insertion of the sample container into the excitation coil L1. The procedure is not limited to the above procedure as long as the density of the magnetic powder contained in the sample is obtained based on the induced voltage induced by the detection coil L3 and the value is held. For example, as shown in FIG. 3, the sample detecting means 4 comprising a photoelectric sensor is connected to the exciting coil L1.
Is arranged on the side of the detection coil L3 so as to be detected at the time when the insertion of the sample container is completed, and the data calculated and derived based on the input data at the time of the detection is provided. You may comprise so that it may hold | maintain. In this case, the zero point correction data may be sampled during the insertion of the sample container.
The second sample detecting means 4 'is provided at the end of the first port and on the side of the insertion port 1a, and data inputted immediately before the detection of the sample container by the second sample detecting means 4' is used as zero point correction data. Is preferred. Further, data calculated and derived based on data input at a time when a predetermined time elapses from the time when the insertion of the sample is detected by the detection means 4 to the time when the setting to the predetermined position is completed is held. You may comprise. When the sample detector 4 detects that the sample container has been pulled out, the process returns to step S1 to prepare for the next measurement (S18).

【0013】上述の説明では、自動的に零点補正を行う
機構として、励磁コイルL1に試料容器を挿入する前に
入力された検出コイルL3の出力データを、零点補正デ
ータとして前記演算処理部3eに設けられた記憶回路
(図示せず)に格納し、励磁コイルL1に試料容器を挿
入した後に入力された検出コイルL3の出力データから
零点補正データを減算するものを説明したが、零点補正
の機構としてはデジタル的な演算処理の他に、前記第二
増幅回路3cをオペアンプで構成してその反転入力値と
非反転入力値が等しくなるように、一方の入力電圧を自
動的に切替え調整するボリウム回路やスイッチ回路を設
けて、その調整用の信号を前記演算処理部3eから出力
するように構成してもよい。上述の磁性粉濃度測定装置
は、電磁誘導法を用いる構成であれば任意の方式を採用
することができ、上述の磁気バランス式の電磁誘導法を
採用するものの他に、図4に示すように、単一の励磁コ
イルL1と単一の検出コイルL3を用いたシンプルな電
磁誘導法を採用するものであってもよいし、図5に示す
ように、共通軸心上に、単一の励磁コイルL1を一対の
検出コイルL3,L4で挟んで構成した差動検出コイル
式の電磁誘導法を採用するものであってもよい。ここ
に、磁気バランス式の電磁誘導法を採用するものでは、
励磁コイルと検出コイルのいずれか一方、又は双方が試
料容器の挿入対象コイルとなるが、図4及び図5に示す
方式の場合には、検出コイルのみが試料容器の挿入対象
コイルとなる。尚、上述の磁気バランス式の電磁誘導法
を採用する場合、検出コイルL3に鉄芯FCを位置調節
自在に設置したものを説明したが、鉄芯FCが無くとも
本発明の効果は奏される。また、直列に接続された一対
の等価な励磁コイルL1,L2を、各励磁コイルL1,
L2による磁界が対向するように垂直な共通軸芯P上に
配置するとともに、その共通軸芯P上で前記一対の励磁
コイルL1,L2による合成磁界が零となる位置、つま
り、両コイルL1,L2の中央部で前記共通軸芯Pと軸
芯が重なるように検出コイルL3を配置したものを説明
したが、励磁コイルL1,L2は必ずしも等価なもの、
つまり、巻数やインピーダンスが等しいものでなくても
よく、その場合には、前記一対の励磁コイルL1,L2
による合成磁界が零となる位置に検出コイルL3を配置
すればよい。さらに、励磁コイルL1,L2を、各励磁
コイルL1,L2による磁界が対向するように配置する
ものであれば、必ずしも共通軸芯P上に配置する必要は
なく、その場合でも、前記一対の励磁コイルL1,L2
による合成磁界が零となる位置に検出コイルL3を配置
すればよい。
