JP2014224741A - Magnetic particulate detecting device and magnetic particulate detecting method - Google Patents

Magnetic particulate detecting device and magnetic particulate detecting method Download PDF

Info

Publication number
JP2014224741A
JP2014224741A JP2013103833A JP2013103833A JP2014224741A JP 2014224741 A JP2014224741 A JP 2014224741A JP 2013103833 A JP2013103833 A JP 2013103833A JP 2013103833 A JP2013103833 A JP 2013103833A JP 2014224741 A JP2014224741 A JP 2014224741A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
coil
fine particle
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013103833A
Other languages
Japanese (ja)
Inventor
田中 三郎
Saburo Tanaka
三郎 田中
イ ツァン
Yi Zhang
イ ツァン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Original Assignee
Toyohashi University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC filed Critical Toyohashi University of Technology NUC
Priority to JP2013103833A priority Critical patent/JP2014224741A/en
Publication of JP2014224741A publication Critical patent/JP2014224741A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic particulate detecting device and a magnetic particulate detecting method for measuring an amount of particulates with high sensitivity by detecting a large second harmonic component regardless of a size of an applied alternating current magnetic field.SOLUTION: A magnetic particulate detecting device includes a differential detecting coil 1, an alternating curent magnetic field applied coil 2, and a direct current magnetic field applied coil 3, which are coaxially overlapping each other, where an output of the differential detecting coil 1 is connected to a spectrum analyzer 4. The magnetic particulate detecting device is configured to apply a sinusoidal alternating current to the alternating current magnetic field applied coil 2 and a direct current magnetic field to the direct current magnetic field applied coil 3 to move an operating point to an inflection point, thereby measuring a second harmonic.

Description

本発明は、磁性微粒子検出装置及び磁性微粒子検出方法に関する。   The present invention relates to a magnetic particle detection apparatus and a magnetic particle detection method.

微粒子材料は、バイオテクノロジーにおいて幅広い利用が期待されている。なかでもナノ粒子は細胞・DNA・タンパク質などの分離や各種アッセイ診断やドラッグデリバリーシステム(DDS)など幅広い領域での利用が期待されている。特に近年バイオテクノロジーや医療にナノテクノロジーを応用したバイオテクノロジーの展開に対する期待が高まり、研究開発が活発化されている。   Fine particle materials are expected to be widely used in biotechnology. Among these, nanoparticles are expected to be used in a wide range of fields such as separation of cells, DNA, proteins, etc., various assay diagnosis, and drug delivery system (DDS). In particular, in recent years, expectations for the development of biotechnology that applies nanotechnology to biotechnology and medicine have increased, and research and development have been activated.

ナノ粒子の特徴として、粒径をナノサイズにすることにより単位体積当たりの表面積(吸着や反応の場として利用できる)が著しく増大する点が挙げられる。したがって、ナノ粒子を診断薬へ応用する場合、より短時間に高感度で診断が可能なシステムの構築が可能である。ナノ粒子材料に薬剤を包み込みDDSに応用した場合、通常の薬剤では簡単に到達できない患部に薬剤を送り込むことも可能になると期待されている。   A feature of the nanoparticles is that the surface area per unit volume (which can be used as a field for adsorption or reaction) is remarkably increased by making the particle size nano size. Therefore, when applying nanoparticles to a diagnostic agent, it is possible to construct a system capable of performing diagnosis with higher sensitivity in a shorter time. When a drug is encapsulated in a nanoparticle material and applied to DDS, it is expected that the drug can be delivered to an affected area that cannot be easily reached by a normal drug.

イミュノアッセイではその磁性微粒子の量を計測することが必要になり、これまでに数10kHzの周波数の正弦波交流を印加してその3倍波(第3高調波)成分を検出する方法が一般的に知られている。
図7は従来の磁性微粒子検出方法の原理の説明図である。
従来の磁性微粒子検出方法では、図7(a)に示すように磁性微粒子に微弱な正弦波交流磁場(破線)を印加すると、その微粒子のM−H特性の直線部で変調されるので、変調信号は図7(b)の破線のように正弦波が出力される。ここで、M−H特性が飽和する2つの変曲点(Mk,−Mk)を越える大きな正弦波交流磁場(実線)を印加すると、両変曲点がリミッタの作用をして波形が歪み、変調信号は図7(b)の実線のように正弦波の頭がカットされた方形波に近い信号となる。この方形波は式(1)のように奇数高調波成分のみを含むので、基本波(印加交流磁場の周波数)の影響を受けることはなく、
In the immunoassay, it is necessary to measure the amount of the magnetic fine particles, and a method of detecting the third harmonic (third harmonic) component by applying a sinusoidal alternating current with a frequency of several tens of kHz is generally used so far. Known.
FIG. 7 is an explanatory diagram of the principle of a conventional magnetic fine particle detection method.
In the conventional magnetic fine particle detection method, as shown in FIG. 7A, when a weak sinusoidal alternating magnetic field (broken line) is applied to the magnetic fine particles, the magnetic fine particles are modulated at the linear portion of the MH characteristic. As a signal, a sine wave is output as shown by a broken line in FIG. Here, when a large sine wave AC magnetic field (solid line) exceeding two inflection points (Mk, -Mk) at which the MH characteristic is saturated, both inflection points act as a limiter, and the waveform is distorted. The modulation signal is a signal close to a square wave with the sine wave head cut off as shown by the solid line in FIG. Since this square wave contains only odd harmonic components as in equation (1), it is not affected by the fundamental wave (frequency of the applied AC magnetic field)

