WO2022255354A1 - Magnetism measuring device - Google Patents

Magnetism measuring device Download PDF

Info

Publication number
WO2022255354A1
WO2022255354A1 PCT/JP2022/022105 JP2022022105W WO2022255354A1 WO 2022255354 A1 WO2022255354 A1 WO 2022255354A1 JP 2022022105 W JP2022022105 W JP 2022022105W WO 2022255354 A1 WO2022255354 A1 WO 2022255354A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
detection signal
magnetic field
detection
magnetization
Prior art date
Application number
PCT/JP2022/022105
Other languages
French (fr)
Japanese (ja)
Inventor
多聞 笠島
秀一 大川
正則 小須田
泰司 竹村
バグース トリスナント スコ
Original Assignee
Tdk株式会社
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社, 国立大学法人横浜国立大学 filed Critical Tdk株式会社
Priority to EP22816100.6A priority Critical patent/EP4350377A1/en
Priority to CN202280039677.9A priority patent/CN117413196A/en
Publication of WO2022255354A1 publication Critical patent/WO2022255354A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0515Magnetic particle imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1276Measuring magnetic properties of articles or specimens of solids or fluids of magnetic particles, e.g. imaging of magnetic nanoparticles

Definitions

  • the present invention relates to a magnetic measurement device, and more particularly to a magnetic measurement device that can be used for magnetic particle imaging.
  • a magnetic particle imaging device is known as a type of magnetic measurement device that detects magnetization changes caused by exciting a measurement target (see Non-Patent Document 1).
  • a magnetic particle imaging apparatus includes an excitation coil that applies an alternating excitation magnetic field to a measurement object containing magnetic particles, and a magnetic sensor that detects an alternating detection magnetic field generated by magnetization change of the excited magnetic particles. Not only the AC detection magnetic field but also the AC excitation magnetic field is applied to the magnetic sensor. can be separated by signal processing.
  • a magnetic measurement apparatus includes a first coil that linearly responds to changes in magnetization of a magnetic body by applying an AC excitation magnetic field to a measurement object that includes a magnetic body, and a primary AC detection that occurs due to the change in magnetization of the magnetic body.
  • a first magnetic sensor for generating a primary detection signal by detecting a magnetic field
  • a second coil for generating a secondary AC detection magnetic field based on the primary detection signal
  • detecting the secondary AC detection magnetic field and a second magnetic sensor that generates a secondary detection signal including a non-sinusoidal component by
  • the primary detection signal generated by the first magnetic sensor is converted again into a magnetic field, and this magnetic field is detected by the second magnetic sensor.
  • a secondary detection signal containing non-sinusoidal components can be obtained without This makes it possible to detect the magnetization change of the magnetic material with high sensitivity even if the current flowing through the first coil has a small current value and a low frequency.
  • the magnetic measurement device may further include a third coil that cancels the AC excitation magnetic field applied to the first magnetic sensor. According to this, it becomes possible to reduce the noise component contained in the primary detection signal.
  • the magnetic measurement device may further include a signal processing circuit for detecting harmonic components of the secondary detection signal. According to this, it becomes possible to remove the noise component contained in the secondary detection signal.
  • FIG. 1 is a schematic diagram for explaining the configuration of a magnetic measurement device 1 according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the magnetization change of the magnetic material P.
  • FIG. FIG. 3 is a circuit diagram of the magnetic sensor 16.
  • FIG. 4 is a schematic graph for explaining the magnetization change of the magnetic material P, in which the vertical axis indicates the magnetization M and the horizontal axis indicates the magnetic field H.
  • FIG. 5 is a schematic graph for explaining changes in the secondary detection signal S2, in which the vertical axis indicates the voltage V and the horizontal axis indicates the magnetic field H.
  • FIG. FIG. 1 is a schematic diagram for explaining the configuration of a magnetic measurement device 1 according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the magnetization change of the magnetic material P.
  • FIG. FIG. 3 is a circuit diagram of the magnetic sensor 16.
  • FIG. 4 is a schematic graph for explaining the magnetization change of the magnetic material P, in which the vertical
  • FIG. 6 is a graph showing the waveform of each signal, (a) is the waveform of the AC exciting current i1, (b) is the waveform of the primary detection signal S1, (c) is the waveform of the secondary detection signal S2, (d ) to (h) show the waveforms of the 3rd, 5th, 7th, 9th and 11th harmonics contained in the secondary detection signal S2.
  • FIG. 1 is a schematic diagram for explaining the configuration of a magnetic measurement device 1 according to one embodiment of the present invention.
  • a magnetic measurement apparatus 1 is an apparatus for detecting a magnetic body P within a measurement object located in a measurement area A.
  • an excitation circuit 13 connected to an excitation coil C1;
  • the magnetic material P may be nano-sized magnetic nanoparticles. If magnetic nanoparticles are used as the magnetic material P, it is possible to use the human body as the object to be measured.
  • the magnets 11 and 12 are arranged so that their S or N poles face each other so that the intensity of the gradient DC magnetic field ⁇ in the measurement area A is almost zero. Coils may be used instead of the magnets 11 and 12 . Also, a mechanism for spatially moving the measurement area A may be provided.
  • the excitation circuit 13 is a circuit that supplies an alternating excitation current i1 to the excitation coil C1, and an alternating excitation magnetic field is applied to the measurement area A by this circuit.
  • the waveform of the AC exciting current i1 is a sine wave.
  • the intensity of the AC excitation magnetic field is set to such an intensity that the magnetization change of the magnetic body P positioned in the measurement area A linearly responds.
  • a linear response means that the magnetization of the magnetic body P changes in the non-saturation region. Therefore, the magnetization change is not limited to being completely linear, and may include some nonlinear components as long as the magnetization change is in the non-saturation region.
  • FIG. 2 is a schematic diagram for explaining the magnetization change of the magnetic material P.
  • the magnetization change of the magnetic material P generates a primary AC detection magnetic field.
  • the primary AC detection magnetic field is detected by a detection coil C0, which is a first magnetic sensor, to generate a primary detection signal S1.
  • the detection coil C0 is used as the magnetic sensor for detecting the primary AC detection magnetic field, but the magnetic sensor for detecting the primary AC detection magnetic field is not limited to this. It may be the magnetic sensor used.
  • the AC excitation magnetic field is also applied to the magnetic material P existing outside the measurement area A. In the area outside the measurement area A, the direction of the magnetization M is fixed by the gradient DC magnetic field ⁇ having a predetermined intensity. Therefore, substantially no magnetization change occurs. Therefore, the detection coil C0 can selectively detect the magnetization change of the magnetic body P positioned in the measurement area A.
  • the AC excitation magnetic field applied to the detection coil C0 is canceled by the cancel coil C3.
  • a canceling current i3 flows through the canceling coil C3 by the compensating circuit 14, thereby canceling out the AC excitation magnetic field applied to the detecting coil C0.
  • the primary detection signal S1 is input to the amplifier circuit 15.
  • the amplifier circuit 15 is an analog circuit including a differential amplifier, a filter circuit, and the like, and supplies an AC detection current i2 to the magnetic field generating coil C2 based on the primary detection signal S1.
  • a secondary AC detection magnetic field is generated from the magnetic field generating coil C2.
  • the amplifier circuit 15 is an analog circuit, almost no delay occurs, and the secondary AC detection magnetic field is generated substantially in real time according to the primary AC detection magnetic field.
  • the secondary AC detection magnetic field is detected by the second magnetic sensor 16 to generate a secondary detection signal S2.
  • FIG. 3 is a circuit diagram of the magnetic sensor 16.
  • the magnetic sensor 16 is composed of magneto-sensitive elements 21 to 24 connected in full bridge connection.
  • the magneto-sensitive elements 21 to 24 include magnetoresistive elements such as TMR (tunnel magnetoresistive effect) elements, GMR (giant magnetoresistive effect) elements, and AMR (anisotropic magnetoresistive effect) elements, Hall elements, MI ( An element such as a magneto-impedance element that has high sensitivity even at low frequencies and is magnetically saturated can be used.
