JP2010236928A - Method and sensor for detection of eddy current flaw - Google Patents

Method and sensor for detection of eddy current flaw Download PDF

Info

Publication number
JP2010236928A
JP2010236928A JP2009083060A JP2009083060A JP2010236928A JP 2010236928 A JP2010236928 A JP 2010236928A JP 2009083060 A JP2009083060 A JP 2009083060A JP 2009083060 A JP2009083060 A JP 2009083060A JP 2010236928 A JP2010236928 A JP 2010236928A
Authority
JP
Japan
Prior art keywords
inspection object
eddy current
coil
current flaw
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009083060A
Other languages
Japanese (ja)
Other versions
JP5290020B2 (en
Inventor
Akio Ozaki
明郎 小崎
Masanao Kaneuchi
昌直 金内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2009083060A priority Critical patent/JP5290020B2/en
Publication of JP2010236928A publication Critical patent/JP2010236928A/en
Application granted granted Critical
Publication of JP5290020B2 publication Critical patent/JP5290020B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately detect a damage in a tubular inspection object formed by bundling together a magnetic material member such as a steel wire and a non-magnetic material member such as an aluminum tube, for example, OPGW. <P>SOLUTION: An output coil 4 wound in the circumferential direction of the inspection object 10 and a detection coil 5 wound in the circumferential direction of a shaft in a direction tilted with respect to the axial direction of the inspection object 10 are provided on the outside of the tubular inspection object 10 comprising a magnetic material member and a non-magnetic material member, and measurement of an electric signal relative to the inspection object 10 utilizing an electromagnetic induction phenomenon is performed by using the output coil 4 and the detection coil 5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非接触型の渦電流探傷方法並びに渦電流探傷センサに関する。さらに詳述すると、本発明は、管状の検査対象物であって磁性体部材と非磁性体部材とからなる検査対象物におけるき裂等の損傷の検出に用いて好適な渦電流探傷方法並びに渦電流探傷センサに関する。   The present invention relates to a non-contact type eddy current flaw detection method and an eddy current flaw detection sensor. More specifically, the present invention relates to an eddy current flaw detection method suitable for use in detecting damage such as cracks in a tubular inspection object comprising a magnetic member and a non-magnetic member. The present invention relates to a current flaw detection sensor.

光ファイバ複合架空地線(以下、OPGWと表記する)においては、敷設からの時間経過に伴い、例えば強風振動による疲労、腐食、あるいは凍結によって、OPGWを構成する部材であるアルミニウム管のき裂、貫通孔あるいは割れ等の損傷が発生する場合がある。ここで、例えばOPGWにおいては通信障害発生の主要因はアルミニウム管の損傷であるところアルミニウム管は撚り線の内部に在って外観からは状態を把握することができないため、OPGW内部における障害起因箇所の事前特定・検知に有効な新しい技術が望まれている。   In an optical fiber composite aerial ground wire (hereinafter referred to as OPGW), with the passage of time since laying, for example, a crack in an aluminum pipe that is a member constituting OPGW due to fatigue, corrosion, or freezing due to strong wind vibration, Damage such as through holes or cracks may occur. Here, for example, in OPGW, the main cause of communication failure is damage to the aluminum tube. Since the aluminum tube is inside the stranded wire and the state cannot be grasped from the appearance, the location causing the failure in the OPGW New technology effective for prior identification and detection is desired.

磁性体部材と非磁性体部材とからなる管状の検査対象物の損傷を電磁誘導による渦電流を利用して検出する従来の非接触型渦電流探傷方法としては、例えば、図16に示すように、軸心方向の貫通孔101aが設けられた円筒状のボビン101を有する渦電流探傷センサ100を用い、管状の検査対象物104の外側に、当該検査対象物104の周方向に出力コイル(励磁用コイルとも呼ばれる)102と検波コイル(検出用コイルとも呼ばれる)103とを巻き回すと共にこれら出力コイル102と検波コイル103とを用いて電磁誘導現象を利用した検査対象物104についての電気信号の測定を行い、当該測定によって得られる電気信号に基づいて検査対象物104の損傷の検出を行うものがある(非特許文献1)。   As a conventional non-contact type eddy current flaw detection method for detecting damage to a tubular inspection object composed of a magnetic member and a non-magnetic member by using eddy current due to electromagnetic induction, for example, as shown in FIG. Using an eddy current flaw detection sensor 100 having a cylindrical bobbin 101 provided with a through hole 101a in the axial direction, an output coil (excitation) is provided outside the tubular inspection object 104 in the circumferential direction of the inspection object 104. Measurement of an electrical signal of the inspection object 104 using an electromagnetic induction phenomenon using the output coil 102 and the detection coil 103 while winding a detection coil (also called a coil for detection) 102 and a detection coil (also called a detection coil) 103 And detecting the damage of the inspection object 104 based on the electric signal obtained by the measurement (Non-Patent Document 1).

小崎明郎:OPGWアルミ管診断への渦電流法の適用性, 平成20年電気学会 電子・情報・システム部門大会 講演予稿集, 社団法人日本電気学会,GS3-2,pp.674-679, 平成20年8月.Akira Ozaki: Applicability of Eddy Current Method to OPGW Aluminum Tube Diagnosis August.

しかしながら、非特許文献1の渦電流探傷センサ100を用いた渦電流探傷方法では、検査対象物104の軸心方向の損傷は非常に高い精度で検出することができる一方で、検査対象物104の軸心方向に対して傾斜する方向、具体的には軸心方向から±30度の範囲を超えて傾斜する方向の損傷を検出することは困難であり、特に、軸心方向から90度傾斜する方向即ち検査対象物の周方向若しくは周方向に近い方向の損傷を検出することはできないという問題がある。   However, in the eddy current flaw detection method using the eddy current flaw detection sensor 100 of Non-Patent Document 1, damage in the axial direction of the inspection object 104 can be detected with very high accuracy. It is difficult to detect damage in the direction inclined with respect to the axial direction, specifically, in the direction inclined beyond the range of ± 30 degrees from the axial direction, and in particular, inclined by 90 degrees from the axial direction. There is a problem that damage in the direction, that is, the circumferential direction of the inspection object or a direction close to the circumferential direction cannot be detected.

そこで、本発明は、例えばOPGWのように鋼線などの磁性体部材とアルミニウム管などの非磁性体部材とを束ねてなる管状の検査対象物における損傷の検出を高い精度で行うことができる渦電流探傷方法並びに渦電流探傷センサを提供することを目的とする。   Therefore, the present invention provides a vortex capable of detecting damage in a tubular inspection object formed by bundling a magnetic member such as a steel wire and a nonmagnetic member such as an aluminum tube with high accuracy, for example, OPGW. An object of the present invention is to provide a current flaw detection method and an eddy current flaw detection sensor.

本発明者らは、非接触型の渦電流探傷センサによる管状の検査対象物における損傷の検出精度の向上の検討を行う中で、管状の検査対象物の軸心方向に対して傾斜した軸の周方向に巻き回した検波コイルを備えるようにすることによって検査対象物の軸心方向の損傷の検出に加えて周方向を含む軸心方向に対して傾斜する方向の損傷の検出も可能になることを突き止めた。   While examining the improvement of detection accuracy of damage in a tubular inspection object by a non-contact type eddy current flaw detection sensor, the present inventors have a shaft inclined with respect to the axial direction of the tubular inspection object. By providing a detection coil wound in the circumferential direction, in addition to detecting damage in the axial direction of the inspection object, it is also possible to detect damage in a direction inclined with respect to the axial direction including the circumferential direction. I found out.

請求項1記載の渦電流探傷方法は、前記の発明者独自の新たな知見に基づくものであり、磁性体部材と非磁性体部材とからなる管状の検査対象物の外側に、検査対象物の周方向に出力コイルを巻き回すと共に検査対象物の軸心方向に対して傾斜する方向の軸の周方向に検波コイルを巻き回し、これら出力コイルと検波コイルとを用いて電磁誘導現象(具体的には、電磁誘導に伴って生じる渦電流の性質)を利用した検査対象物についての電気信号の測定を行い、当該測定によって得られる電気信号の変動に基づいて少なくとも非磁性体部材の損傷を検出するようにしている。   The eddy current flaw detection method according to claim 1 is based on the above-mentioned new knowledge unique to the inventor, and the inspection object is formed outside the tubular inspection object composed of a magnetic member and a non-magnetic member. The output coil is wound in the circumferential direction and the detection coil is wound in the circumferential direction of the axis inclined with respect to the axial center direction of the inspection object, and an electromagnetic induction phenomenon (specifically, using these output coil and the detection coil) Measures the electrical signal of the object to be inspected using the eddy current properties that accompany electromagnetic induction) and detects at least non-magnetic material damage based on the variation in the electrical signal obtained by the measurement. Like to do.