Figure 2014224741
Figure 2014224741

最も大きな第3高調波成分を検出することで磁性微粒子の量を計測することができる。なお、FFP(Field−Free Pont)に、Hac=2Hk sin(ω0 t)の励起磁場を印加した場合、第三次高調波の振幅は、(1/3)×(4A/3π)と表すことができる。 The amount of magnetic fine particles can be measured by detecting the largest third harmonic component. When an excitation magnetic field of H ac = 2H k sin (ω 0 t) is applied to FFP (Field-Free Pont), the amplitude of the third harmonic is (1/3) × (4A / 3π) It can be expressed as.

B.Gleich and J.Weizenecker,Nature 435(2005),pp.1214−1217B. Gleich and J.M. Weizenecker, Nature 435 (2005), pp. 1214-1217 M.Megence,M.Prins,J.Magn,Mater 293(2005),pp.702M.M. Megence, M.M. Princes, J. et al. Magn, Mater 293 (2005), pp. 702 K.Kriz,J.Gehrke,D.Kriz,Biosensors Bioelectron 13(1998),pp.817K. Kriz, J .; Gehrke, D .; Kriz, Biosensors Bioelectron 13 (1998), pp. 817 H.−J,Krause,N.Wolters,Y.Zhang,Andreas Offenhaeusserra,Peter Miethe,Martin H.F.Meyer,Markus Hartmann,Michael Keusgen,J.Magn,Mater,311(2007),pp.436−444H. -J, Krause, N .; Wolters, Y.M. Zhang, Andreas Offenhaeusserra, Peter Miethe, Martin H. F. Meyer, Markus Hartmann, Michael Keusgen, J. et al. Magn, Mater, 311 (2007), pp. 436-444 R.Matthew Ferguson,Kevin R.Minard,Amit P.Khandhar and Kannan M.Krishnan,Med Phys,38(3)(2011),pp.1619R. Matthew Ferguson, Kevin R. Minard, Amit P.M. Khandhar and Kannan M. Krishnan, Med Phys, 38 (3) (2011), pp. 1619 S.Biedererp,T.Knopp,T.F.Sattel,K.Luedtke−Buzug,B.Gleich,J.Weizennecker,J.Borgert and T.M.Buzug.J.Phys,D:Appl.Phys 42(2009)205007(pp 7),doi:10z1088/0022−3727/42/20/5007S. Biedererp, T .; Knopp, T .; F. Sattel, K.M. Luedtke-Buzug, B.W. Gleich, J .; Weizenecker, J. et al. Borgert and T.W. M.M. Buzz. J. et al. Phys, D: Appl. Phys 42 (2009) 205007 (pp 7), doi: 10z1088 / 0022-3727 / 42/20/5007 B.Gleich,J.Weizennecker and J.Borgert,Phys,Med. Biol.53(2008) pp.N81−N84 doi:10.1088/0031−9155/53/6/N01B. Gleich, J .; Weizenecker and J.M. Borgert, Phys, Med. Biol. 53 (2008) pp. N81-N84 doi: 10.1088 / 0031-9155 / 53/6 / N01 Tobias Knopp,Sven Biederer,and Timo F.Sattle,Ju(ウムラウト)rgen Rahmer,Ju(ウムラウト)rgen Weizennecker,Bernhard Gleich,Jo(ウムラウト)rn Borgert,Thorsten M.Buzug,Medical Physics,Vol.37,No.2,(2010),pp.485−491Tobias Knopp, Sven Biederer, and Time F. Sattle, Ju (umlaut) rgen Rahmer, Ju (umlaut) rgen Weizenecker, Bernhard Gleich, Jo (umlaut) rn Borgert, Thorsten M. et al. Buzz, Medical Physics, Vol. 37, no. 2, (2010), pp. 485-491 Patrick W.Goodwill.Kuan Lu,Bo Zheng、and Steven M.Conolly,Citation:Rev.Sci.Instrum.83,033708(2012).doi:10.1063/1.3694534Patrick W. Goodwill. Kuan Lu, Bo Zheng, and Steven M .; Conolly, Citation: Rev. Sci. Instrum. 83, 033708 (2012). doi: 10.1063 / 1.3694534

しかしながら、上記した従来の磁性微粒子検出方法では、変曲点以上の大きさの正弦波磁場を印加することが必須となり、そのためには大きな交流電源とコイルが必要となる。
本発明は、上記状況に鑑みて、印加交流磁場の大小にかかわらず、大きな第2高調波成分を検出することにより、微粒子の量を高感度で計測することができる磁性微粒子検出装置及び磁性微粒子検出方法を提供することを目的とする。
However, in the above-described conventional magnetic fine particle detection method, it is essential to apply a sinusoidal magnetic field having a magnitude greater than the inflection point, which requires a large AC power source and coil.
In view of the above situation, the present invention provides a magnetic fine particle detection device and a magnetic fine particle that can measure the amount of fine particles with high sensitivity by detecting a large second harmonic component regardless of the magnitude of the applied AC magnetic field. An object is to provide a detection method.