  • the magnetic sensor 16 is configured such that the secondary AC detection magnetic fields generated by the magnetic field generating coil C2 are applied to the magneto-sensitive elements 21 and 22 and the magneto-sensitive elements 23 and 24 in opposite directions.
  • the magnetic sensor 16 outputs a secondary detection signal S2 corresponding to the secondary AC detection magnetic field.
  • the magnetic sensor 16 is not limited to one in which four magneto-sensitive elements are connected in a full bridge, but may be one in which two magneto-sensitive elements are half-bridge connected or one using a single magneto-sensitive element. .
  • the secondary detection signal S2 is supplied to the signal processing circuit 18 via the amplifier 17.
  • the signal processing circuit 18 generates a tertiary detection signal S3 by extracting harmonic components contained in the secondary detection signal S2.
  • the tertiary detection signal S3 is the final output signal of the magnetic measurement device 1 according to this embodiment, and indicates the magnetization change of the magnetic material P located in the measurement area A.
  • the above is the configuration of the magnetic measurement device 1 according to this embodiment. Next, the operation of the magnetic measurement device 1 according to this embodiment will be described.
  • the excitation circuit 13 causes an AC excitation current i1 to flow through the excitation coil C1 so that the magnetization change of the magnetic body P located in the measurement area A linearly responds.
  • the AC excitation current i1 supplied to the excitation coil C1 is set to a current amount sufficiently smaller than the current amount required to cause the magnetization change of the magnetic body P to respond non-linearly.
  • FIG. 4 is a schematic graph for explaining the magnetization change of the magnetic material P, in which the vertical axis indicates the magnetization M and the horizontal axis indicates the magnetic field H.
  • the detection signal component included in the primary detection signal S1 becomes a non-sinusoidal wave.
  • the object to be measured is the size of a human body, a strong magnetic field of about 6 mT is required in order to cause the magnetization M of the magnetic material P made of magnetic nanoparticles to respond nonlinearly.
  • the magnetization M of the magnetic material P changes in the non-saturation region, so linear response occurs between magnetization m3 and magnetization m4.
  • the detection signal component included in the primary detection signal S1 becomes a sine wave.
  • the amount of the AC exciting current i1 is suppressed to a current amount that causes the magnetization change of the magnetic material P to respond linearly.
  • the amount of current is greatly reduced.
  • a magnetic field of 0.1 mT for example, is sufficient for causing the magnetization M of the magnetic material P made of magnetic nanoparticles to linearly respond. That is, the amount of current is 1/10 or less of that in the case where the magnetization change of the magnetic body P is caused to respond non-linearly.
  • the primary AC detection magnetic field of the primary detection signal S1 generated by the detection coil C0 is The resulting detection signal component is a sine wave.
  • the primary detection signal S1 also contains a noise component caused by an AC excitation magnetic field that has not been completely canceled. However, since the noise component is sufficiently suppressed by the cancel coil C3, its level is sufficiently small and the detection signal component is dominant.
  • the primary detection signal S1 is converted into an AC detection current i2 by the amplifier circuit 15, thereby generating a secondary AC detection magnetic field from the magnetic field generating coil C2.
  • the secondary AC detection magnetic field is detected by the magnetic sensor 16 to generate a secondary detection signal S2.
  • FIG. 5 is a schematic graph for explaining changes in the secondary detection signal S2, in which the vertical axis indicates the voltage V and the horizontal axis indicates the magnetic field H.
  • the amplitude of the detection signal component included in the secondary AC detection magnetic field is H3.
  • the magnetoresistive effect of the magneto-sensitive elements 21 to 24 is saturated for the component of the secondary AC detection magnetic field whose amplitude is H3, and the voltage V of the secondary detection signal S2 is nonlinear between the voltage v1 and the voltage v2. respond.
  • the detection signal component included in the secondary detection signal S2 becomes a non-sinusoidal wave.
  • the amplitude of the noise component contained in the secondary AC detection magnetic field is H4 ( ⁇ H3). Since the magneto-sensitive elements 21 to 24 operate in the non-saturation region for the component of the secondary AC detection magnetic field whose amplitude is H4, the voltage V of the secondary detection signal S2 is between the voltage v3 and the voltage v4. linear response.
  • a state in which the magnetic body P does not exist in the measurement area A that is, the detection Preliminary magnetic measurement operation is performed in a state where no signal component is included, and the gain and filter characteristics of the amplifier circuit 15 are adjusted so that the magneto-sensitive elements 21 to 24 linearly respond to the noise component caused by the AC excitation magnetic field. Good luck.
  • the detection signal components contained in the secondary AC detection magnetic field are converted into non-sinusoidal components of the secondary detection signal S2, and the noise components contained in the secondary AC detection magnetic field are converted into sine wave components of the secondary detection signal S2. converted to components. That is, the detection signal component and the noise component included in the primary detection signal S1 are both sinusoidal waves, but are converted into magnetic fields again using the magnetic field generating coil C2, and are then detected secondarily using the magnetic sensor 16. Reconversion to signal S2 separates the detected signal component and the noise component into non-sinusoidal and sinusoidal components.
  • the secondary detection signal S2 generated in this way is supplied to the signal processing circuit 18 via the amplifier 17.
  • the signal processing circuit 18 generates a tertiary detection signal S3 by extracting harmonic components contained in the secondary detection signal S2.
  • harmonics are generated.
  • the noise component contained in the secondary detection signal S2 consists of sine wave components, almost no harmonics are generated. Therefore, by detecting the harmonic component contained in the secondary detection signal S2, it is possible to selectively extract the detection signal component.
  • FIG. 6 is a graph showing the waveform of each signal, (a) is the waveform of the AC exciting current i1, (b) is the waveform of the primary detection signal S1, (c) is the waveform of the secondary detection signal S2, (d ) to (h) show the waveforms of the 3rd, 5th, 7th, 9th and 11th harmonics contained in the secondary detection signal S2.
  • solid lines indicate detection signal components, and broken lines indicate noise components.
  • the AC exciting current i1 is a sine wave.
  • the magnetization M of the magnetic material P is caused to linearly respond by the AC excitation magnetic field, as shown in FIG. Both components are sine waves.
  • the magnetic field generating coil C2 and the magnetic sensor 16 are used to change the detection signal component to a non-sinusoidal wave, so as shown in FIG. 6(c), the secondary detection signal S2
  • the detection signal component contained in is a non-sinusoidal wave
  • the noise component contained in the secondary detection signal S2 is a sine wave.
  • a predetermined harmonic component is extracted from the secondary detection signal S2 by the signal processing circuit 18, it is possible to extract the detection signal component caused by the magnetization change of the magnetic material P.
  • the detection signal component thus extracted is output to the outside as a tertiary detection signal S3.
  • the magnetic measurement device 1 causes the magnetization M of the magnetic body P to linearly respond to an alternating excitation magnetic field, while using the magnetic field generating coil C2 and the magnetic sensor 16 to selectively detect the detection signal component. Since it is changed to a non-sinusoidal wave, it is possible not only to greatly reduce the current amount of the AC exciting current i1, but also to reduce the frequency of the AC exciting current i1 to about 10 kHz. can be ensured. Moreover, since the physical device is used to convert the primary detection signal S1 into the secondary detection signal S2, there is no delay unlike in the case of direct signal processing of the primary detection signal S1. This enables magnetic particle imaging of a relatively large measurement object such as the human body.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