なお、本発明で利用している電磁誘導現象、具体的には電磁誘導に伴って生じる渦電流の性質は、より具体的には、出力コイルに交流正弦波を与えると検査対象物の軸心方向に生じた磁界を打ち消す起電力が検波コイルに生じるところ、検査対象物に傷のような不連続部が存在する場合には磁束並びに渦電流が変化して検波コイルに生じる起電力に影響を及ぼすことになり、検波コイルにおけるこの起電力の変化を検出することによって検査対象物の損傷を検出することができる。なお、出力側と検波側とで周波数は変化しないが、検査対象物の傷の有無や検査対象物の金属材質に依存して振幅や位相(即ち位相角)は変化する。   It should be noted that the electromagnetic induction phenomenon used in the present invention, specifically, the nature of the eddy current generated by the electromagnetic induction, more specifically, the axis of the inspection object when an AC sine wave is applied to the output coil. When an electromotive force that cancels the magnetic field generated in the direction is generated in the detection coil, if there is a discontinuous part such as a scratch on the inspection object, the magnetic flux and eddy currents change to affect the electromotive force generated in the detection coil. Therefore, it is possible to detect damage to the inspection object by detecting this change in electromotive force in the detection coil. The frequency does not change between the output side and the detection side, but the amplitude and phase (that is, the phase angle) change depending on the presence or absence of scratches on the inspection object and the metal material of the inspection object.

また、請求項2記載の渦電流探傷方法は、磁性体部材と非磁性体部材とからなる管状の検査対象物の外側に、検査対象物の軸心方向に対して傾斜する方向の複数の軸の周方向に出力コイルと検波コイルとを別々に巻き回すと共に当該出力コイルと検波コイルとを検査対象物の周方向に並べて配置し、これら出力コイルと検波コイルとを用いて電磁誘導現象を利用した検査対象物についての電気信号の測定を行い、当該測定によって得られる電気信号の変動に基づいて少なくとも非磁性体部材の損傷を検出するようにしている。   The eddy current flaw detection method according to claim 2 is characterized in that a plurality of axes in a direction inclined with respect to the axial direction of the inspection object are provided outside the tubular inspection object made of a magnetic member and a nonmagnetic member. The output coil and the detection coil are wound separately in the circumferential direction, and the output coil and the detection coil are arranged side by side in the circumferential direction of the inspection object, and electromagnetic induction phenomenon is used by using these output coils and the detection coil. The electrical signal of the inspection object is measured, and at least damage to the non-magnetic member is detected based on the fluctuation of the electrical signal obtained by the measurement.

また、請求項4記載の渦電流探傷センサは、磁性体部材と非磁性体部材とからなる管状の検査対象物の外側に、検査対象物の周方向に巻き回された出力コイルと検査対象物の軸心方向に対して傾斜する方向の軸の周方向に巻き回された検波コイルとを有し、これら出力コイルと検波コイルとを用いて電磁誘導現象を利用した検査対象物についての電気信号の測定を行うようにしている。   The eddy current flaw detection sensor according to claim 4 includes an output coil and an inspection object wound around the inspection object on the outer side of a tubular inspection object made of a magnetic member and a non-magnetic member. And a detection coil wound in the circumferential direction of the axis in a direction inclined with respect to the axial direction of the axis, and using these output coils and the detection coil, an electrical signal for an inspection object using an electromagnetic induction phenomenon I am trying to measure.

また、請求項5記載の渦電流探傷センサは、磁性体部材と非磁性体部材とからなる管状の検査対象物の外側に、検査対象物の軸心方向に対して傾斜する方向の複数の軸の周方向に別々に巻き回されると共に検査対象物の周方向に並べて配置された出力コイルと検波コイルとを有し、これら出力コイルと検波コイルとを用いて電磁誘導現象を利用した検査対象物についての電気信号の測定を行うようにしている。   The eddy current flaw detection sensor according to claim 5 is provided with a plurality of shafts in a direction inclined with respect to the axial direction of the inspection object on the outside of the tubular inspection object composed of the magnetic member and the nonmagnetic member. A test object having an output coil and a detection coil that are separately wound in the circumferential direction and arranged side by side in the circumferential direction of the inspection object, and that uses these output coils and the detection coil to make use of an electromagnetic induction phenomenon The electrical signal of the object is measured.

したがって、この渦電流探傷方法並びに渦電流探傷センサによると、少なくとも検波コイルを検査対象物の軸心方向に対して傾斜する方向の軸の周方向に巻き回すようにしているので、検査対象物の軸心方向の損傷の検出に加えて軸心方向に対して傾斜する方向の損傷の検出もすることができる。   Therefore, according to the eddy current flaw detection method and the eddy current flaw detection sensor, at least the detection coil is wound in the circumferential direction of the axis inclined with respect to the axial center direction of the inspection object. In addition to detecting damage in the axial direction, it is also possible to detect damage in a direction inclined with respect to the axial direction.

また、請求項3記載の発明は、請求項1または2に記載の渦電流探傷方法において、検波コイルとして、軸の方向が相互に異なる複数のコイルを用いるようにしている。さらに、請求項6記載の発明は、請求項4または5に記載の渦電流探傷センサにおいて、検波コイルとして、軸の方向が相互に異なる複数のコイルを有するようにしている。この場合には、検査対象物のあらゆる方向の損傷を更に確実に検出することができる。   According to a third aspect of the present invention, in the eddy current flaw detection method according to the first or second aspect, a plurality of coils having different axial directions are used as the detection coil. Furthermore, in the invention described in claim 6, in the eddy current flaw detection sensor described in claim 4 or 5, as the detection coil, a plurality of coils having different axial directions are provided. In this case, damage in all directions of the inspection object can be detected more reliably.

本発明によれば、検査対象物の軸心方向の損傷を検出することに加えて軸心方向に対して傾斜する方向の損傷を検出することも可能であるので、例えばOPGWのような管状の検査対象物であって磁性体部材と非磁性体部材とからなる検査対象物における損傷の検出を高い精度で行うことができ、損傷発生有無の検査の信頼性の向上を図ることができる。   According to the present invention, in addition to detecting damage in the axial direction of the inspection object, it is also possible to detect damage in a direction inclined with respect to the axial direction. It is possible to detect damage in an inspection object, which is an inspection object made up of a magnetic member and a non-magnetic member, with high accuracy, and to improve the reliability of inspection for the presence or absence of damage.