本発明は、上記目的を達成するために、
〔1〕磁性微粒子検出装置において、差動検出コイルと、交流磁場印加コイルと、直流磁場付与装置とが同軸状に重なって配置されており、かつ前記差動検出コイルの出力はセンサーに接続されており、前記交流磁場印加コイルに正弦波交流を印加すると共に前記前記直流磁場付与装置に直流磁場を加えて変曲点まで動作点を移動して第2高調波を計測するように構成したことを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the magnetic fine particle detection device, the differential detection coil, the AC magnetic field applying coil, and the DC magnetic field applying device are coaxially overlapped and the output of the differential detection coil is connected to the sensor. And applying a sine wave alternating current to the alternating magnetic field applying coil, applying a direct magnetic field to the direct current magnetic field applying device, moving the operating point to an inflection point, and measuring the second harmonic. It is characterized by.

〔2〕上記〔1〕記載の磁性微粒子検出装置において、前記直流磁場付与装置が直流磁場印加コイルであることを特徴とする。
〔3〕上記〔1〕記載の磁性微粒子検出装置において、前記直流磁場付与装置が永久磁石であることを特徴とする。
〔4〕上記〔1〕記載の磁性微粒子検出装置において、前記センサーがスペクトラムアナライザであることを特徴とする。
[2] The magnetic fine particle detection device according to [1], wherein the DC magnetic field applying device is a DC magnetic field applying coil.
[3] The magnetic fine particle detection device according to [1], wherein the DC magnetic field applying device is a permanent magnet.
[4] The magnetic fine particle detection device according to [1], wherein the sensor is a spectrum analyzer.

〔5〕上記〔1〕記載の磁性微粒子検出装置において、前記センサーがSQUID磁気検出装置であり、前記差動検出コイルに流れる電流を磁気的に計測することを特徴とする。
〔6〕上記〔1〕記載の磁性微粒子検出装置において、前記センサーがフラックスゲートセンサーであり、前記差動検出コイルに流れる電流を磁気的に計測することを特徴とする。
[5] The magnetic fine particle detection device according to [1], wherein the sensor is a SQUID magnetic detection device, and the current flowing through the differential detection coil is magnetically measured.
[6] The magnetic fine particle detection device according to [1], wherein the sensor is a fluxgate sensor, and a current flowing through the differential detection coil is magnetically measured.

〔7〕上記〔1〕記載の磁性微粒子検出装置において、前記センサーがMI効果素子であり、前記差動検出コイルに流れる電流を磁気的に計測することを特徴とする。
〔8〕磁性微粒子検出方法において、差動検出コイルと、交流磁場印加コイルと、直流磁場付与装置とが同軸状に重なるように配置し、前記差動検出コイルの出力はセンサーに接続し、前記交流磁場印加コイルに正弦波交流を印加すると共に前記直流磁場付与装置に直流磁場を加えて変曲点まで動作点を移動して第2高調波を計測することを特徴とする。
[7] The magnetic fine particle detection device according to [1], wherein the sensor is an MI effect element and magnetically measures a current flowing through the differential detection coil.
[8] In the magnetic particle detection method, the differential detection coil, the AC magnetic field application coil, and the DC magnetic field applying device are arranged so as to be coaxially overlapped, and an output of the differential detection coil is connected to a sensor, A second harmonic is measured by applying a sine wave alternating current to the alternating magnetic field application coil and applying a direct magnetic field to the direct magnetic field applying device to move the operating point to the inflection point.

〔9〕上記〔8〕記載の磁性微粒子検出方法において、前記半波整流波形が   [9] In the magnetic particle detection method according to [8], the half-wave rectified waveform is

Figure 2014224741
Figure 2014224741

であることを特徴とする。 It is characterized by being.

本発明によれば、印加交流磁場の大小にかかわらず、大きな第2高調波成分を検出することにより微粒子の量を高感度で計測することができる。
また、正弦波交流と共に直流磁場を加えて変曲点まで動作点を移動して計測することにより、変曲点以上の大きさの正弦波磁場を印加する必要がなくなり、大きな交流電源やコイルを設ける必要はなくなり、磁性微粒子検出装置の小型化・コンパクト化を図ることができる。
According to the present invention, the amount of fine particles can be measured with high sensitivity by detecting a large second harmonic component regardless of the magnitude of the applied AC magnetic field.
In addition, by applying a DC magnetic field together with a sinusoidal alternating current and moving the operating point to the inflection point, there is no need to apply a sinusoidal magnetic field larger than the inflection point. There is no need to provide it, and the magnetic particle detector can be made smaller and more compact.