[Problem] To reduce the current value and frequency of current flowing in an excitation coil in a type of magnetism measuring device that detects magnetism changes caused by excitation of an object to be measured. [Solution] A magnetism measuring device 1 comprises: an excitation coil C1 that applies an AC excitation magnetic field to an object to be measured that includes a magnetic body P to cause the change in magnetization of the magnetic body P to have a linear response; a detection coil C0 that generates a primary detection signal S1 by detecting a primary AC detection magnetic field generated by the magnetization of the magnetic body P; a magnetic field generation coil C2 that generates a secondary AC detection magnetic field on the basis of the primary detection signal S1; and a magnetism sensor 16 that generates a secondary detection signal S2 including a non-sine wave component by detecting the secondary AC detection magnetic field. Due to the forgoing, it is possible to obtain a secondary detection signal S2 that includes a non-sine wave component without causing the change in magnetization of the magnetic body P to have a linear response, and as a result thereof, the current value and the frequency of the current flowing in the excitation coil can be reduced.

Description

磁気計測装置Magnetic measuring device
 本発明は磁気計測装置に関し、特に、磁気粒子イメージングに用いることが可能な磁気計測装置に関する。 The present invention relates to a magnetic measurement device, and more particularly to a magnetic measurement device that can be used for magnetic particle imaging.
 計測対象物を励磁することによって生じる磁化変化を検出するタイプの磁気計測装置として、磁気粒子イメージング装置が知られている(非特許文献1参照)。磁気粒子イメージング装置は、磁気粒子を含む計測対象物に交流励磁磁界を印加する励磁コイルと、励磁された磁気粒子の磁化変化によって生じる交流検出磁界を検出する磁気センサとを備えている。磁気センサには、交流検出磁界だけでなく交流励磁磁界も印加されるが、磁気粒子の磁化変化を非線形応答させることにより、磁気センサの出力信号に含まれる検出信号成分と励磁成分(ノイズ成分)を信号処理によって分離することができる。 A magnetic particle imaging device is known as a type of magnetic measurement device that detects magnetization changes caused by exciting a measurement target (see Non-Patent Document 1). A magnetic particle imaging apparatus includes an excitation coil that applies an alternating excitation magnetic field to a measurement object containing magnetic particles, and a magnetic sensor that detects an alternating detection magnetic field generated by magnetization change of the excited magnetic particles. Not only the AC detection magnetic field but also the AC excitation magnetic field is applied to the magnetic sensor. can be separated by signal processing.
 しかしながら、磁気粒子などの磁性体の磁化変化を非線形応答させるためには、非常に強い交流励磁磁界を計測対象物に印加する必要がある。しかも、非線形応答させた磁化変化を高感度に検出するためには、交流励磁磁界の周波数を例えば20kHz以上の高周波に設定する必要もある。このため、人体のように計測対象物がある程度大きなサイズを有する場合には、励磁コイルに極めて大きな高周波電流を流す必要があり、現実的ではなかった。 However, in order to make the magnetization change of magnetic materials such as magnetic particles non-linear, it is necessary to apply a very strong AC excitation magnetic field to the measurement object. Moreover, in order to detect the magnetization change with nonlinear response with high sensitivity, it is necessary to set the frequency of the AC excitation magnetic field to a high frequency of 20 kHz or higher, for example. Therefore, when the object to be measured has a relatively large size, such as a human body, it is necessary to supply an extremely large high-frequency current to the exciting coil, which is not practical.
 したがって、本発明は、計測対象物を励磁することによって生じる磁化変化を検出するタイプの磁気計測装置において、励磁コイルに流す電流の電流値及び周波数を低減することを目的とする。 Therefore, it is an object of the present invention to reduce the current value and frequency of the current flowing through the excitation coil in a magnetic measurement device that detects changes in magnetization caused by exciting an object to be measured.
 本発明による磁気計測装置は、磁性体を含む計測対象物に交流励磁磁界を印加することにより磁性体の磁化変化を線形応答させる第1のコイルと、磁性体の磁化変化によって生じる1次交流検出磁界を検出することにより1次検出信号を生成する第1の磁気センサと、1次検出信号に基づいて2次交流検出磁界を生成する第2のコイルと、2次交流検出磁界を検出することにより非正弦波成分を含む2次検出信号を生成する第2の磁気センサとを備えることを特徴とする。 A magnetic measurement apparatus according to the present invention includes a first coil that linearly responds to changes in magnetization of a magnetic body by applying an AC excitation magnetic field to a measurement object that includes a magnetic body, and a primary AC detection that occurs due to the change in magnetization of the magnetic body. a first magnetic sensor for generating a primary detection signal by detecting a magnetic field; a second coil for generating a secondary AC detection magnetic field based on the primary detection signal; and detecting the secondary AC detection magnetic field. and a second magnetic sensor that generates a secondary detection signal including a non-sinusoidal component by
 本発明によれば、第1の磁気センサによって生成した1次検出信号を再度磁界に変換し、この磁界を第2の磁気センサによって検出していることから、磁性体の磁化変化を非線形応答させることなく、非正弦波成分を含む2次検出信号を得ることができる。これにより、第1のコイルに流す電流の電流値が小さく且つ周波数が低くても、磁性体の磁化変化を高感度に検出することが可能となる。 According to the present invention, the primary detection signal generated by the first magnetic sensor is converted again into a magnetic field, and this magnetic field is detected by the second magnetic sensor. A secondary detection signal containing non-sinusoidal components can be obtained without This makes it possible to detect the magnetization change of the magnetic material with high sensitivity even if the current flowing through the first coil has a small current value and a low frequency.
 本発明による磁気計測装置は、第1の磁気センサに印加される交流励磁磁界をキャンセルする第3のコイルをさらに備えていても構わない。これによれば、1次検出信号に含まれるノイズ成分を低減することが可能となる。 The magnetic measurement device according to the present invention may further include a third coil that cancels the AC excitation magnetic field applied to the first magnetic sensor. According to this, it becomes possible to reduce the noise component contained in the primary detection signal.
 本発明による磁気計測装置は、2次検出信号の高調波成分を検出する信号処理回路をさらに備えていても構わない。これによれば、2次検出信号に含まれるノイズ成分を除去することが可能となる。 The magnetic measurement device according to the present invention may further include a signal processing circuit for detecting harmonic components of the secondary detection signal. According to this, it becomes possible to remove the noise component contained in the secondary detection signal.
 このように、本発明によれば、計測対象物を励磁することによって生じる磁化変化を検出するタイプの磁気計測装置において、励磁コイルに流す電流の電流値及び周波数を低減することが可能となる。 Thus, according to the present invention, it is possible to reduce the current value and frequency of the current flowing through the exciting coil in a magnetic measurement device that detects magnetization changes caused by exciting the measurement object.
図1は、本発明の一実施形態による磁気計測装置1の構成を説明するための模式図である。FIG. 1 is a schematic diagram for explaining the configuration of a magnetic measurement device 1 according to one embodiment of the present invention. 図2は、磁性体Pの磁化変化を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the magnetization change of the magnetic material P. FIG. 図3は、磁気センサ16の回路図である。FIG. 3 is a circuit diagram of the magnetic sensor 16. As shown in FIG. 図4は、磁性体Pの磁化変化を説明するための模式的なグラフであり、縦軸が磁化M、横軸が磁界Hを示している。FIG. 4 is a schematic graph for explaining the magnetization change of the magnetic material P, in which the vertical axis indicates the magnetization M and the horizontal axis indicates the magnetic field H. As shown in FIG. 図5は、2次検出信号S2の変化を説明するための模式的なグラフであり、縦軸が電圧V、横軸が磁界Hを示している。FIG. 5 is a schematic graph for explaining changes in the secondary detection signal S2, in which the vertical axis indicates the voltage V and the horizontal axis indicates the magnetic field H. As shown in FIG. 図6は各信号の波形を示すグラフであり、(a)は交流励磁電流i1の波形、(b)は1次検出信号S1の波形、(c)は2次検出信号S2の波形、(d)~(h)は2次検出信号S2に含まれる3次高調波、5次高調波、7次高調波、9次高調波及び11次高調波の波形を示している。FIG. 6 is a graph showing the waveform of each signal, (a) is the waveform of the AC exciting current i1, (b) is the waveform of the primary detection signal S1, (c) is the waveform of the secondary detection signal S2, (d ) to (h) show the waveforms of the 3rd, 5th, 7th, 9th and 11th harmonics contained in the secondary detection signal S2.