本発明の渦電流探傷センサの実施形態の一例の正面図である。It is a front view of an example of an embodiment of an eddy current flaw detection sensor of the present invention. 実施形態の渦電流探傷センサの底面図である。It is a bottom view of the eddy current flaw detection sensor of the embodiment. 実施形態の渦電流探傷センサの側面図である。It is a side view of the eddy current flaw detection sensor of an embodiment. 実施形態の渦電流探傷センサの各ボビンの溝にコイルを巻いた状態の底面図である。It is a bottom view of the state which wound the coil in the groove | channel of each bobbin of the eddy current flaw detection sensor of embodiment. 本発明の渦電流探傷センサの他の実施形態の一例の底面図である。It is a bottom view of an example of other embodiments of the eddy current flaw detection sensor of the present invention. 本発明の渦電流探傷センサの更に他の実施形態の一例の側面図である。It is a side view of an example of further another embodiment of the eddy current flaw detection sensor of the present invention. 本発明の渦電流探傷センサのまた更に他の実施形態の一例の底面図である。It is a bottom view of an example of further another embodiment of the eddy current flaw detection sensor of the present invention. 実施例において検査対象物として用いたOPGWの断面図である。It is sectional drawing of OPGW used as a test subject in an Example. 実施例の従来センサによる損傷の検出結果を示す図である。It is a figure which shows the detection result of the damage by the conventional sensor of an Example. 実施例のコアなしセンサによる損傷の検出結果を示す図である。It is a figure which shows the detection result of the damage by the coreless sensor of an Example. 実施例のフェライトコアセンサによる損傷の検出結果を示す図である。It is a figure which shows the detection result of the damage by the ferrite core sensor of an Example. 実施例のフェライトコアセンサによって検出されたアルミニウム管に軸心方向の線状き裂を有するOPGWの渦電流の電気信号の軌跡を示す図である。It is a figure which shows the locus | trajectory of the electric signal of the eddy current of OPGW which has the linear crack of the axial center direction in the aluminum tube detected by the ferrite core sensor of an Example. 実施例のフェライトコアセンサによって検出されたアルミニウム管に軸心方向の線状き裂を有するOPGWの渦電流のX又はY信号を示す図である。(A)はY信号を示す図である。(B)はX信号を示す図である。It is a figure which shows the X or Y signal of the eddy current of OPGW which has the linear crack of an axial center direction in the aluminum tube detected by the ferrite core sensor of an Example. (A) is a figure which shows Y signal. (B) is a diagram showing an X signal. 実施例のフェライトコアセンサによって検出されたアルミニウム管に周方向の線状き裂を有するOPGWの渦電流の電気信号の軌跡を示す図である。It is a figure which shows the locus | trajectory of the electrical signal of the eddy current of OPGW which has the linear crack of the circumferential direction in the aluminum tube detected by the ferrite core sensor of an Example. 実施例のフェライトコアセンサによって検出されたアルミニウム管に周方向の線状き裂を有するOPGWの渦電流のX又はY信号を示す図である。(A)はY信号を示す図である。(B)はX信号を示す図である。It is a figure which shows the X or Y signal of the eddy current of OPGW which has the circumferential linear crack in the aluminum tube detected by the ferrite core sensor of an Example. (A) is a figure which shows Y signal. (B) is a diagram showing an X signal. 従来の渦電流探傷センサを示す図である。It is a figure which shows the conventional eddy current flaw detection sensor.

以下、本発明の構成を図面に示す形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the form shown in the drawings.

図1から図4に、本発明の渦電流探傷方法並びに渦電流探傷センサの実施形態の一例を示す。この渦電流探傷方法は、磁性体部材と非磁性体部材とからなる管状の検査対象物10の外側に、検査対象物10の周方向に出力コイル4を巻き回すと共に検査対象物10の軸心方向に対して直交する方向の軸の周方向に検波コイル5を巻き回し、これら出力コイル4と検波コイル5とを用いて電磁誘導現象を利用した検査対象物10についての電気信号の測定を行い、当該測定によって得られる電気信号の変動に基づいて少なくとも非磁性体部材の損傷を検出するものである。   1 to 4 show an example of an embodiment of an eddy current flaw detection method and an eddy current flaw detection sensor according to the present invention. In this eddy current flaw detection method, the output coil 4 is wound in the circumferential direction of the inspection object 10 around the tubular inspection object 10 made of a magnetic member and a non-magnetic member, and the axis of the inspection object 10 is centered. The detection coil 5 is wound in the circumferential direction of the axis perpendicular to the direction, and the output signal 4 and the detection coil 5 are used to measure the electrical signal of the inspection object 10 using the electromagnetic induction phenomenon. The damage of at least the non-magnetic member is detected based on the fluctuation of the electric signal obtained by the measurement.

また、本実施形態の渦電流探傷センサ1は、磁性体部材と非磁性体部材とからなる管状の検査対象物10の外側に、検査対象物10の周方向に巻き回された出力コイル4と検査対象物10の軸心方向に対して直交する方向の軸の周方向に巻き回された検波コイル5とを有し、これら出力コイル4と検波コイル5とを用いて電磁誘導現象を利用した検査対象物10についての電気信号の測定を行うものである。なお、本実施形態の渦電流探傷センサ1は、接続端子固定基板6と基板固定部材7とを有する。   In addition, the eddy current flaw detection sensor 1 of the present embodiment includes an output coil 4 wound around the inspection object 10 in the circumferential direction outside the tubular inspection object 10 composed of a magnetic member and a nonmagnetic member. And a detection coil 5 wound in the circumferential direction of an axis perpendicular to the axial direction of the inspection object 10, and using these output coil 4 and detection coil 5, an electromagnetic induction phenomenon is used. The electrical signal of the inspection object 10 is measured. The eddy current flaw detection sensor 1 according to the present embodiment includes a connection terminal fixing substrate 6 and a substrate fixing member 7.

本発明の渦電流探傷方法の測定原理は電磁誘導現象(具体的には、電磁誘導に伴って生じる渦電流の性質)を利用しており、交流を通じた出力コイルを接近させて検査対象物に渦電流を生じさせて電圧の変化を電気信号(以下においては検出信号とも呼ぶ)を読み取って検査対象物の傷検査等を行う方法である。   The measurement principle of the eddy current flaw detection method of the present invention uses an electromagnetic induction phenomenon (specifically, the nature of the eddy current generated by electromagnetic induction), and an output coil through alternating current is brought close to the inspection object. In this method, an eddy current is generated and a change in voltage is read from an electric signal (hereinafter also referred to as a detection signal) to inspect the inspection object for scratches.

この電気信号とは、具体的には、ベクトル式の渦電流探傷装置は相互に位相が90度異なる二つの同期検波器を一般的に有しており、一方の同期検波器(同期検波器Xと呼ぶ)による同期検波出力である電気信号(X信号と呼ぶ)と他方の同期検波器(同期検波器Yと呼ぶ)による同期検波出力である電気信号(Y信号と呼ぶ)とのことである。なお、実際の測定においては、渦電流の微弱な変化を捉えるために傷のない位置では電気信号がゼロになるように相殺する信号を加える。   More specifically, the electric signal is typically a vector type eddy current flaw detector generally having two synchronous detectors whose phases are different from each other by 90 degrees, and one synchronous detector (synchronous detector X The electrical signal (referred to as X signal) that is the synchronous detection output by the other synchronous detector (referred to as synchronous detector Y) and the electrical signal (referred to as the Y signal) as the synchronous detection output from the other synchronous detector (referred to as synchronous detector Y). . In actual measurement, in order to capture a weak change in eddy current, a signal that cancels out such that the electrical signal becomes zero is added at a position where there is no flaw.

渦電流のX信号とY信号とは振幅のX,Y成分であり、数式1で定義される。
(数1) X信号〔V〕=振幅〔V〕×cosθ,Y信号〔V〕=振幅〔V〕×sinθ
ここで、θ:位相角〔度〕を表す。
The X signal and Y signal of eddy current are X and Y components of amplitude and are defined by Equation 1.
(Equation 1) X signal [V] = amplitude [V] × cos θ, Y signal [V] = amplitude [V] × sin θ
Here, θ represents a phase angle [degree].

なお、上述の渦電流探傷方法についての原理自体は一般的なものであって周知のものであるので(例えば、社団法人日本非破壊検査協会・星川洋編:非破壊検査技術シリーズ 渦流探傷試験1,pp.41-49,2007年3月.)、更に詳細な説明はここでは省略する。   The principle of the above-mentioned eddy current flaw detection method is general and well known (for example, the Japan Nondestructive Inspection Association, Hiroshi Hoshikawa: Nondestructive Inspection Technology Series Eddy Current Flaw Test 1 , Pp.41-49, March 2007.) A more detailed explanation is omitted here.

ここで、本発明の渦電流探傷方法の測定原理は表面き裂の検出に用いられるいわゆる直接接触法とは異なる。直接接触法は鉄心の周りにコイルを巻いた渦電流センサの鉄心先端部を検査対象物に接触させた状態でセンサを移動させながら微小な表面欠陥を検出する方法であるのに対し、本発明の渦電流探傷方法は円筒状の空芯コイルの中に検査対象物を挿入して非接触で検出する方法である。なお、非接触法である本発明の渦電流探傷方法によると検査対象物内部の非磁性体部材の損傷を検出することができる。   Here, the measurement principle of the eddy current flaw detection method of the present invention is different from the so-called direct contact method used for detecting a surface crack. The direct contact method is a method for detecting minute surface defects while moving the sensor while the tip of the core of the eddy current sensor in which a coil is wound around the core is in contact with the object to be inspected. In this eddy current flaw detection method, an inspection object is inserted into a cylindrical air-core coil and detected without contact. In addition, according to the eddy current flaw detection method of the present invention which is a non-contact method, it is possible to detect damage to the non-magnetic member inside the inspection object.