本発明の磁性微粒子検出方法の原理の説明図である。It is explanatory drawing of the principle of the magnetic fine particle detection method of this invention. 本発明の実施例(実験装置)を示す磁性微粒子検出装置の構成図である。It is a block diagram of the magnetic fine particle detection apparatus which shows the Example (experimental apparatus) of this invention. 本発明の第1実施例を示す磁性微粒子(商品名リゾビスト:アイロム製薬株式会社製)を用いた従来の磁性微粒子検出方法と本発明の磁性微粒子検出方法による結果を示す図である。It is a figure which shows the result by the conventional magnetic microparticle detection method using the magnetic microparticles (brand name Rhizovist: Irom Pharmaceutical Co., Ltd.) which shows 1st Example of this invention, and the magnetic microparticle detection method of this invention. 本発明の第2実施例を示す磁性微粒子(商品名フェリデックス:田辺製薬株式会社製)を用いた従来の磁性微粒子検出方法と本発明の磁性微粒子検出方法による結果を示す図である。It is a figure which shows the result by the conventional magnetic microparticle detection method using the magnetic microparticles (brand name Feridex: Tanabe Seiyaku Co., Ltd. product) which shows 2nd Example of this invention, and the magnetic microparticle detection method of this invention. 直流磁場強度Bdcを変化させた場合を示す特性図である。It is a characteristic view which shows the case where direct-current magnetic field strength Bdc is changed. 交流磁場強度Bacを変化させた場合を示す特性図である。It is a characteristic view which shows the case where AC magnetic field intensity | strength Bac is changed. 従来の磁性微粒子検出方法の原理の説明図である。It is explanatory drawing of the principle of the conventional magnetic fine particle detection method.

本発明の磁性微粒子検出装置は、差動検出コイルと、交流磁場印加コイルと、直流磁場付与装置とが同軸状に重なって配置されており、かつ前記差動検出コイルの出力はセンサーに接続されており、前記交流磁場印加コイルに正弦波交流を印加すると共に前記前記直流磁場付与装置に直流磁場を加えて変曲点まで動作点を移動して第2高調波を計測するように構成した。   In the magnetic fine particle detection device of the present invention, a differential detection coil, an AC magnetic field applying coil, and a DC magnetic field applying device are coaxially arranged, and the output of the differential detection coil is connected to a sensor. In addition, a sine wave AC is applied to the AC magnetic field applying coil, and a DC magnetic field is applied to the DC magnetic field applying device to move an operating point to an inflection point and measure the second harmonic.

以下、本発明の磁性微粒子検出方法について詳細に説明する。
図1は本発明の磁性微粒子検出方法の原理の説明図である。
本発明では、図1(a)に示すように、どちらかの変曲点において正弦波磁場を印加すると、図1(b)に示すように、その正弦波交流の大きさが小さいとき(破線)も、大きいとき(実線)も半波整流波形のような変調信号が得られる。この半波整流波形は数式(2)のように偶数高調波成分のみを含むので、
Hereinafter, the magnetic particle detection method of the present invention will be described in detail.
FIG. 1 is an explanatory diagram of the principle of the magnetic particle detection method of the present invention.
In the present invention, as shown in FIG. 1A, when a sinusoidal magnetic field is applied at either inflection point, the magnitude of the sinusoidal alternating current is small as shown in FIG. However, when it is large (solid line), a modulated signal like a half-wave rectified waveform can be obtained. Since this half-wave rectified waveform contains only even harmonic components as shown in Equation (2),

Figure 2014224741
Figure 2014224741

基本波(印加交流磁場の周波数)の影響を受けることはなく、かつ、印加磁場の大小にかかわらず、大きな第2高調波成分を検出することで微粒子の量を高感度で計測することができる。なお、KFP(Knee−Free Pont)にHac=2Hk sin(ω0 t)の励起磁場を印加した場合、第二次高調波の振幅は、4A/3πと表すことができる。 It is not affected by the fundamental wave (frequency of applied AC magnetic field), and the amount of fine particles can be measured with high sensitivity by detecting a large second harmonic component regardless of the magnitude of the applied magnetic field. . Note that when an excitation magnetic field of H ac = 2H k sin (ω 0 t) is applied to KFP (Knee-Free Pont), the amplitude of the second harmonic can be expressed as 4A / 3π.

図2は本発明の実施例(実験装置)を示す磁性微粒子検出装置の構成図である。
この図において、1は差動検出コイル、2は交流磁場印加コイル、3は直流磁場付与手段としての直流磁場印加コイルであり、これらの差動検出コイル1と、交流磁場印加コイル2と、直流磁場印加コイル3は同軸状に重なるように構成されており、差動検出コイル1の出力はスペクトラムアナライザ4に接続されている。
FIG. 2 is a configuration diagram of a magnetic fine particle detection apparatus showing an embodiment (experimental apparatus) of the present invention.
In this figure, 1 is a differential detection coil, 2 is an AC magnetic field application coil, 3 is a DC magnetic field application coil as a DC magnetic field applying means, and these differential detection coil 1, AC magnetic field application coil 2, and DC The magnetic field application coil 3 is configured to overlap in a coaxial manner, and the output of the differential detection coil 1 is connected to a spectrum analyzer 4.