 以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本発明の一実施形態による磁気計測装置1の構成を説明するための模式図である。 FIG. 1 is a schematic diagram for explaining the configuration of a magnetic measurement device 1 according to one embodiment of the present invention.
 本実施形態による磁気計測装置1は、計測領域Aに位置する計測対象物内の磁性体Pを検出する装置であり、図1に示すように、傾斜直流磁界φを生成する磁石11,12と、励磁コイルC1に接続された励磁回路13と、磁性体Pの磁化変化によって生じる1次交流検出磁界を検出する検出コイルC0とを備えている。磁性体Pは、ナノサイズである磁性ナノ粒子であっても構わない。磁性体Pとして磁性ナノ粒子を用いれば、計測対象物を人体とすることが可能である。 A magnetic measurement apparatus 1 according to the present embodiment is an apparatus for detecting a magnetic body P within a measurement object located in a measurement area A. As shown in FIG. , an excitation circuit 13 connected to an excitation coil C1; The magnetic material P may be nano-sized magnetic nanoparticles. If magnetic nanoparticles are used as the magnetic material P, it is possible to use the human body as the object to be measured.
 磁石11,12は、計測領域Aにおける傾斜直流磁界φの強度がほぼゼロとなるよう、S極又はN極が向かい合うように配置されている。磁石11,12の代わりにコイルを用いても構わない。また、計測領域Aを空間的に移動させる機構を有していても構わない。励磁回路13は、励磁コイルC1に交流励磁電流i1を流す回路であり、これにより、計測領域Aには交流励磁磁界が印加される。交流励磁電流i1の波形は正弦波である。後述するように、交流励磁磁界の強度は、計測領域Aに位置する磁性体Pの磁化変化が線形応答する強度に設定される。線形応答とは、磁性体Pが非飽和領域で磁化変化することを意味する。したがって、磁化変化が完全に直線的である場合に限らず、非飽和領域で磁化変化する限り、多少の非線形成分が含まれていても構わない。 The magnets 11 and 12 are arranged so that their S or N poles face each other so that the intensity of the gradient DC magnetic field φ in the measurement area A is almost zero. Coils may be used instead of the magnets 11 and 12 . Also, a mechanism for spatially moving the measurement area A may be provided. The excitation circuit 13 is a circuit that supplies an alternating excitation current i1 to the excitation coil C1, and an alternating excitation magnetic field is applied to the measurement area A by this circuit. The waveform of the AC exciting current i1 is a sine wave. As will be described later, the intensity of the AC excitation magnetic field is set to such an intensity that the magnetization change of the magnetic body P positioned in the measurement area A linearly responds. A linear response means that the magnetization of the magnetic body P changes in the non-saturation region. Therefore, the magnetization change is not limited to being completely linear, and may include some nonlinear components as long as the magnetization change is in the non-saturation region.
 図2は、磁性体Pの磁化変化を説明するための模式図である。 FIG. 2 is a schematic diagram for explaining the magnetization change of the magnetic material P. FIG.
 図2(a)に示す例では、磁性体Pに励磁磁界を印加すると、所定の方向に磁化Mを有する磁性体P自体が回転し、その結果、磁化Mの方向が変化する。また、図2(b)に示す例では、磁性体Pに励磁磁界を印加すると、磁性体Pの内部の磁化Mが回転する。これらのいずれの場合であっても、磁性体Pに励磁磁界を印加することにより、磁性体Pの磁化Mの方向が変化する。また、励磁磁界の印加により、図2(a)に示す磁性体P自体の回転と、図2(b)に示す磁性体Pの内部の磁化Mの回転の両方が生じても構わない。本実施形態においては、磁性体Pに励磁磁界を印加することによる磁化Mの方向の変化を「磁化変化」と定義する。 In the example shown in FIG. 2(a), when an exciting magnetic field is applied to the magnetic body P, the magnetic body P itself having magnetization M in a predetermined direction rotates, and as a result, the direction of magnetization M changes. Further, in the example shown in FIG. 2B, when an exciting magnetic field is applied to the magnetic body P, the magnetization M inside the magnetic body P rotates. In any of these cases, the direction of the magnetization M of the magnetic body P is changed by applying an exciting magnetic field to the magnetic body P. FIG. Moreover, both the rotation of the magnetic body P itself shown in FIG. 2A and the rotation of the magnetization M inside the magnetic body P shown in FIG. In this embodiment, the change in the direction of magnetization M caused by applying an exciting magnetic field to the magnetic material P is defined as "magnetization change".
 磁性体Pの磁化変化は、1次交流検出磁界を発生させる。1次交流検出磁界は、第1の磁気センサである検出コイルC0によって検出され、1次検出信号S1が生成される。本実施形態においては、1次交流検出磁界を検出する磁気センサとして検出コイルC0を用いているが、1次交流検出磁界を検出する磁気センサがこれに限定されるものではなく、感磁素子を用いた磁気センサであっても構わない。また、交流励磁磁界は、計測領域Aの外側に存在する磁性体Pにも印加されるが、計測領域Aの外側の領域は、所定の強度を有する傾斜直流磁界φによって磁化Mの方向が固定されているため、磁化変化は実質的に生じない。このため、検出コイルC0は、計測領域Aに位置する磁性体Pの磁化変化を選択的に検出することができる。 The magnetization change of the magnetic material P generates a primary AC detection magnetic field. The primary AC detection magnetic field is detected by a detection coil C0, which is a first magnetic sensor, to generate a primary detection signal S1. In this embodiment, the detection coil C0 is used as the magnetic sensor for detecting the primary AC detection magnetic field, but the magnetic sensor for detecting the primary AC detection magnetic field is not limited to this. It may be the magnetic sensor used. The AC excitation magnetic field is also applied to the magnetic material P existing outside the measurement area A. In the area outside the measurement area A, the direction of the magnetization M is fixed by the gradient DC magnetic field φ having a predetermined intensity. Therefore, substantially no magnetization change occurs. Therefore, the detection coil C0 can selectively detect the magnetization change of the magnetic body P positioned in the measurement area A. FIG.
 また、検出コイルC0に印加される交流励磁磁界は、キャンセルコイルC3によってキャンセルされる。キャンセルコイルC3には、補償回路14によってキャンセル電流i3が流れ、これにより、検出コイルC0に印加される交流励磁磁界が打ち消される。但し、検出コイルC0に印加される交流励磁磁界を完全に打ち消すことは困難であり、1次検出信号S1には交流励磁磁界に起因する若干のノイズ成分が重畳する。 Also, the AC excitation magnetic field applied to the detection coil C0 is canceled by the cancel coil C3. A canceling current i3 flows through the canceling coil C3 by the compensating circuit 14, thereby canceling out the AC excitation magnetic field applied to the detecting coil C0. However, it is difficult to completely cancel the AC excitation magnetic field applied to the detection coil C0, and some noise components caused by the AC excitation magnetic field are superimposed on the primary detection signal S1.
 1次検出信号S1はアンプ回路15に入力される。アンプ回路15は、差動アンプやフィルタ回路などを含むアナログ回路であり、1次検出信号S1に基づいて磁界発生コイルC2に交流検出電流i2を供給する。これにより、磁界発生コイルC2からは2次交流検出磁界が発生する。ここで、アンプ回路15はアナログ回路であることから遅延はほとんど生じず、1次交流検出磁界に応じてほぼリアルタイムに2次交流検出磁界が生成される。2次交流検出磁界は、第2の磁気センサ16によって検出され、2次検出信号S2が生成される。 The primary detection signal S1 is input to the amplifier circuit 15. The amplifier circuit 15 is an analog circuit including a differential amplifier, a filter circuit, and the like, and supplies an AC detection current i2 to the magnetic field generating coil C2 based on the primary detection signal S1. As a result, a secondary AC detection magnetic field is generated from the magnetic field generating coil C2. Here, since the amplifier circuit 15 is an analog circuit, almost no delay occurs, and the secondary AC detection magnetic field is generated substantially in real time according to the primary AC detection magnetic field. The secondary AC detection magnetic field is detected by the second magnetic sensor 16 to generate a secondary detection signal S2.
 図3は、磁気センサ16の回路図である。 FIG. 3 is a circuit diagram of the magnetic sensor 16. FIG.