平行ボビン2は、管状の検査対象物10を貫通させる貫通孔2aを軸中心位置に有する円筒状に形成される。すなわち、平行ボビン2の軸心の方向と検査対象物10の軸心の方向とは平行になる。なお、貫通孔2aの直径は、渦電流探傷センサ1が電気信号の測定を行う管状の検査対象物10の外径に合わせて調整される。また、平行ボビン2は例えばポリアセタール等の合成樹脂などの非導電性材料によって形成される。   The parallel bobbin 2 is formed in a cylindrical shape having a through hole 2a that penetrates the tubular inspection object 10 at the axial center position. That is, the direction of the axis of the parallel bobbin 2 is parallel to the direction of the axis of the inspection object 10. The diameter of the through hole 2a is adjusted in accordance with the outer diameter of the tubular inspection object 10 on which the eddy current flaw detection sensor 1 measures an electric signal. The parallel bobbin 2 is formed of a nonconductive material such as a synthetic resin such as polyacetal.

平行ボビン2は、周壁の外周面に、周方向に一回りする環状の溝2bを有する。そして、当該溝2bに出力コイル4(図1及び図2においては図示省略)が巻き回される。なお、出力コイル4は平行ボビン2の周方向の溝2bに巻き回されるので検査対象物10の外側に周方向に巻き回されることになる。また、出力コイル4と検査対象物10とは接触しない。   The parallel bobbin 2 has an annular groove 2b that goes around in the circumferential direction on the outer peripheral surface of the peripheral wall. The output coil 4 (not shown in FIGS. 1 and 2) is wound around the groove 2b. Since the output coil 4 is wound around the circumferential groove 2 b of the parallel bobbin 2, the output coil 4 is wound around the outer side of the inspection object 10 in the circumferential direction. Further, the output coil 4 and the inspection object 10 are not in contact with each other.

また、渦電流探傷センサ1は、それぞれの軸心の方向が平行ボビン2の軸心の方向即ち検査対象物10の軸心の方向と直交する二つの直交ボビン3A,3Bを有する。本実施形態では、具体的には、渦電流探傷センサ1は第一の直交ボビン3Aと第二の直交ボビン3Bとを有し、これら直交ボビン3A,3Bはそれぞれの軸心が一直線上に位置すると共に平行ボビン2を挟んで対向するように配置され、平行ボビン2の周壁の外周側に設けられた凹部2cに取り付けられる。なお、本実施形態では、前述のとおり一直線上に位置する両直交ボビン3A,3Bの軸心の方向は平行ボビン2の軸心の方向と直交する。   Further, the eddy current flaw detection sensor 1 includes two orthogonal bobbins 3A and 3B in which the directions of the respective axes are orthogonal to the direction of the axis of the parallel bobbin 2, that is, the direction of the axis of the inspection object 10. Specifically, in this embodiment, the eddy current flaw detection sensor 1 has a first orthogonal bobbin 3A and a second orthogonal bobbin 3B, and the axes of the orthogonal bobbins 3A and 3B are positioned on a straight line. And arranged so as to face each other with the parallel bobbin 2 interposed therebetween, and is attached to a recess 2c provided on the outer peripheral side of the peripheral wall of the parallel bobbin 2. In the present embodiment, as described above, the directions of the axial centers of the two orthogonal bobbins 3A and 3B positioned on a straight line are orthogonal to the direction of the axial center of the parallel bobbin 2.

両直交ボビン3A,3Bは、周壁の外周面に、周方向に一回りする環状の溝3bをそれぞれ有する。そして、これら直交ボビン3A,3Bの溝3bには検波コイル5(図2及び図3においては図示省略)が巻き回される。なお、一本の導線が両直交ボビン3A,3Bの溝3bに亘って巻き回されて検波コイル5を形成する。   Both orthogonal bobbins 3A and 3B respectively have annular grooves 3b that make one turn in the circumferential direction on the outer peripheral surface of the peripheral wall. A detection coil 5 (not shown in FIGS. 2 and 3) is wound around the grooves 3b of the orthogonal bobbins 3A and 3B. A single conducting wire is wound over the grooves 3b of the two orthogonal bobbins 3A and 3B to form the detection coil 5.

さらに、本実施形態では、両直交ボビン3A,3Bの軸心位置に貫通孔3aがそれぞれ形成され、当該貫通孔3aに円柱形状のコア15が嵌め合わされる。コア15は例えばフェライトや軟鉄などの磁性材料で形成される。なお、コア15の形状は円柱形状に限られるものではなく、円筒形状などであっても構わない。   Furthermore, in this embodiment, the through-hole 3a is formed in the axial center position of both orthogonal bobbin 3A, 3B, respectively, and the cylindrical core 15 is fitted by the said through-hole 3a. The core 15 is made of a magnetic material such as ferrite or soft iron. The shape of the core 15 is not limited to a columnar shape, and may be a cylindrical shape.

渦電流探傷センサ1は出力コイル4と検波コイル5とによって渦電流探傷を行う。このため、出力コイル4と検波コイル5との位置関係即ち溝2bと溝3bとの位置関係は、二つのコイル4,5が相互に渦電流探傷センサとしての出力コイル及び検波コイルとして作動可能な範囲内で設定される。   The eddy current flaw detection sensor 1 performs eddy current flaw detection with an output coil 4 and a detection coil 5. For this reason, the positional relationship between the output coil 4 and the detection coil 5, that is, the positional relationship between the groove 2b and the groove 3b is such that the two coils 4 and 5 can operate as an output coil and a detection coil as eddy current flaw sensors. Set within the range.

また、本発明の渦電流探傷センサ1においては、検査対象物10の外周面と溝2bに巻き回した際の出力コイル4との間の間隔並びに検査対象物10の外周面と溝3bに巻き回した際の検波コイル5との間の間隔は狭い方が好ましい。具体的には例えば、検査対象物10の外周面とコイル4,5との間の間隔は10mm未満とすることが好ましく、より好ましくは5mm未満とすることであり、さらに、検査対象物10の外周面と出力コイル4との間の間隔については2mm未満とすることが最も好ましい。ただし、本発明においては、検査対象物10と出力コイル4及び検波コイル5とは接触しない。   In the eddy current flaw detection sensor 1 of the present invention, the distance between the outer peripheral surface of the inspection object 10 and the output coil 4 when wound around the groove 2b, and the outer peripheral surface of the inspection object 10 and the groove 3b are wound. The distance between the detection coil 5 and the detection coil 5 when it is rotated is preferably narrow. Specifically, for example, the distance between the outer peripheral surface of the inspection object 10 and the coils 4 and 5 is preferably less than 10 mm, more preferably less than 5 mm. The interval between the outer peripheral surface and the output coil 4 is most preferably less than 2 mm. However, in the present invention, the inspection object 10 is not in contact with the output coil 4 and the detection coil 5.

接続端子固定基板6は、本実施形態では、平行ボビン2の軸心方向長さよりも短い長方形の板状に形成され、長手方向が平行ボビン2の軸心方向と平行になるように配置される。   In the present embodiment, the connection terminal fixing substrate 6 is formed in a rectangular plate shape shorter than the length of the parallel bobbin 2 in the axial direction, and is arranged so that the longitudinal direction is parallel to the axial direction of the parallel bobbin 2. .

基板固定部材7は、平行ボビン2の両側端部寄りの位置のそれぞれに取り付けられる。基板固定部材7は二個のΩ形の部材からなり、Ω形の凹部7aが半円の曲面に形成され、当該凹部7aの半円の曲面は平行ボビン2の外周面の形状に合わせて形成される。そして、二個で一組のΩ形の部材で平行ボビン2を挟み込むようにして基板固定部材7は平行ボビン2の外周面に取り付けられる。   The substrate fixing member 7 is attached to each of the positions close to the both end portions of the parallel bobbin 2. The substrate fixing member 7 is composed of two Ω-shaped members, and an Ω-shaped concave portion 7 a is formed in a semicircular curved surface, and the semicircular curved surface of the concave portion 7 a is formed in accordance with the shape of the outer peripheral surface of the parallel bobbin 2. Is done. Then, the substrate fixing member 7 is attached to the outer peripheral surface of the parallel bobbin 2 so that the parallel bobbin 2 is sandwiched between a pair of Ω-shaped members.