なお、ここで、作図上、差動検出コイル1と交流磁場印加コイル2と直流磁場印加コイル3は展開して描かれているが、差動検出コイル1と交流磁場印加コイル2と直流磁場印加コイル3は同軸状に重なって配置されるように構成する。
また、図2に示した磁性微粒子検出装置に代えて、直流磁場印加コイルは永久磁石とし、スペクトラムアナライザ4は、SQUID磁気検出装置や、フラックスゲートセンサーやMI効果素子を用いるようにすることができる。
Here, in the drawing, the differential detection coil 1, the AC magnetic field application coil 2, and the DC magnetic field application coil 3 are drawn in an expanded manner, but the differential detection coil 1, the AC magnetic field application coil 2, and the DC magnetic field application. The coil 3 is configured so as to be coaxially arranged.
Further, instead of the magnetic fine particle detection device shown in FIG. 2, the DC magnetic field application coil may be a permanent magnet, and the spectrum analyzer 4 may use a SQUID magnetic detection device, a fluxgate sensor, or an MI effect element. .

図3は本発明の第1実施例を示す磁性微粒子(商品名リゾビスト)を用いた従来の磁性微粒子検出方法と本発明の磁性微粒子検出方法による結果を示す図である。
図4は本発明の第2実施例を示す磁性微粒子(商品名フェリデックス)を用いた従来の磁性微粒子検出方法と本発明の磁性微粒子検出方法による結果を示す図である。
磁性微粒子(商品名リゾビスト)5を差動検出コイル1の一方のコイル内にセットして、交流磁場印加コイル2に正弦波交流の振幅を変えて第三高調波を計測した結果(▲)および、交流磁場印加コイル2に正弦波交流と共に直流磁場印加コイル3に直流磁場を加えて変曲点まで動作点を移動して第2高調波を計測した結果(●)が図3に示されている。図4は第1実施例と同様の実験を、別の磁性微粒子(商品名フェリデックス)5′を用いて得られた結果が図4に示されている。
FIG. 3 is a diagram showing the results of a conventional magnetic fine particle detection method using magnetic fine particles (trade name Rhizovist) according to the first embodiment of the present invention and the magnetic fine particle detection method of the present invention.
FIG. 4 is a diagram showing the results of a conventional magnetic fine particle detection method using magnetic fine particles (trade name Feridex) according to the second embodiment of the present invention and the magnetic fine particle detection method of the present invention.
The result of measuring the third harmonic by setting the magnetic fine particles (trade name Resovist) 5 in one coil of the differential detection coil 1 and changing the amplitude of the sinusoidal alternating current in the alternating magnetic field application coil 2 (▲) FIG. 3 shows the result of measuring the second harmonic by applying a DC magnetic field to the DC magnetic field applying coil 3 together with a sine AC to the AC magnetic field applying coil 2 and moving the operating point to the inflection point. Yes. FIG. 4 shows the result obtained by performing the same experiment as that of the first embodiment using another magnetic fine particle (trade name Ferridex) 5 ′.

何れも明らかに、正弦波と共に直流磁場を加えて変曲点まで動作点を移動して第2高調波を計測した方が大きな信号が得られており、この磁性微粒子検出方法の優位性が示されている。
以下、実験装置と実験条件について説明する。
実験装置は、図2の構成とし、実験条件としては、励起磁場周波数:20.02kHz、励起磁場強度:実験ごとに変化、直流磁場強度:実験ごとに変化、サンプル名は、品名:Resovist(商品名リゾビスト)、粒子径:57nm(超常磁性)、容量:70μLである。
Obviously, a larger signal was obtained when the second harmonic was measured by applying a DC magnetic field along with a sine wave and moving the operating point to the inflection point, indicating the superiority of this magnetic particle detection method. Has been.
Hereinafter, an experimental apparatus and experimental conditions will be described.
The experimental apparatus has the configuration shown in FIG. 2 and the experimental conditions are: excitation magnetic field frequency: 20.02 kHz, excitation magnetic field strength: change for each experiment, DC magnetic field strength: change for each experiment, sample name: product name: Resovist (product Nominal resovist), particle size: 57 nm (superparamagnetism), volume: 70 μL.

図5は直流磁場強度Bdcを変化させた場合を示す特性図である。
ここで、実験条件として、励起磁場強度:10.23mTp-p k =3.28mTであり、図5の横軸は直流磁場強度Bdc(mT)、縦軸は信号(mVrms /Hz1/2 )、●は第2高調波、▲は第3高調波を示している。
図6は交流磁場強度Bacを変化させた場合を示す特性図である。
FIG. 5 is a characteristic diagram showing a case where the DC magnetic field strength B dc is changed.
Here, as experimental conditions, the excitation magnetic field intensity is 10.23 mT pp B k = 3.28 mT, the horizontal axis of FIG. 5 is the DC magnetic field intensity B dc (mT), and the vertical axis is the signal (mV rms / Hz 1 / Hz). 2 ), ● indicates the second harmonic, and ▲ indicates the third harmonic.
FIG. 6 is a characteristic diagram showing a case where the alternating magnetic field strength Bac is changed.