In the above description, as a mechanism for automatically performing zero point correction, output data of the detection coil L3 input before the sample container is inserted into the excitation coil L1 is sent to the arithmetic processing unit 3e as zero point correction data. In the above description, the zero-point correction data is stored in a storage circuit (not shown) provided, and the zero-point correction data is subtracted from the output data of the detection coil L3 input after the sample container is inserted into the excitation coil L1. In addition to the digital arithmetic processing, a volume for automatically switching and adjusting one of the input voltages so that the second amplifier circuit 3c is constituted by an operational amplifier and its inverted input value is equal to the non-inverted input value. A circuit or a switch circuit may be provided to output a signal for adjustment from the arithmetic processing unit 3e. The above-mentioned magnetic powder concentration measuring device can employ any method as long as it uses the electromagnetic induction method. In addition to the above-described magnetic balance type electromagnetic induction method, as shown in FIG. Alternatively, a simple electromagnetic induction method using a single excitation coil L1 and a single detection coil L3 may be employed, or a single excitation coil may be provided on a common axis as shown in FIG. A differential detection coil type electromagnetic induction method in which the coil L1 is sandwiched between a pair of detection coils L3 and L4 may be employed. Here, in the one adopting the electromagnetic induction method of the magnetic balance type,
One or both of the excitation coil and the detection coil are coils to be inserted into the sample container. In the method shown in FIGS. 4 and 5, only the detection coil is a coil to be inserted into the sample container. In the case where the above-described electromagnetic induction method of the magnetic balance type is employed, a case where the iron core FC is installed in the detection coil L3 so as to be freely adjustable has been described. However, the effect of the present invention can be obtained without the iron core FC. . Further, a pair of equivalent exciting coils L1 and L2 connected in series is connected to each of the exciting coils L1 and L2.
The magnetic field generated by the pair of exciting coils L1 and L2 is located on the vertical common axis P so that the magnetic field generated by the two coils L1 and L2 is zero. Although the detection coil L3 is arranged so that the common axis P and the axis overlap at the center of L2, the excitation coils L1 and L2 are not necessarily equivalent.
That is, the number of turns and the impedance need not be equal. In that case, the pair of exciting coils L1 and L2
The detection coil L3 may be arranged at a position where the combined magnetic field due to is zero. Further, if the exciting coils L1 and L2 are arranged so that the magnetic fields generated by the exciting coils L1 and L2 face each other, it is not always necessary to arrange them on the common axis P. Coil L1, L2
The detection coil L3 may be arranged at a position where the combined magnetic field due to is zero.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁性粉濃度測定装置の構成図FIG. 1 is a configuration diagram of a magnetic powder concentration measuring device.