基板固定部材7は、また、Ω形の凹部7aの両側方の端部7bに貫通孔7cを有する。そして、対になる基板固定部材7の凹部7aを向かい合わせて平行ボビン2を挟むと共に、向かい合った端部7bの双方の貫通孔7cを貫通するボルト8aとナット8bとによって端部7bを締め付けることによって基板固定部材7は平行ボビン2に固定される。   The substrate fixing member 7 also has through holes 7c at both end portions 7b of the Ω-shaped recess 7a. And the recessed part 7a of the board | substrate fixing member 7 which makes a pair faces each other, the parallel bobbin 2 is pinched | interposed, and the edge part 7b is tightened with the volt | bolt 8a and the nut 8b which penetrate both the through-holes 7c of the opposite edge part 7b. Thus, the substrate fixing member 7 is fixed to the parallel bobbin 2.

接続端子固定基板6は、長方形の長手方向の両側に貫通孔6cを有する。そして、接続端子固定基板6は、基板固定部材7の端部7bを締め付けるボルト8aを貫通孔6cを貫通させて基板固定部材7の端部に固定される。すなわち、二個の基板固定部材7を向かい合わせて平行ボビン2を挟む際に、向かい合う両基板固定部材7の端部7bの貫通孔7cと接続端子固定基板6の貫通孔6cとの位置を合わせて両基板固定部材7の間に接続端子固定基板6を挟み、向かい合う基板固定部材7と接続端子固定基板6とが束ねられて固定される。   The connection terminal fixing substrate 6 has through holes 6c on both sides in the longitudinal direction of the rectangle. Then, the connection terminal fixing substrate 6 is fixed to the end portion of the substrate fixing member 7 with a bolt 8 a that fastens the end portion 7 b of the substrate fixing member 7 passing through the through hole 6 c. That is, when the two board fixing members 7 face each other and the parallel bobbin 2 is sandwiched, the positions of the through holes 7c of the end portions 7b of the opposing board fixing members 7 and the through holes 6c of the connection terminal fixing board 6 are aligned. Then, the connecting terminal fixing substrate 6 is sandwiched between the two substrate fixing members 7, and the opposing substrate fixing member 7 and the connecting terminal fixing substrate 6 are bundled and fixed.

接続端子固定基板6には、出力コイル4の両端と電気的に接続される接続端子9a及び検波コイル5の両端と電気的に接続される接続端子9bが取り付けられる。そして、出力コイル4と接続端子9a、並びに、検波コイル5と接続端子9bとを電気的に接続させるため、接続端子固定基板6には、さらに、出力コイル4の両端を結び付けるための二つで一組の接続孔6a及び検波コイル5の両端を結び付けるための二つで一組の接続孔6bが設けられると共に、接続孔6aと接続端子9aとの間、並びに、接続孔6bと接続端子9bとの間にリード6dが設けられる。   A connection terminal 9 a that is electrically connected to both ends of the output coil 4 and a connection terminal 9 b that is electrically connected to both ends of the detection coil 5 are attached to the connection terminal fixing substrate 6. Then, in order to electrically connect the output coil 4 and the connection terminal 9a, and the detection coil 5 and the connection terminal 9b, the connection terminal fixing substrate 6 is further connected with two terminals for connecting both ends of the output coil 4. A pair of connection holes 6a and two sets of connection holes 6b for connecting both ends of the detection coil 5 are provided, and between the connection hole 6a and the connection terminal 9a, and between the connection hole 6b and the connection terminal 9b. A lead 6d is provided between the two.

そして、出力コイル4の両端と電気的に接続される接続端子9aにはX信号とY信号との表示角度の設定(具体的には、X信号−Y信号の2次元座標軸上で原点中心に所定の角度を回転させて表示する機能のことである。移相器の設定角度ともいう。)が可能な単周波数型渦流探傷装置からの出力側のケーブル(図示省略)が接続され、当該接続端子9aを介して出力コイル4に対して交流電圧が供給される。   A connection terminal 9a electrically connected to both ends of the output coil 4 is used to set the display angle of the X signal and the Y signal (specifically, center on the origin on the two-dimensional coordinate axis of the X signal-Y signal). This is a function to rotate and display a predetermined angle (also called a set angle of a phase shifter). A cable (not shown) on the output side from a single frequency type eddy current flaw detector capable of being connected is connected and connected. An AC voltage is supplied to the output coil 4 via the terminal 9a.

また、検波コイル5の両端と電気的に接続される接続端子9bには前記渦流探傷装置からの配線(図示省略)が接続され、出力コイル4に供給される交流電圧によって検査対象物10に誘起されて検波コイル5によって検知される誘導電圧が当該接続端子9bを介して前記渦流探傷装置に検出信号(X信号とY信号)として入力される。なお、本発明における渦流探傷装置としては、一般的な渦流探傷に用いられる装置を用いることができる。また、検出信号は具体的には電圧である(一般的な渦流探傷装置自体は周知のものであるので更に詳細な説明はここでは省略する。例えば、社団法人日本非破壊検査協会・星川洋編:非破壊検査技術シリーズ 渦流探傷試験1,pp.41-49,2007年3月.を参照)。   Further, a wiring (not shown) from the eddy current flaw detector is connected to the connection terminal 9b that is electrically connected to both ends of the detection coil 5, and is induced in the inspection object 10 by the AC voltage supplied to the output coil 4. Then, the induced voltage detected by the detection coil 5 is input as a detection signal (X signal and Y signal) to the eddy current flaw detector via the connection terminal 9b. In addition, as an eddy current flaw detector in the present invention, a device used for general eddy current flaw detection can be used. Further, the detection signal is specifically a voltage (a general eddy current flaw detector itself is well known, so a more detailed explanation is omitted here. For example, the Japan Nondestructive Inspection Association, edited by Hiroshi Hoshikawa : Non-destructive inspection technology series. See Eddy current test 1, pp.41-49, March 2007.)

なお、本発明を用いての検出作業にあたっては、検査対象物10の内部にある非磁性体部材の損傷部から発生する微弱な信号を周りの磁性体部材からの強い信号により埋もれてしまうことなく分離して検出できるようにするために、検査対象物10の非磁性体部材に損傷を予め付与した試験片を渦電流探傷センサ1の平行ボビン2の貫通孔2aに挿入して損傷のない位置で信号をバランスさせた後(すなわち、センサと検査対象物との組み合わせ毎のゼロ設定を行った後)、検査対象物の軸心方向に沿って渦電流探傷センサ1を移動させて損傷に伴う電気信号を得るようにする。   In detection work using the present invention, a weak signal generated from a damaged portion of a nonmagnetic member inside the inspection object 10 is not buried by a strong signal from a surrounding magnetic member. In order to be able to detect them separately, a test piece in which damage is given in advance to the non-magnetic member of the inspection object 10 is inserted into the through-hole 2a of the parallel bobbin 2 of the eddy current flaw detection sensor 1 and the position is not damaged. After the signals are balanced with each other (that is, after zero setting is performed for each combination of the sensor and the inspection object), the eddy current flaw detection sensor 1 is moved along the axial direction of the inspection object to accompany the damage. Get an electrical signal.