この図の横軸は交流磁場強度Bac(mTp-p )、縦軸は信号(mVrms /Hz1/2 )、●は第2高調波(Bdc=3.28mT)(15mVrms /√Hz)、▲は第3高調波(Bdc=0mT)(10mVrms /√Hz)である。
誘導コイルでの検出のため、第3高調波を基準とした場合、第2高調波の信号は、15×1.5=22.5mVrms /√Hzとなり、約2.25倍大きい。もし、Bac=2Bk となるような励起磁場であれば(Bac=13.12mTp-p )、より理論的な値である3倍に近い信号が得られる。
In this figure, the horizontal axis is AC magnetic field intensity B ac (mT pp ), the vertical axis is signal (mV rms / Hz 1/2 ), and ● is the second harmonic (B dc = 3.28 mT) (15 mV rms / √Hz. ) And ▲ are third harmonics (B dc = 0 mT) (10 mV rms / √Hz).
When the third harmonic is used as a reference for detection by the induction coil, the signal of the second harmonic is 15 × 1.5 = 22.5 mV rms / √Hz, which is about 2.25 times larger. If the excitation magnetic field is such that B ac = 2B k (B ac = 13.12 mT pp ), a signal closer to three times the more theoretical value can be obtained.

次に、KFPを用いる利点について説明する。
(1)FFPを用いた場合、無限大に近い励起磁場Hacでなければ、完全な矩形波を出すことはできない。その結果、奇数高調波は、Hac=2Hk の場合、完全な矩形波に比べ、信号が33%に減少する。
(2)奇数高調波は、Hac>Hk の場合でなければ計測することができない。
(3)偶数高調波は、Hacの大きさによらず、完全な半波を出すことができるため、奇数高調波のように信号が減少しない。そのため、第2高調波の信号はHac=2Hk の場合、第3高調波よりも約3倍(≒1/0.33)大きくなる。
(4)偶数高調波は、Hac<Hk の場合でも計測することができる。
Next, advantages of using KFP will be described.
(1) When FFP is used, a complete rectangular wave cannot be produced unless the excitation magnetic field H ac is close to infinity. As a result, odd harmonics reduce the signal to 33% when H ac = 2H k compared to a perfect square wave.
(2) Odd harmonics cannot be measured unless H ac > H k .
(3) Since even harmonics can produce complete half waves regardless of the magnitude of H ac , the signal does not decrease unlike odd harmonics. Therefore, the second harmonic signal is approximately three times (≈1 / 0.33) larger than the third harmonic signal when H ac = 2H k .
(4) Even harmonics can be measured even when H ac <H k .

なお、上記した実施例では、微粒子の検出について示したが、図2と同じような構成でイメージングを行う方法があり、従来法では直流磁場の大きさを変えることでFFPの空間的位置を移動させて、第3高調波を検出してイメージングを行っている。これに対して、ここでは同様に直流磁場の大きさを変えることでKFPの空間的位置を移動させて、第2高調波を検出してイメージングを行うこともできる。この場合も微粒子の検出と同様に小さな交流磁場でもイメージングを行うことができる利点がある。   In the above-described embodiments, detection of fine particles has been described. However, there is a method of performing imaging with the same configuration as in FIG. 2, and in the conventional method, the spatial position of the FFP is moved by changing the magnitude of the DC magnetic field. Thus, imaging is performed by detecting the third harmonic. On the other hand, here, it is also possible to perform imaging by detecting the second harmonic by moving the spatial position of the KFP by changing the magnitude of the DC magnetic field. In this case as well, there is an advantage that imaging can be performed even with a small alternating magnetic field as in the case of detection of fine particles.

また、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   Further, the present invention is not limited to the above-described embodiments, and various modifications can be made based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

本発明の磁性微粒子検出装置及び磁性微粒子検出方法は、印加交流磁場の大小にかかわらず、大きな第2高調波成分を検出することにより、微粒子の量を高感度で計測する磁性微粒子検出装置及び磁性微粒子検出方法として利用することができる。   The magnetic fine particle detection apparatus and magnetic fine particle detection method according to the present invention detect a large second harmonic component regardless of the magnitude of the applied AC magnetic field, thereby measuring the amount of fine particles with high sensitivity and magnetic It can be used as a fine particle detection method.