 図3に示すように、磁気センサ16は、フルブリッジ接続された感磁素子21~24によって構成されている。感磁素子21~24としては、TMR(トンネル磁気抵抗効果)素子やGMR(巨大磁気抵抗効果)素子、AMR(異方性磁気抵抗効果)素子などの磁気抵抗効果素子や、ホール素子、MI(磁気インピーダンス)素子など、低周波においても感度が高く、磁気飽和する素子を用いることができる。そして、磁気センサ16は、感磁素子21,22と感磁素子23,24に対して、磁界発生コイルC2から生じる2次交流検出磁界が互いに逆方向に印加されるよう構成される。これにより、磁気センサ16からは、2次交流検出磁界に応じた2次検出信号S2が出力される。磁気センサ16としては、4つの感磁素子をフルブリッジ接続したものに限らず、2つの感磁素子をハーフブリッジ接続したものや、単一の感磁素子を用いたものであっても構わない。 As shown in FIG. 3, the magnetic sensor 16 is composed of magneto-sensitive elements 21 to 24 connected in full bridge connection. The magneto-sensitive elements 21 to 24 include magnetoresistive elements such as TMR (tunnel magnetoresistive effect) elements, GMR (giant magnetoresistive effect) elements, and AMR (anisotropic magnetoresistive effect) elements, Hall elements, MI ( An element such as a magneto-impedance element that has high sensitivity even at low frequencies and is magnetically saturated can be used. The magnetic sensor 16 is configured such that the secondary AC detection magnetic fields generated by the magnetic field generating coil C2 are applied to the magneto- sensitive elements 21 and 22 and the magneto- sensitive elements 23 and 24 in opposite directions. As a result, the magnetic sensor 16 outputs a secondary detection signal S2 corresponding to the secondary AC detection magnetic field. The magnetic sensor 16 is not limited to one in which four magneto-sensitive elements are connected in a full bridge, but may be one in which two magneto-sensitive elements are half-bridge connected or one using a single magneto-sensitive element. .
 2次検出信号S2は、アンプ17を介して信号処理回路18に供給される。信号処理回路18は、2次検出信号S2に含まれる高調波成分を抽出することによって3次検出信号S3を生成する。3次検出信号S3は、本実施形態による磁気計測装置1の最終的な出力信号であり、計測領域Aに位置する磁性体Pの磁化変化を示している。そして、3次検出信号S3を画像化する画像化装置を用いれば、磁気粒子イメージング装置を構成することが可能となる。 The secondary detection signal S2 is supplied to the signal processing circuit 18 via the amplifier 17. The signal processing circuit 18 generates a tertiary detection signal S3 by extracting harmonic components contained in the secondary detection signal S2. The tertiary detection signal S3 is the final output signal of the magnetic measurement device 1 according to this embodiment, and indicates the magnetization change of the magnetic material P located in the measurement area A. By using an imaging device for imaging the tertiary detection signal S3, it is possible to configure a magnetic particle imaging device.
 以上が本実施形態による磁気計測装置1の構成である。次に、本実施形態による磁気計測装置1の動作について説明する。 The above is the configuration of the magnetic measurement device 1 according to this embodiment. Next, the operation of the magnetic measurement device 1 according to this embodiment will be described.
 まず、励磁回路13は、計測領域Aに位置する磁性体Pの磁化変化が線形応答するよう、励磁コイルC1に交流励磁電流i1を流す。つまり、励磁コイルC1に供給される交流励磁電流i1は、磁性体Pの磁化変化を非線形応答させるために必要な電流量よりも十分に小さい電流量に設定される。 First, the excitation circuit 13 causes an AC excitation current i1 to flow through the excitation coil C1 so that the magnetization change of the magnetic body P located in the measurement area A linearly responds. In other words, the AC excitation current i1 supplied to the excitation coil C1 is set to a current amount sufficiently smaller than the current amount required to cause the magnetization change of the magnetic body P to respond non-linearly.
 図4は、磁性体Pの磁化変化を説明するための模式的なグラフであり、縦軸が磁化M、横軸が磁界Hを示している。 FIG. 4 is a schematic graph for explaining the magnetization change of the magnetic material P, in which the vertical axis indicates the magnetization M and the horizontal axis indicates the magnetic field H.
 図4に示すように、磁界Hの振幅をH1に設定すると、磁性体Pの磁化Mが飽和し、磁性体Pの磁化Mは磁化m1と磁化m2の間で非線形応答する。この場合、1次検出信号S1に含まれる検出信号成分は非正弦波となる。ここで、計測対象物が人体サイズである場合、磁性ナノ粒子からなる磁性体Pの磁化Mを非線形応答させるためには、約6mTの強力な磁界が必要となる。一方、磁界Hの振幅をH2(<H1)に設定すると、磁性体Pの磁化Mは非飽和領域で変化するため、磁化m3と磁化m4の間で線形応答する。この場合、1次検出信号S1に含まれる検出信号成分は正弦波となる。 As shown in FIG. 4, when the amplitude of the magnetic field H is set to H1, the magnetization M of the magnetic body P is saturated and the magnetization M of the magnetic body P responds nonlinearly between magnetization m1 and magnetization m2. In this case, the detection signal component included in the primary detection signal S1 becomes a non-sinusoidal wave. Here, when the object to be measured is the size of a human body, a strong magnetic field of about 6 mT is required in order to cause the magnetization M of the magnetic material P made of magnetic nanoparticles to respond nonlinearly. On the other hand, when the amplitude of the magnetic field H is set to H2 (<H1), the magnetization M of the magnetic material P changes in the non-saturation region, so linear response occurs between magnetization m3 and magnetization m4. In this case, the detection signal component included in the primary detection signal S1 becomes a sine wave.
 このように、交流励磁電流i1の電流量は、磁性体Pの磁化変化が線形応答する電流量に抑えられることから、磁性体Pの磁化変化を非線形応答させる場合と比べ、交流励磁電流i1の電流量が大幅に低減される。ここで、計測対象物が人体サイズである場合、磁性ナノ粒子からなる磁性体Pの磁化Mを線形応答させるための磁界は、例えば0.1mTで足りる。つまり、磁性体Pの磁化変化を非線形応答させる場合の1/10以下の電流量となる。 In this way, the amount of the AC exciting current i1 is suppressed to a current amount that causes the magnetization change of the magnetic material P to respond linearly. The amount of current is greatly reduced. Here, when the object to be measured is the size of a human body, a magnetic field of 0.1 mT, for example, is sufficient for causing the magnetization M of the magnetic material P made of magnetic nanoparticles to linearly respond. That is, the amount of current is 1/10 or less of that in the case where the magnetization change of the magnetic body P is caused to respond non-linearly.
 このように、本実施形態においては、励磁コイルC1によって磁性体Pの磁化変化を線形応答させていることから、検出コイルC0によって生成される1次検出信号S1のうち、1次交流検出磁界に起因する検出信号成分は正弦波となる。1次検出信号S1には、キャンセルし切れていない交流励磁磁界に起因するノイズ成分も含まれている。但し、ノイズ成分は、キャンセルコイルC3によって十分に抑えられているため、そのレベルは十分に小さく、検出信号成分が支配的である。1次検出信号S1は、アンプ回路15によって交流検出電流i2に変換され、これにより磁界発生コイルC2からは2次交流検出磁界が発生する。2次交流検出磁界は、磁気センサ16によって検出され、2次検出信号S2が生成される。 As described above, in the present embodiment, since the magnetization change of the magnetic body P is caused to linearly respond by the excitation coil C1, the primary AC detection magnetic field of the primary detection signal S1 generated by the detection coil C0 is The resulting detection signal component is a sine wave. The primary detection signal S1 also contains a noise component caused by an AC excitation magnetic field that has not been completely canceled. However, since the noise component is sufficiently suppressed by the cancel coil C3, its level is sufficiently small and the detection signal component is dominant. The primary detection signal S1 is converted into an AC detection current i2 by the amplifier circuit 15, thereby generating a secondary AC detection magnetic field from the magnetic field generating coil C2. The secondary AC detection magnetic field is detected by the magnetic sensor 16 to generate a secondary detection signal S2.
 図5は、2次検出信号S2の変化を説明するための模式的なグラフであり、縦軸が電圧V、横軸が磁界Hを示している。 FIG. 5 is a schematic graph for explaining changes in the secondary detection signal S2, in which the vertical axis indicates the voltage V and the horizontal axis indicates the magnetic field H.
 図5に示すように、2次交流検出磁界に含まれる検出信号成分の振幅はH3である。2次交流検出磁界のうち振幅がH3である成分に対しては、感磁素子21~24の磁気抵抗効果が飽和し、2次検出信号S2の電圧Vは電圧v1と電圧v2の間で非線形応答する。この場合、2次検出信号S2に含まれる検出信号成分は非正弦波となる。一方、2次交流検出磁界に含まれるノイズ成分の振幅はH4(<H3)である。2次交流検出磁界のうち振幅がH4である成分に対しては、感磁素子21~24が非飽和領域で動作するため、2次検出信号S2の電圧Vは電圧v3と電圧v4の間で線形応答する。 As shown in FIG. 5, the amplitude of the detection signal component included in the secondary AC detection magnetic field is H3. The magnetoresistive effect of the magneto-sensitive elements 21 to 24 is saturated for the component of the secondary AC detection magnetic field whose amplitude is H3, and the voltage V of the secondary detection signal S2 is nonlinear between the voltage v1 and the voltage v2. respond. In this case, the detection signal component included in the secondary detection signal S2 becomes a non-sinusoidal wave. On the other hand, the amplitude of the noise component contained in the secondary AC detection magnetic field is H4 (<H3). Since the magneto-sensitive elements 21 to 24 operate in the non-saturation region for the component of the secondary AC detection magnetic field whose amplitude is H4, the voltage V of the secondary detection signal S2 is between the voltage v3 and the voltage v4. linear response.