具体的には、まず、X信号−Y信号の2次元座標軸上で非磁性体部材の損傷に伴う検出信号がほぼY軸方向にくるように原点を中心として回転すべき表示角度(即ち移相器の設定角度)を求めておく。装置に移相器の表示機能がない場合には、損傷部の検出信号として得られる振幅と位相角とを用いて三角形の底辺(振幅〔V〕×cosθ,θ:位相角〔度〕)をX信号の値(単位はV)とし、高さ(振幅〔V〕×sinθ,θ:位相角〔度〕)をY信号の値(単位はV)とする角度θを90度(即ちY軸の角度)から差し引くことによって回転すべき表示角度が求まる。   Specifically, first, a display angle (that is, phase shift) that should be rotated around the origin so that a detection signal accompanying damage to the nonmagnetic member is substantially in the Y-axis direction on the two-dimensional coordinate axis of the X signal-Y signal. The set angle of the container). If the device does not have a phase shifter display function, the base of the triangle (amplitude [V] × cos θ, θ: phase angle [degree]) is obtained using the amplitude and phase angle obtained as the detection signal of the damaged portion. The angle θ is 90 degrees (that is, the Y axis) where the X signal value (unit is V) and the height (amplitude [V] × sin θ, θ: phase angle [degree]) is the Y signal value (unit is V). The display angle to be rotated is obtained by subtracting from (the angle).

次に、上述のようにして求めた回転すべき表示角度(即ち移相器の設定角度)に設定を行って、さらに、渦電流探傷センサ1の平行ボビン2の貫通孔2aに管状の検査対象物10を貫通させた状態で損傷のない位置でバランス(即ち0点設定)させた後、渦電流探傷センサ1を検査対象物10の軸心方向に移動させながら出力コイル4に供給される交流電圧によって検査対象物10に誘起される誘導電圧を検波コイル5によって検出する。   Next, the display angle to be rotated (that is, the set angle of the phase shifter) determined as described above is set, and the tubular inspection object is inserted into the through-hole 2a of the parallel bobbin 2 of the eddy current flaw detection sensor 1. AC is supplied to the output coil 4 while moving the eddy current flaw detection sensor 1 in the axial direction of the inspection object 10 after balancing (ie, setting 0 point) at an undamaged position in a state where the object 10 is penetrated. An induction voltage induced in the inspection object 10 by the voltage is detected by the detection coil 5.

そして、鋼等の磁性体部材とアルミ等の非磁性体部材とは位相角が約90度ずれているので、本発明においては、出力コイル4に供給される交流電圧によって検査対象物10に誘起されて検波コイル5によって検出される誘導電圧のX信号の変動に基づいて検査対象物10を構成する磁性体部材の損傷を検出すると共にY信号の変動に基づいて検査対象物10を構成する非磁性体部材の損傷を検出する。   Since the phase angle of the magnetic member such as steel and the non-magnetic member such as aluminum is shifted by about 90 degrees, the present invention induces the inspection object 10 by the AC voltage supplied to the output coil 4. Then, based on the variation of the X signal of the induced voltage detected by the detection coil 5, the damage of the magnetic member constituting the inspection object 10 is detected and the inspection object 10 is configured based on the variation of the Y signal. Detects damage to the magnetic member.

具体的には、渦電流探傷センサ1を用いた測定によって得られる電気信号について、X信号に変動が認められる場合には鋼管などの磁性体部材に損傷が発生していると判断され、Y信号に変動が認められる場合にはアルミニウム管などの非磁性体部材に損傷が発生していると判断される。   Specifically, regarding the electric signal obtained by the measurement using the eddy current flaw detection sensor 1, when a change is observed in the X signal, it is determined that a magnetic member such as a steel pipe is damaged, and the Y signal In the case where fluctuation is observed, it is determined that the nonmagnetic member such as an aluminum tube is damaged.

なお、検査対象物に損傷が発生していると判断するためのX信号の変動の程度は特定の基準に限定されるものではなく、作業者が適宜設定すれば良い。具体的には例えば、検波コイルによって検出される渦電流の電圧が出力コイルに供給する交流電圧の2割を超える変動をした場合には検査対象物に損傷が発生していると判断することなどが考えられる。   Note that the degree of variation of the X signal for determining that the inspection object is damaged is not limited to a specific standard, and may be set appropriately by the operator. Specifically, for example, when the voltage of the eddy current detected by the detection coil fluctuates more than 20% of the AC voltage supplied to the output coil, it is determined that the inspection object is damaged. Can be considered.

以上のように構成された本発明の渦電流探傷方法並びに渦電流探傷センサによれば、検査対象物の軸心方向の損傷を検出することに加えて軸心方向に対して傾斜する方向の損傷を検出することも可能であるので、例えばOPGWのような管状の検査対象物であって磁性体部材と非磁性体部材とからなる検査対象物における損傷の検出を高い精度で行うことができ、損傷発生有無の検査の信頼性の向上を図ることができる。   According to the eddy current flaw detection method and eddy current flaw detection sensor of the present invention configured as described above, in addition to detecting damage in the axial direction of the inspection object, damage in a direction inclined with respect to the axial direction Can be detected with high accuracy, for example, in a tubular inspection object such as OPGW, and it is possible to detect damage in the inspection object consisting of a magnetic member and a non-magnetic member, The reliability of inspection for occurrence of damage can be improved.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、渦流探傷装置に備わっている表示角度(即ち移相器の設定角度)を変えて磁性体部材の損傷をY信号で評価すると共に非磁性体部材の損傷をX信号で評価するようにしても良い。   In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, In the range which does not deviate from the summary of this invention, various deformation | transformation implementation is possible. For example, by changing the display angle (that is, the set angle of the phase shifter) provided in the eddy current flaw detector, the damage of the magnetic member is evaluated by the Y signal, and the damage of the non-magnetic member is evaluated by the X signal. Also good.

また、磁性体部材の損傷は検出・評価対象としないで非磁性体部材の損傷のみを検出・評価対象とすれば良い場合においては、X信号の値やY信号の値としてではなく振幅のみで評価するようにしても良い。なお、振幅は数式2によって定義される。すなわち、振幅は、X信号−Y信号の図において原点からの距離を示している。そして、X信号が0である場合には、振幅はY信号の高さを示している。
(数2) 振幅〔V〕={(X信号の値〔V〕)2+(Y信号の値〔V〕)21/2
In addition, in the case where damage to the magnetic member is not subject to detection / evaluation and only damage to the non-magnetic member is to be subject to detection / evaluation, only the amplitude is used instead of the X signal value or the Y signal value. You may make it evaluate. The amplitude is defined by Equation 2. That is, the amplitude indicates the distance from the origin in the X signal-Y signal diagram. When the X signal is 0, the amplitude indicates the height of the Y signal.
(Equation 2) Amplitude [V] = {(X signal value [V]) 2 + (Y signal value [V]) 2 } 1/2

また、本実施形態では、両直交ボビン3A,3Bの軸心位置に貫通孔3aを形成すると共に当該貫通孔3aに磁性材料で形成されたコア15が嵌め合わされるようにしているが、直交ボビン3A,3Bに磁性を有するコア15を嵌め合わせることは本発明において必須の要件ではない。磁性を有するコアを直交ボビンに嵌め合わせることによってこれに巻き回される検波コイルの誘導電圧の検知能力を向上させることが期待できるものの、コアが嵌め合わされていないとしても検波コイルは誘導電圧を検知することが可能である。   In the present embodiment, the through holes 3a are formed at the axial center positions of the two orthogonal bobbins 3A and 3B, and the core 15 made of a magnetic material is fitted into the through holes 3a. It is not an essential requirement in the present invention to fit the magnetic core 15 to 3A and 3B. Although it can be expected to improve the detection capability of the detection coil wound around this by fitting a magnetic core to the orthogonal bobbin, the detection coil detects the induction voltage even if the core is not fitted. Is possible.

また、本実施形態では、二つの直交ボビン3A,3Bは平行ボビン2を挟んで即ち検査対象物10を挟んで正対するように配置されるようにしているが、これに限られず、二つの直交ボビン3A,3Bは、検査対象物10の周方向に並べられて配置されていれば良く、検査対象物10を挟んで正対する位置関係になくても良い。   In the present embodiment, the two orthogonal bobbins 3A and 3B are arranged so as to face each other with the parallel bobbin 2 interposed therebetween, that is, with the inspection object 10 interposed therebetween. The bobbins 3 </ b> A and 3 </ b> B need only be arranged side by side in the circumferential direction of the inspection object 10, and do not have to be in a positional relationship facing each other across the inspection object 10.