1 差動検出コイル
2 交流磁場印加コイル
3 直流磁場印加コイル(直流磁場付与装置)
4 スペクトラムアナライザ
5,5′ 磁性微粒子
DESCRIPTION OF SYMBOLS 1 Differential detection coil 2 AC magnetic field application coil 3 DC magnetic field application coil (DC magnetic field provision apparatus)
4 Spectrum analyzer 5,5 'Magnetic fine particles

Claims (9)

差動検出コイルと、交流磁場印加コイルと、直流磁場付与装置とが同軸状に重なって配置され、かつ前記差動検出コイルの出力はセンサーに接続されており、前記交流磁場印加コイルに正弦波交流を印加すると共に前記直流磁場付与装置に直流磁場を加えて変曲点まで動作点を移動して第2高調波を計測するように構成したことを特徴とする磁性微粒子検出装置。   A differential detection coil, an AC magnetic field application coil, and a DC magnetic field applying device are coaxially arranged, and an output of the differential detection coil is connected to a sensor, and a sine wave is connected to the AC magnetic field application coil. A magnetic fine particle detection apparatus configured to apply an alternating current and apply a direct current magnetic field to the direct current magnetic field applying device to move an operating point to an inflection point and measure a second harmonic. 請求項1記載の磁性微粒子検出装置において、前記直流磁場付与装置が直流磁場印加コイルであることを特徴とする磁性微粒子検出装置。   2. The magnetic particle detecting apparatus according to claim 1, wherein the DC magnetic field applying device is a DC magnetic field applying coil. 請求項1記載の磁性微粒子検出装置において、前記直流磁場付与装置が永久磁石であることを特徴とする磁性微粒子検出装置。   2. The magnetic fine particle detection device according to claim 1, wherein the DC magnetic field applying device is a permanent magnet. 請求項1記載の磁性微粒子検出装置において、前記センサーがスペクトラムアナライザであることを特徴とする磁性微粒子検出装置。   2. The magnetic particle detecting apparatus according to claim 1, wherein the sensor is a spectrum analyzer. 請求項1記載の磁性微粒子検出装置において、前記センサーがSQUID磁気検出装置であり、前記差動検出コイルに流れる電流を磁気的に計測することを特徴とする磁性微粒子検出装置。   2. The magnetic fine particle detection device according to claim 1, wherein the sensor is a SQUID magnetic detection device, and the current flowing through the differential detection coil is magnetically measured. 請求項1記載の磁性微粒子検出装置において、前記センサーがフラックスゲートセンサーであり、前記差動検出コイルに流れる電流を磁気的に計測することを特徴とする磁性微粒子検出装置。   2. The magnetic fine particle detection device according to claim 1, wherein the sensor is a fluxgate sensor, and the current flowing through the differential detection coil is magnetically measured. 請求項1記載の磁性微粒子検出装置において、前記センサーがMI効果素子であり、前記差動検出コイルに流れる電流を磁気的に計測することを特徴とする磁性微粒子検出装置。   2. The magnetic fine particle detection device according to claim 1, wherein the sensor is an MI effect element and magnetically measures a current flowing through the differential detection coil. 差動検出コイルと、交流磁場印加コイルと、直流磁場付与装置とが同軸状に重なるように配置し、前記差動検出コイルの出力はセンサーに接続し、前記交流磁場印加コイルに正弦波交流を印加すると共に前記直流磁場を加えて変曲点まで動作点を移動して第2高調波を計測することを特徴とする磁性微粒子検出方法。   The differential detection coil, the AC magnetic field application coil, and the DC magnetic field applying device are arranged so as to be coaxially overlapped, the output of the differential detection coil is connected to a sensor, and a sinusoidal alternating current is applied to the AC magnetic field application coil. A method for detecting magnetic fine particles, wherein the second harmonic is measured by applying the DC magnetic field and moving the operating point to an inflection point. 請求項8記載の磁性微粒子検出方法において、前記半波整流波形が
Figure 2014224741
であることを特徴とする磁性微粒子検出方法。
9. The magnetic fine particle detection method according to claim 8, wherein the half-wave rectified waveform is
Figure 2014224741
A method for detecting magnetic fine particles, comprising:
JP2013103833A 2013-05-16 2013-05-16 Magnetic particulate detecting device and magnetic particulate detecting method Pending JP2014224741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013103833A JP2014224741A (en) 2013-05-16 2013-05-16 Magnetic particulate detecting device and magnetic particulate detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013103833A JP2014224741A (en) 2013-05-16 2013-05-16 Magnetic particulate detecting device and magnetic particulate detecting method

Publications (1)

Publication Number Publication Date
JP2014224741A true JP2014224741A (en) 2014-12-04

Family

ID=52123509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013103833A Pending JP2014224741A (en) 2013-05-16 2013-05-16 Magnetic particulate detecting device and magnetic particulate detecting method

Country Status (1)