【図2】フローチャートFIG. 2 is a flowchart.

【図3】別実施形態を示す磁性粉濃度測定装置の構成図FIG. 3 is a configuration diagram of a magnetic powder concentration measuring apparatus showing another embodiment.

【図4】別実施形態を示す磁性粉濃度測定装置の構成図FIG. 4 is a configuration diagram of a magnetic powder concentration measuring apparatus showing another embodiment.

【図5】別実施形態を示す磁性粉濃度測定装置の構成図FIG. 5 is a configuration diagram of a magnetic powder concentration measuring apparatus showing another embodiment.

【符号の説明】[Explanation of symbols]

L1,L2 励磁コイル L3 検出コイル FC 鉄芯 M 計測手段 L1, L2 excitation coil L3 detection coil FC iron core M measuring means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 励磁コイル又は前記励磁コイルの磁路に
配置した検出コイルのうち少なくとも一方に磁性粉の混
入した試料を挿入可能に構成し、前記検出コイルに誘起
される誘導電圧に基づいて前記試料に含まれる磁性粉濃
度を求める磁性粉濃度測定方法であって、 前記コイルへの前記試料の挿入、非挿入状態を検出し、
非挿入状態と検出されているときに零点補正データを求
めて、挿入状態と検出されているときに該検出の直前に
求められた零点補正データに基づいて自動的に零点補正
する磁性粉濃度測定方法。
1. A structure in which a sample mixed with magnetic powder is inserted into at least one of an excitation coil and a detection coil arranged in a magnetic path of the excitation coil, and the detection coil is configured to detect the voltage based on an induced voltage induced in the detection coil. A method for measuring the concentration of magnetic powder contained in a sample, comprising: inserting the sample into the coil, detecting a non-insertion state,
Magnetic powder concentration measurement for obtaining zero-point correction data when a non-insertion state is detected and automatically zero-correcting based on the zero-point correction data obtained immediately before the detection when an insertion state is detected. Method.
【請求項2】 前記試料の前記コイルへの挿入が完了し
た時点、または、前記試料の前記コイルへの挿入の後、
所定時間経過した時点における前記検出コイルで誘起さ
れる誘導電圧に基づいて前記試料に含まれる磁性粉濃度
を求める請求項1記載の磁性粉濃度測定方法。
2. When the insertion of the sample into the coil is completed, or after the insertion of the sample into the coil,
2. The magnetic powder concentration measuring method according to claim 1, wherein a concentration of the magnetic powder contained in the sample is obtained based on an induced voltage induced by the detection coil at a point in time when a predetermined time has elapsed.
【請求項3】 励磁コイル又は前記励磁コイルの磁路に
配置した検出コイルのうち少なくとも一方に磁性粉の混
入した試料を挿入可能に構成した計測手段と、前記検出
コイルに誘起される誘導電圧に基づいて前記試料に含ま
れる磁性粉濃度を出力する処理手段とを備えてなる磁性
粉濃度測定装置であって、 前記コイルへの前記試料の挿入、非挿入状態を検出する
試料検出手段と、非挿入状態と検出されているときに零
点補正データを入力し、挿入状態と検出されているとき
に該検出の直前に入力された零点補正データに基づいて
自動的に零点補正する補正手段を設けてある磁性粉濃度
測定装置。
3. A measuring means configured to allow a sample mixed with magnetic powder to be inserted into at least one of an exciting coil or a detecting coil disposed in a magnetic path of the exciting coil, and an induced voltage induced in the detecting coil. A magnetic powder concentration measuring device comprising: a processing unit that outputs a magnetic powder concentration contained in the sample based on the sample detection unit that detects a state of insertion and non-insertion of the sample into the coil; Correction means is provided for inputting zero correction data when the insertion state is detected, and automatically performing zero correction based on the zero correction data input immediately before the detection when the insertion state is detected. A magnetic powder concentration measurement device.
【請求項4】 前記処理手段は、前記試料の前記コイル
への挿入が完了した時点、または、前記試料の前記コイ
ルへの挿入の後、所定時間経過した時点における前記検
出コイルで誘起される誘導電圧に基づいて前記試料に含
まれる磁性粉濃度を求めるように構成してある請求項3
記載の磁性粉濃度測定装置。
4. The induction induced by the detection coil at a time when the insertion of the sample into the coil is completed or at a time when a predetermined time has elapsed after the insertion of the sample into the coil. 4. The apparatus according to claim 3, wherein a concentration of the magnetic powder contained in the sample is determined based on a voltage.
The magnetic powder concentration measuring device as described in the above.
【請求項5】 前記試料検出手段は、直列に接続された
一対の励磁コイルを、各励磁コイルによる磁界が対向す
るように配置するとともに、前記一対の励磁コイルによ
る合成磁界が零となる位置に検出コイルを配置して、一
方の励磁コイルに磁性粉の混入した試料を挿脱自在に構
成されたものである請求項3または4記載の磁性粉濃度
測定装置。
5. The sample detecting means arranges a pair of excitation coils connected in series so that magnetic fields generated by the respective excitation coils face each other, and is located at a position where a combined magnetic field generated by the pair of excitation coils becomes zero. 5. The magnetic powder concentration measuring device according to claim 3, wherein a detection coil is arranged, and a sample mixed with magnetic powder is freely inserted into and removed from one of the excitation coils.
JP23376996A 1995-11-10 1996-09-04 Method and device for measuring magnetic powder concentration Pending JPH1078411A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP23376996A JPH1078411A (en) 1996-09-04 1996-09-04 Method and device for measuring magnetic powder concentration
KR1019960052782A KR100427628B1 (en) 1995-11-10 1996-11-08 Magnetic concentration measurement method and device
EP96308116A EP0773440B1 (en) 1995-11-10 1996-11-08 Method of determining magnetic powder concentration and apparatus used for the method
DE69625777T DE69625777T2 (en) 1995-11-10 1996-11-08 Method for determining the concentration of a magnetic powder and device therefor
US08/748,471 US5793199A (en) 1995-11-10 1996-11-08 Method and apparatus for determining magnetic powder concentration by using the electromagnetic induction method
CN96123384A CN1100262C (en) 1995-11-10 1996-11-09 Method of determining magnetic powder concentration and apparatus use for method
TW085114068A TW310372B (en) 1995-11-10 1996-11-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23376996A JPH1078411A (en) 1996-09-04 1996-09-04 Method and device for measuring magnetic powder concentration

Publications (1)