また、本実施形態では、第一の直交ボビン3Aも第二の直交ボビン3Bも軸心の方向が平行ボビン2の軸心方向即ち検査対象物10の軸心方向と直交するように配置されるようにしているが、これに限られず、二つの直交ボビン3A,3B並びにこれらボビンに巻き回される検波コイルのうちのどちらか一方若しくは両方の軸心方向が検査対象物10の軸心方向と直交する方向からずれているようにしても良い(図5。なお、図5〜7においては、接続端子固定基板6と基板固定部材7とを図示していない。)。なお、検波コイルを巻き回すボビンを一つだけ設けるようにする場合も、当該ボビンの軸心方向が検査対象物10の軸心方向に対して直交している必要はない。また、図5に示す形態では直交ボビン3Bに巻き回された検波コイル5の軸心方向が検査対象物10の軸心方向に沿って傾斜するようにしているが、検波コイルの軸心方向の傾斜はこれに限られるものではなく、図6に示すように、検査対象物10の周方向に沿って傾斜するようにしても良い。尚更に言えば、検波コイルの軸心方向の傾斜は、検査対象物10の軸心方向や周方向に沿うものである必要はなく、検査対象物10の軸心方向に対していずれかの方向に傾斜しているものであれば良い。   Further, in the present embodiment, both the first orthogonal bobbin 3A and the second orthogonal bobbin 3B are arranged so that the axis direction is orthogonal to the axial direction of the parallel bobbin 2, that is, the axial direction of the inspection object 10. However, the present invention is not limited thereto, and the axial direction of one or both of the two orthogonal bobbins 3A and 3B and the detection coils wound around these bobbins is the axial direction of the inspection object 10. You may make it shift | deviate from the orthogonal direction (FIG. 5. In addition, in FIG. 5-7, the connection terminal fixed board | substrate 6 and the board | substrate fixing member 7 are not illustrated). Even when only one bobbin around which the detection coil is wound is provided, the axial direction of the bobbin need not be orthogonal to the axial direction of the inspection object 10. Further, in the embodiment shown in FIG. 5, the axial center direction of the detection coil 5 wound around the orthogonal bobbin 3B is inclined along the axial center direction of the inspection object 10. The inclination is not limited to this, and may be inclined along the circumferential direction of the inspection object 10 as shown in FIG. Still further, the inclination of the detection coil in the axial direction does not have to be along the axial direction or the circumferential direction of the inspection object 10, and any direction with respect to the axial direction of the inspection object 10. As long as it is inclined in the direction.

また、本実施形態では、管状の検査対象物10の軸心の周方向に巻き回されることになる出力コイル4が巻き回される溝2bを有する平行ボビン2に加え、検査対象物10の軸心方向と直交する方向の軸の周方向に巻き回されることになる検波コイル5が巻き回される溝3bをそれぞれ有する二つのボビンであって平行ボビン2を挟んで対向して配置される第一の直交ボビン3Aと第二の直交ボビン3Bとを有するようにしているが、これに限られず、検波コイル5を巻き回すボビンは一つだけでも良いし、三つ以上でも良い。そして、検波コイル5を巻き回すボビンを三つ以上設けるようにする場合には、これらボビン及びこれに巻き回される検波コイルの軸心方向を検査対象物10の軸心方向に対して傾斜させる角度を全て異なるようにすることが望ましい。検波コイルの軸心方向の傾斜角度を全て異なるようにすることにより、検査対象物10のあらゆる方向の損傷を検出することができるようになる。なお、検波コイルを巻き回すボビンを三つ以上設けるようにする場合には、これらボビンが検査対象物10の周方向に並べられて配置されるようにすることが望ましい。   Moreover, in this embodiment, in addition to the parallel bobbin 2 having the groove 2b around which the output coil 4 to be wound around the axial center of the tubular inspection object 10 is wound, Two bobbins each having a groove 3b around which a detection coil 5 to be wound in the circumferential direction of an axis perpendicular to the axial direction is disposed, and are arranged opposite to each other with the parallel bobbin 2 in between. The first orthogonal bobbin 3A and the second orthogonal bobbin 3B are provided. However, the present invention is not limited to this, and the number of bobbins around which the detection coil 5 is wound may be one or three or more. When three or more bobbins around which the detection coil 5 is wound are provided, the axial direction of these bobbins and the detection coil wound around the bobbin is inclined with respect to the axial direction of the inspection object 10. It is desirable to make all the angles different. By making all the inclination angles in the axial direction of the detection coil different, damage in all directions of the inspection object 10 can be detected. When three or more bobbins around which the detection coil is wound are provided, it is desirable that these bobbins are arranged in the circumferential direction of the inspection object 10.

また、本実施形態では、出力コイル4を管状の検査対象物10の軸心の周方向に巻き回すと共に、検波コイル5を検査対象物10の軸心方向と直交する方向の軸の周方向に巻き回すようにしているが、これに限られず、出力コイル4と検波コイル5との両方を検査対象物10の軸心方向に対して傾斜する方向の軸の周方向に巻き回すようにしても良い。具体的には例えば、図7に示すように、本実施形態における平行ボビン2の溝2bにはコイルを巻かずに、直交ボビン3A,3Bのどちらか一方に出力コイル4を巻き回すと共に他方に検波コイル5を巻き回すようにしても良い。   Further, in the present embodiment, the output coil 4 is wound around the axial direction of the tubular inspection object 10 and the detection coil 5 is arranged in the circumferential direction of the axis perpendicular to the axial direction of the inspection object 10. However, the present invention is not limited to this, and both the output coil 4 and the detection coil 5 may be wound in the circumferential direction of the axis inclined with respect to the axial center direction of the inspection object 10. good. Specifically, for example, as shown in FIG. 7, the coil 2 is not wound around the groove 2b of the parallel bobbin 2 in this embodiment, but the output coil 4 is wound around one of the orthogonal bobbins 3A and 3B and the other is wound around the other. The detection coil 5 may be wound.

本発明の渦電流探傷方法並びに渦電流探傷センサを実際のOPGWの損傷の検出に適用した実施例を図8から図15を用いて説明する。   An embodiment in which the eddy current flaw detection method and the eddy current flaw detection sensor of the present invention are applied to the actual detection of OPGW damage will be described with reference to FIGS.

本実施例において検査対象物として用いたOPGWの断面を図8に示す。このOPGW10は、中心部の光ファイバ収納アルミニウム管11とこの光ファイバ収納アルミニウム管11を取り囲む八本のアルミ覆鋼線14とからなる。まお、本実施例で用いたOPGW10は、線種の規格としてはOPGW−60(60は避雷用地線としての公称面積60mmを表しており、図8の八本のアルミ覆鋼線14の総面積に該当する)であり、全体外径は11.4mmであると共にアルミニウム管11aの外径は5mmである。 FIG. 8 shows a cross section of the OPGW used as the inspection object in this example. The OPGW 10 includes an optical fiber housing aluminum tube 11 at the center and eight aluminum-covered steel wires 14 surrounding the optical fiber housing aluminum tube 11. The OPGW 10 used in this example is OPGW-60 (60 represents a nominal area of 60 mm 2 as a lightning protection ground wire) as the line type standard, and the total of the eight aluminum-clad steel wires 14 in FIG. The total outer diameter is 11.4 mm, and the outer diameter of the aluminum tube 11a is 5 mm.

光ファイバ収納アルミニウム管11は、外周壁であるアルミニウム管11aと、アルミニウム管11a内部に配設される三本の光ファイバユニット12と、これら三本の光ファイバユニット12のアルミニウム管11a内部での位置を固定するための三つの溝13aを有する溝付きアルミスペーサ13とからなる。   The optical fiber housing aluminum tube 11 includes an aluminum tube 11a as an outer peripheral wall, three optical fiber units 12 disposed inside the aluminum tube 11a, and the aluminum tube 11a of the three optical fiber units 12 inside. It consists of a grooved aluminum spacer 13 having three grooves 13a for fixing the position.

なお、本実施例の光ファイバユニット12は、中央の光ファイバとその周囲の六本の光ファイバとを束ねてなるものである。また、アルミ覆鋼線14は鋼線の周りにアルミを被覆させたものである。   The optical fiber unit 12 of this embodiment is a bundle of a central optical fiber and six surrounding optical fibers. The aluminum-clad steel wire 14 is obtained by coating aluminum around a steel wire.