Country Link
JP (1) JP2014224741A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6844075B1 (en) * 2020-04-16 2021-03-17 三菱電機株式会社 Magnetic particle imaging device
WO2022255354A1 (en) * 2021-06-02 2022-12-08 Tdk株式会社 Magnetism measuring device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519503B1 (en) * 1970-09-30 1976-03-27
JPH10132790A (en) * 1996-10-28 1998-05-22 New Cosmos Electric Corp Apparatus for measuring concentration of magnetic powder
WO2005111597A1 (en) * 2004-05-17 2005-11-24 The Circle For The Promotion Of Science And Engineering Sensor for magnetic fine particle
JP2008281473A (en) * 2007-05-11 2008-11-20 Tokyo Institute Of Technology Magnetic sensor using hall effect for detecting magnetic fine particle
US20090115415A1 (en) * 2007-06-19 2009-05-07 Dartmouth-Hitchcock Clinic System and method for use of nanoparticles in imaging and temperature measurement
JP2009534641A (en) * 2006-04-21 2009-09-24 マグナセンセ オユ Magnetic particle measuring device and method
WO2011142416A1 (en) * 2010-05-12 2011-11-17 株式会社フジクラ Method for manufacturing flux gate sensor
JP2012510847A (en) * 2008-12-08 2012-05-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for detecting and / or locating magnetic material in a working region

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519503B1 (en) * 1970-09-30 1976-03-27
JPH10132790A (en) * 1996-10-28 1998-05-22 New Cosmos Electric Corp Apparatus for measuring concentration of magnetic powder
WO2005111597A1 (en) * 2004-05-17 2005-11-24 The Circle For The Promotion Of Science And Engineering Sensor for magnetic fine particle
JP2009534641A (en) * 2006-04-21 2009-09-24 マグナセンセ オユ Magnetic particle measuring device and method
JP2008281473A (en) * 2007-05-11 2008-11-20 Tokyo Institute Of Technology Magnetic sensor using hall effect for detecting magnetic fine particle
US20090115415A1 (en) * 2007-06-19 2009-05-07 Dartmouth-Hitchcock Clinic System and method for use of nanoparticles in imaging and temperature measurement
JP2012510847A (en) * 2008-12-08 2012-05-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus and method for detecting and / or locating magnetic material in a working region
WO2011142416A1 (en) * 2010-05-12 2011-11-17 株式会社フジクラ Method for manufacturing flux gate sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKASHI YOSHIDA, ET AL.: ""Detection of Magnetic Nanoparticles Using the Second-Harmonic Signal"", IEEE TRANSACTIONS ON MAGNETICS, vol. Volume 47, Issue 10, JPN6017004348, 26 September 2011 (2011-09-26), US, pages 2863 - 2866, ISSN: 0003499991 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6844075B1 (en) * 2020-04-16 2021-03-17 三菱電機株式会社 Magnetic particle imaging device
WO2021210135A1 (en) * 2020-04-16 2021-10-21 三菱電機株式会社 Magnetic particle imaging device
DE112020007090T5 (en) 2020-04-16 2023-02-16 Mitsubishi Electric Corporation MAGNETIC PARTICLE IMAGING DEVICE
WO2022255354A1 (en) * 2021-06-02 2022-12-08 Tdk株式会社 Magnetism measuring device

Similar Documents

Publication Publication Date Title
Hergt et al. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools
Rauwerdink et al. Viscous effects on nanoparticle magnetization harmonics
Janssen et al. Controlled torque on superparamagnetic beads for functional biosensors
Garaio et al. A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia
Wei et al. Gyromagnetic imaging: dynamic optical contrast using gold nanostars with magnetic cores
Li et al. Effect of self-assembly on fluorescence in magnetic multiphase flows and its application on the novel detection for COVID-19
Chevry et al. Magnetic wire-based sensors for the microrheology of complex fluids
Tomitaka et al. Dynamic magnetic characterization and magnetic particle imaging enhancement of magnetic-gold core–shell nanoparticles
Zhong et al. Optical trapping of core-shell magnetic microparticles by cylindrical vector beams
US20110316526A1 (en) Arrangement and method for measuring a magnetic material in a region of action
Kellnberger et al. Magnetoacoustic sensing of magnetic nanoparticles
Trisnanto et al. Field-dependent Brownian relaxation dynamics of a superparamagnetic clustered-particle suspension
JP2014224741A (en) Magnetic particulate detecting device and magnetic particulate detecting method
CN103728365A (en) Nonlinearity-magnetization-based coil system of magnetic particle content detection device
Khaniabadi et al. In vitro study of SPIONs-C595 as molecular imaging probe for specific breast cancer (MCF-7) cells detection
Medford et al. Magnetothermal repair of a PMMA/iron oxide magnetic nanocomposite
Varenne et al. Application of validated protocols to characterize size and zeta potential of dispersed materials using light scattering methods
Bender et al. Excitation of Ni nanorod colloids in oscillating magnetic fields: a new approach for nanosensing investigated by TISANE
Wu et al. In vitro viscosity measurement on superparamagnetic nanoparticle suspensions
Gehrke et al. New perspectives for MPI: a toolbox for tracer research
Rodriguez et al. Synthesis, characterization and applications of maghemite beads functionalized with rabbit antibodies
Patterson et al. Harmonic decomposition of magneto-optical signal from suspensions of superparamagnetic nanoparticles
Bulte et al. Developing cellular MPI: initial experience
Tanaka et al. Evaluation of harmonic signals derived from multiple spatially separated samples for magnetic particle imaging
Østerberg et al. On-chip Brownian relaxation measurements of magnetic nanobeads in the time domain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171004