Publication Number Publication Date
JPH1078411A true JPH1078411A (en) 1998-03-24

Family

ID=16960294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23376996A Pending JPH1078411A (en) 1995-11-10 1996-09-04 Method and device for measuring magnetic powder concentration

Country Status (1)

Country Link
JP (1) JPH1078411A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171382A (en) * 1998-09-30 2000-06-23 Mitsubishi Heavy Ind Ltd Measuring method of minute particle shape, system therefor, and signal processing circuit therefor
JP2007139498A (en) * 2005-11-16 2007-06-07 General Environmental Technos Co Ltd Instrument of measuring specific resistance
JP2010122112A (en) * 2008-11-20 2010-06-03 Jfe Advantech Co Ltd Concentration detection device of magnetic powder contained in fluid
JP2011149850A (en) * 2010-01-22 2011-08-04 General Environmental Technos Co Ltd Conductivity measuring method and device by balanced induction
WO2015107725A1 (en) * 2014-01-20 2015-07-23 新東工業株式会社 Surface characteristic examination device and surface characteristic examination method
DE102017207844A1 (en) 2016-05-20 2017-11-23 Nabtesco Corporation Sensor and transmission device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171382A (en) * 1998-09-30 2000-06-23 Mitsubishi Heavy Ind Ltd Measuring method of minute particle shape, system therefor, and signal processing circuit therefor
JP2007139498A (en) * 2005-11-16 2007-06-07 General Environmental Technos Co Ltd Instrument of measuring specific resistance
JP2010122112A (en) * 2008-11-20 2010-06-03 Jfe Advantech Co Ltd Concentration detection device of magnetic powder contained in fluid
JP2011149850A (en) * 2010-01-22 2011-08-04 General Environmental Technos Co Ltd Conductivity measuring method and device by balanced induction
WO2015107725A1 (en) * 2014-01-20 2015-07-23 新東工業株式会社 Surface characteristic examination device and surface characteristic examination method
KR20160111438A (en) * 2014-01-20 2016-09-26 신토고교 가부시키가이샤 Surface characteristic examination device and surface characteristic examination method
JP6052713B2 (en) * 2014-01-20 2016-12-27 新東工業株式会社 Surface property inspection method
US9964520B2 (en) 2014-01-20 2018-05-08 Sintokogio, Ltd. Surface property inspection device and method
DE102017207844A1 (en) 2016-05-20 2017-11-23 Nabtesco Corporation Sensor and transmission device
US10544857B2 (en) 2016-05-20 2020-01-28 Nabtesco Corporation Sensor and gear device

Similar Documents

Publication Publication Date Title
KR100427628B1 (en) Magnetic concentration measurement method and device
US8729886B2 (en) Device for measuring alternating current magnetic susceptibility and method of measuring the same
US9297865B2 (en) Hall effect measurement instrument with temperature compensation
JP2019052909A (en) Electromagnetic flowmeter error detection circuit and error detection method, and electromagnetic flowmeter
JPH1078411A (en) Method and device for measuring magnetic powder concentration
US3002383A (en) Electromagnetic induction flowmeter
JPH0572180A (en) Method and device for magnetic-field inspection
JPH10132790A (en) Apparatus for measuring concentration of magnetic powder
CN201096843Y (en) Detection device for measuring metal conductivity instrument based on backset phase
JP2697435B2 (en) Calibration method and apparatus for magnetic flaw detector
JP3377348B2 (en) Method and apparatus for measuring magnetic powder concentration
JPH04296663A (en) Current measuring device
JPH11281678A (en) Current sensor
JP2020186934A (en) Capacitive electromagnetic flow meter and measurement control method
JP2001324518A (en) Noncontact type ammeter
JPS6332391A (en) Magnetic flux detector
RU55989U1 (en) DEVICE FOR CONTACTLESS IDENTIFICATION OF THE PRESENCE AND LOCATION OF DEFECTS OF METAL PIPELINE
CN108761171B (en) Line current measuring method and device
JP2019002752A (en) Metal impurity measuring device and method for measuring metal impurity
SU1552121A1 (en) Device for measuring specific electric conduction of liquid
JPH0396852A (en) Carbon dioxide meter
JPH04175626A (en) Method of compensating characteristic of torque sensor
JPH10328156A (en) Pneumoconiosis testing device
SU198692A1 (en)
JPS61187647A (en) Apparatus for measuring silicon content

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041126

A02 Decision of refusal

Effective date: 20050127

Free format text: JAPANESE INTERMEDIATE CODE: A02