 ここで、検出信号成分によって感磁素子21~24を非線形応答させ、ノイズ成分によって感磁素子21~24を線形応答させるためには、計測領域Aに磁性体Pが存在しない状態、つまり、検出信号成分が含まれない状態で予備的な磁気計測動作を行い、交流励磁磁界に起因するノイズ成分によって感磁素子21~24が線形応答するよう、アンプ回路15のゲインやフィルタ特性などを調整すれば良い。 Here, in order to cause the magneto-sensitive elements 21 to 24 to respond nonlinearly by the detection signal component and to make the magneto-sensitive elements 21 to 24 linearly respond by the noise component, a state in which the magnetic body P does not exist in the measurement area A, that is, the detection Preliminary magnetic measurement operation is performed in a state where no signal component is included, and the gain and filter characteristics of the amplifier circuit 15 are adjusted so that the magneto-sensitive elements 21 to 24 linearly respond to the noise component caused by the AC excitation magnetic field. Good luck.
 これにより、2次交流検出磁界に含まれる検出信号成分は、2次検出信号S2の非正弦波成分に変換され、2次交流検出磁界に含まれるノイズ成分は、2次検出信号S2の正弦波成分に変換される。つまり、1次検出信号S1に含まれる検出信号成分及びノイズ成分は、いずれも正弦波であるものの、磁界発生コイルC2を用いて再度磁界に変換し、さらに、磁気センサ16を用いて2次検出信号S2に再変換することにより、検出信号成分とノイズ成分が非正弦波成分と正弦波成分に分離される。 As a result, the detection signal components contained in the secondary AC detection magnetic field are converted into non-sinusoidal components of the secondary detection signal S2, and the noise components contained in the secondary AC detection magnetic field are converted into sine wave components of the secondary detection signal S2. converted to components. That is, the detection signal component and the noise component included in the primary detection signal S1 are both sinusoidal waves, but are converted into magnetic fields again using the magnetic field generating coil C2, and are then detected secondarily using the magnetic sensor 16. Reconversion to signal S2 separates the detected signal component and the noise component into non-sinusoidal and sinusoidal components.
 このようにして生成された2次検出信号S2は、アンプ17を介して信号処理回路18に供給される。信号処理回路18は、2次検出信号S2に含まれる高調波成分を抽出することによって3次検出信号S3を生成する。上述の通り、2次検出信号S2に含まれる検出信号成分は非正弦波成分からなるため、高調波が生じる。これに対し、2次検出信号S2に含まれるノイズ成分は正弦波成分からなるため、高調波がほとんど生じない。このため、2次検出信号S2に含まれる高調波成分を検出することによって、検出信号成分を選択的に抽出することが可能となる。 The secondary detection signal S2 generated in this way is supplied to the signal processing circuit 18 via the amplifier 17. The signal processing circuit 18 generates a tertiary detection signal S3 by extracting harmonic components contained in the secondary detection signal S2. As described above, since the detection signal components included in the secondary detection signal S2 are non-sinusoidal components, harmonics are generated. On the other hand, since the noise component contained in the secondary detection signal S2 consists of sine wave components, almost no harmonics are generated. Therefore, by detecting the harmonic component contained in the secondary detection signal S2, it is possible to selectively extract the detection signal component.
 図6は各信号の波形を示すグラフであり、(a)は交流励磁電流i1の波形、(b)は1次検出信号S1の波形、(c)は2次検出信号S2の波形、(d)~(h)は2次検出信号S2に含まれる3次高調波、5次高調波、7次高調波、9次高調波及び11次高調波の波形を示している。また、図6(b)~(h)において、実線は検出信号成分を示し、破線はノイズ成分を示している。 FIG. 6 is a graph showing the waveform of each signal, (a) is the waveform of the AC exciting current i1, (b) is the waveform of the primary detection signal S1, (c) is the waveform of the secondary detection signal S2, (d ) to (h) show the waveforms of the 3rd, 5th, 7th, 9th and 11th harmonics contained in the secondary detection signal S2. In addition, in FIGS. 6B to 6H, solid lines indicate detection signal components, and broken lines indicate noise components.
 図6(a)に示すように、交流励磁電流i1は正弦波である。そして、本実施形態においては、交流励磁磁界によって磁性体Pの磁化Mを線形応答させていることから、図6(b)に示すように、1次検出信号S1に含まれる検出信号成分及びノイズ成分は、いずれも正弦波となる。しかしながら、本実施形態においては、磁界発生コイルC2及び磁気センサ16を用いて、検出信号成分を非正弦波に変化させていることから、図6(c)に示すように、2次検出信号S2に含まれる検出信号成分は非正弦波となり、2次検出信号S2に含まれるノイズ成分は正弦波となる。その結果、図6(d)~(h)に示すように、検出信号成分については大きな高調波が現れる一方、ノイズ成分についてはほとんど高調波が現れない。一例として、1次検出信号S1に含まれる検出信号成分及びノイズ成分の比(SN比)が9.6dBである場合、2次検出信号S2に含まれる3次高調波、5次高調波、7次高調波、9次高調波及び11次高調波のSN比は、それぞれ11.1dB、15.3dB、14.7dB、13.3dB及び9.0dBとなる。 As shown in FIG. 6(a), the AC exciting current i1 is a sine wave. In the present embodiment, since the magnetization M of the magnetic material P is caused to linearly respond by the AC excitation magnetic field, as shown in FIG. Both components are sine waves. However, in the present embodiment, the magnetic field generating coil C2 and the magnetic sensor 16 are used to change the detection signal component to a non-sinusoidal wave, so as shown in FIG. 6(c), the secondary detection signal S2 The detection signal component contained in is a non-sinusoidal wave, and the noise component contained in the secondary detection signal S2 is a sine wave. As a result, as shown in FIGS. 6(d) to 6(h), large harmonics appear in the detection signal component, while almost no harmonics appear in the noise component. As an example, when the ratio (SN ratio) of the detection signal component and the noise component included in the primary detection signal S1 is 9.6 dB, the 3rd harmonic, 5th harmonic, 7 The signal-to-noise ratios of the harmonic, ninth, and eleventh harmonics are 11.1 dB, 15.3 dB, 14.7 dB, 13.3 dB, and 9.0 dB, respectively.
 したがって、信号処理回路18によって2次検出信号S2から所定の高調波成分を抽出すれば、磁性体Pの磁化変化に起因する検出信号成分を取り出すことが可能となる。このようにして抽出された検出信号成分は、3次検出信号S3として外部に出力される。 Therefore, if a predetermined harmonic component is extracted from the secondary detection signal S2 by the signal processing circuit 18, it is possible to extract the detection signal component caused by the magnetization change of the magnetic material P. The detection signal component thus extracted is output to the outside as a tertiary detection signal S3.
 以上説明したように、本実施形態による磁気計測装置1は、交流励磁磁界によって磁性体Pの磁化Mを線形応答させる一方、磁界発生コイルC2及び磁気センサ16を用いて、検出信号成分を選択的に非正弦波に変化させていることから、交流励磁電流i1の電流量を大幅に小さくすることが可能となるばかりでなく、交流励磁電流i1の周波数を10kHz程度に下げても十分なSN比を確保することが可能となる。しかも、物理デバイスを用いて1次検出信号S1を2次検出信号S2に変換していることから、1次検出信号S1を直接信号処理する場合のような遅延も生じない。これにより、人体のように比較的大きなサイズを有する計測対象物に対する磁気粒子イメージングが可能となる。 As described above, the magnetic measurement device 1 according to the present embodiment causes the magnetization M of the magnetic body P to linearly respond to an alternating excitation magnetic field, while using the magnetic field generating coil C2 and the magnetic sensor 16 to selectively detect the detection signal component. Since it is changed to a non-sinusoidal wave, it is possible not only to greatly reduce the current amount of the AC exciting current i1, but also to reduce the frequency of the AC exciting current i1 to about 10 kHz. can be ensured. Moreover, since the physical device is used to convert the primary detection signal S1 into the secondary detection signal S2, there is no delay unlike in the case of direct signal processing of the primary detection signal S1. This enables magnetic particle imaging of a relatively large measurement object such as the human body.
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. Needless to say, it is included within the scope.
1  磁気計測装置
11,12  磁石
13  励磁回路
14  補償回路
15  アンプ回路
16  磁気センサ
17  アンプ
18  信号処理回路
21~24  感磁素子
A  計測領域
C0  検出コイル
C1  励磁コイル
C2  磁界発生コイル
C3  キャンセルコイル
P  磁性体
S1  1次検出信号
S2  2次検出信号
S3  3次検出信号
i1  交流励磁電流
i2  交流検出電流
i3  キャンセル電流
φ  傾斜直流磁界
1 magnetic measurement device 11, 12 magnet 13 excitation circuit 14 compensation circuit 15 amplifier circuit 16 magnetic sensor 17 amplifier 18 signal processing circuits 21 to 24 magneto-sensitive element A measurement area C0 detection coil C1 excitation coil C2 magnetic field generation coil C3 cancellation coil P magnetism body S1 primary detection signal S2 secondary detection signal S3 tertiary detection signal i1 AC excitation current i2 AC detection current i3 cancellation current φ gradient DC magnetic field

Claims (3)

  1.  磁性体を含む計測対象物に交流励磁磁界を印加することにより、前記磁性体の磁化変化を線形応答させる第1のコイルと、
     前記磁性体の磁化変化によって生じる1次交流検出磁界を検出することにより、1次検出信号を生成する第1の磁気センサと、
     前記1次検出信号に基づいて2次交流検出磁界を生成する第2のコイルと、
     前記2次交流検出磁界を検出することにより、非正弦波成分を含む2次検出信号を生成する第2の磁気センサと、を備えることを特徴とする磁気計測装置。
    a first coil that linearly responds to the magnetization change of the magnetic material by applying an alternating excitation magnetic field to a measurement object that includes the magnetic material;
    a first magnetic sensor that generates a primary detection signal by detecting a primary AC detection magnetic field generated by magnetization change of the magnetic material;
    a second coil that generates a secondary AC detection magnetic field based on the primary detection signal;
    and a second magnetic sensor that generates a secondary detection signal containing a non-sinusoidal wave component by detecting the secondary AC detection magnetic field.
  2.  前記第1の磁気センサに印加される前記交流励磁磁界をキャンセルする第3のコイルをさらに備えることを特徴とする請求項1に記載の磁気計測装置。 The magnetic measurement device according to claim 1, further comprising a third coil for canceling the alternating excitation magnetic field applied to the first magnetic sensor.
  3.  前記2次検出信号の高調波成分を検出する信号処理回路をさらに備えることを特徴とする請求項1又は2に記載の磁気計測装置。 The magnetic measurement device according to claim 1 or 2, further comprising a signal processing circuit for detecting harmonic components of the secondary detection signal.
PCT/JP2022/022105 2021-06-02 2022-05-31 Magnetism measuring device WO2022255354A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22816100.6A EP4350377A1 (en) 2021-06-02 2022-05-31 Magnetism measuring device
CN202280039677.9A CN117413196A (en) 2021-06-02 2022-05-31 Magnetic measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021093177A JP2022185470A (en) 2021-06-02 2021-06-02 Magnetic measuring device
JP2021-093177 2021-06-02

Publications (1)

Publication Number Publication Date
WO2022255354A1 true WO2022255354A1 (en) 2022-12-08

Family

ID=84323415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022105 WO2022255354A1 (en) 2021-06-02 2022-05-31 Magnetism measuring device

Country Status (4)

Country Link
EP (1) EP4350377A1 (en)
JP (1) JP2022185470A (en)
CN (1) CN117413196A (en)
WO (1) WO2022255354A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224741A (en) * 2013-05-16 2014-12-04 国立大学法人豊橋技術科学大学 Magnetic particulate detecting device and magnetic particulate detecting method
JP6844075B1 (en) * 2020-04-16 2021-03-17 三菱電機株式会社 Magnetic particle imaging device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224741A (en) * 2013-05-16 2014-12-04 国立大学法人豊橋技術科学大学 Magnetic particulate detecting device and magnetic particulate detecting method
JP6844075B1 (en) * 2020-04-16 2021-03-17 三菱電機株式会社 Magnetic particle imaging device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B. GLEICHJ. WEIZENECKER, NATURE, vol. 435, 2005, pages 1214

Also Published As

Publication number Publication date
EP4350377A1 (en) 2024-04-10
CN117413196A (en) 2024-01-16
JP2022185470A (en) 2022-12-14

Similar Documents

Publication Publication Date Title
JP6249206B2 (en) Current transducer for measuring current
US9739849B2 (en) Magnetic field detecting device
US9645220B2 (en) Circuits and methods for self-calibrating or self-testing a magnetic field sensor using phase discrimination
WO2017077870A1 (en) Magnetic field detection device and magnetic field detection method
US8829901B2 (en) Method of using a magnetoresistive sensor in second harmonic detection mode for sensing weak magnetic fields
JP5437918B2 (en) Magnetic field compensation
JP6178961B2 (en) Magnetic field measuring apparatus and nondestructive inspection apparatus using the magnetic field measuring apparatus
JP2009539098A (en) Adaptive magnetic field compensation sensor device
WO2003107017A1 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
US11269023B2 (en) Magnetic field detection device and method of detecting magnetic field
JP5116433B2 (en) Magnetic detector for detecting variable magnetic fields
US5287059A (en) Saturable core magnetometer with a parallel resonant circuit in which the W3 DC level changes with a change in an external magnetic field
US20200300944A1 (en) Magnetic field detection device and method of detecting megnetic field
CN104854469A (en) Magnetism detection device
JP2017062122A (en) Magnetic field detector
JP2020522696A (en) System and method for suppressing low frequency noise in a magnetoresistive sensor
EP0434089A1 (en) Method and device for detection of and protection against the effect of static magnetic fields on magnetoelastic force transducer
WO2022255354A1 (en) Magnetism measuring device
JP2000055998A (en) Magnetic sensor device and current sensor device
Ripka et al. AMR proximity sensor with inherent demodulation
JP2004257904A (en) Electric current probe
JP3651268B2 (en) Magnetic measurement method and apparatus
Luong High-Resolution Pinning GMR Sensors for Extremely Low Frequencies Powered by a Simple Alternating Current–Biased Scheme
JP6823878B2 (en) Fluxgate magnetic field sensor
KR101094076B1 (en) Apparatus for measuring magnetic permeability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816100

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280039677.9

Country of ref document: CN

Ref document number: 18566578

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022816100

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022816100

Country of ref document: EP

Effective date: 20240102