以上のように、本実施例において検査対象物として用いるOPGW10は、磁性体部材と非磁性体部材とからなるものであり、本発明を適用するのに好適なものである。なお、実際のOPGWの保守点検においては外部からは明確に視認することができない中心部のアルミニウム管11aの損傷が特に問題になるので、本発明によればOPGW10のアルミニウム管11aの損傷の検出を適確に行うことが可能になることは実際のOPGWの保守点検に対して非常に有益である。   As described above, the OPGW 10 used as the inspection object in the present embodiment is composed of the magnetic member and the non-magnetic member, and is suitable for applying the present invention. In actual OPGW maintenance and inspection, damage to the aluminum tube 11a in the central portion that cannot be clearly seen from the outside is particularly problematic. Therefore, according to the present invention, detection of damage to the aluminum tube 11a of the OPGW 10 can be performed. Being able to do it properly is very beneficial for actual OPGW maintenance.

本実施例では、OPGW10に形成された線状き裂のOPGW10の軸心方向に対する傾斜角度の違いによる探傷性能の比較を行った。具体的には、供試材として約1mの長さに切断したOPGW10内部のアルミニウム管11aを取り出し、当該アルミニウム管11aに管軸方向(軸心方向と同義)或いは管軸方向に対して10度,45度,70度,90度のいずれかの角度で傾斜した方向の線状き裂を人工的に形成した後にOPGW10内部に戻すことによって損傷としての線状き裂を内部に有するOPGW10を作成した。なお、管軸方向に対して90度傾斜した方向とは即ちアルミニウム管11aの周方向である。   In this example, the flaw detection performance was compared by the difference in the inclination angle of the linear crack formed in the OPGW 10 with respect to the axial center direction of the OPGW 10. Specifically, the aluminum tube 11a inside the OPGW 10 cut to a length of about 1 m is taken out as a test material, and the aluminum tube 11a is taken in the tube axis direction (synonymous with the axial direction) or 10 degrees with respect to the tube axis direction. A linear crack in a direction inclined at any angle of 45 °, 70 °, or 90 ° is artificially formed and then returned to the inside of the OPGW 10 to create an OPGW 10 having a linear crack inside as damage. did. The direction inclined 90 degrees with respect to the tube axis direction is the circumferential direction of the aluminum tube 11a.

線状き裂の幅は約0.2mm〜2mmで長さは約5mm〜50mmであった。また、アルミニウム管11a毎に一つの損傷を人工的に形成し、当該人工的に形成された検出対象の損傷の他には損傷のないことを確認したOPGW10を用いて測定を行った。   The width of the linear crack was about 0.2 mm to 2 mm and the length was about 5 mm to 50 mm. In addition, one damage was artificially formed for each aluminum tube 11a, and measurement was performed using the OPGW 10 that was confirmed to be free of damage other than the artificially formed damage to the detection target.

そして、本実施例では、図1〜図4に示す本発明の渦電流探傷センサ1であって検波コイル5が巻き回される両直交ボビン3A,3Bの貫通孔3aにコア15が挿入されていないセンサ(即ち、貫通孔3a内は空。以下、コアなしセンサと呼ぶ)と、貫通孔3aにコア15として円柱形状のフェライトが挿入されたセンサ(以下、フェライトコアセンサと呼ぶ)と、これら本発明に係るセンサとの比較例として図16に示す従来の渦電流探傷センサ(以下、従来センサと呼ぶ)とのそれぞれについて同一条件においてOPGW10毎のアルミニウム管11aの損傷の検出を行った。なお、渦電流探傷センサ1(若しくは100)の平行ボビン2(若しくは101)の貫通孔2a(若しくは101a)の直径はOPGW10の全体外径に合わせて13mmに形成された。   In this embodiment, the core 15 is inserted into the through holes 3a of the orthogonal bobbins 3A and 3B around which the detection coil 5 is wound in the eddy current flaw detection sensor 1 of the present invention shown in FIGS. A sensor in which a cylindrical ferrite is inserted as a core 15 in the through hole 3a (hereinafter referred to as a ferrite core sensor), As a comparative example with the sensor according to the present invention, damage to the aluminum tube 11a for each OPGW 10 was detected under the same conditions for each of the conventional eddy current flaw detection sensors (hereinafter referred to as conventional sensors) shown in FIG. The diameter of the through hole 2a (or 101a) of the parallel bobbin 2 (or 101) of the eddy current flaw detection sensor 1 (or 100) was 13 mm in accordance with the entire outer diameter of the OPGW 10.

さらに、本実施例では、渦電流探傷センサ1と接続端子9a,9bを介して電気的に接続して損傷検出のための測定を行う渦流探傷装置としてユニ電子工業株式会社製・単周波渦流探傷装置[EddyStation SW2]を用い、コンピュータ(PC)上で作動する同装置付属の計測・データ表示ソフトを用いた。   Furthermore, in the present embodiment, a single frequency eddy current flaw detector manufactured by Uni Denshi Kogyo Co., Ltd. is used as an eddy current flaw detector which is electrically connected to the eddy current flaw detector 1 via the connection terminals 9a and 9b and performs measurement for damage detection. Using the apparatus [EddyStation SW2], the measurement / data display software attached to the apparatus operating on a computer (PC) was used.

測定にあたっては、まず、渦電流探傷センサ1(若しくは100)の貫通孔2a(若しくは101a)にOPGW10を挿入して損傷のない位置で電気信号のバランス(即ちゼロ設定)を行った後、OPGW10の軸心方向に沿って渦電流探傷センサ1(若しくは100)を移動させ、損傷に伴う検出信号(X信号とY信号)を得た。   In the measurement, first, the OPGW 10 is inserted into the through hole 2a (or 101a) of the eddy current flaw detection sensor 1 (or 100) to balance the electric signal (that is, zero setting) at a position where there is no damage, and then the OPGW 10 The eddy current flaw detection sensor 1 (or 100) was moved along the axial direction, and detection signals (X signal and Y signal) accompanying damage were obtained.

そして、渦流探傷装置を介してコンピュータのモニタに表示される検出信号の変化(具体的には、損傷が存在する場合は上に凸形即ちピーク状が出現する)を目視で観察し、その結果を、i)検出可能,ii)判定困難,iii)検出不可、の3種類に分類した。なお、得られた信号が欠陥によるものかノイズによるものか判別し難い場合に判定困難とした。   Then, a change in the detection signal displayed on the computer monitor via the eddy current flaw detector (specifically, when there is damage, a convex shape or peak shape appears) is visually observed, and as a result Are classified into three types: i) detectable, ii) difficult to determine, and iii) undetectable. Note that it was difficult to determine whether it was difficult to determine whether the obtained signal was due to a defect or noise.

なお、本実施例では、測定周波数は70kHzとした。また、増幅器の電圧比即ちゲインは、30dBを基本とし、30dBで検出不能の場合は検出可能なレベルまでdB値を40,50,60と順次上げて測定した。   In this example, the measurement frequency was 70 kHz. In addition, the voltage ratio, that is, the gain of the amplifier was basically 30 dB, and when it was not detectable at 30 dB, the dB value was sequentially increased to 40, 50, 60 to a detectable level and measured.

そして、従来センサを用いて損傷の検出を行い、図9に示す結果が得られた。なお、図9〜11においては、上述のi)検出可能を記号○で、ii)判定困難を記号△で、iii)検出不可を記号×でそれぞれ表している。この結果から、従来センサの場合には、検査対象物10の管軸方向及び管軸方向に対して10度の角度で傾斜した方向の損傷は幅が狭くても検出することができる一方で、検査対象物10の管軸方向に対して大きく傾斜する方向及び周方向の損傷は検出することができないことが確認された。   And damage was detected using the conventional sensor, and the result shown in FIG. 9 was obtained. In FIGS. 9 to 11, the above-mentioned i) detectability is represented by the symbol ◯, ii) difficulty of determination is represented by the symbol Δ, and iii) undetectable is represented by the symbol x. From this result, in the case of the conventional sensor, the damage in the tube axis direction of the inspection object 10 and the direction inclined at an angle of 10 degrees with respect to the tube axis direction can be detected even if the width is narrow, It was confirmed that damage in the direction that is largely inclined with respect to the tube axis direction of the inspection object 10 and in the circumferential direction cannot be detected.

また、コアなしセンサを用いて損傷の検出を行い、図10に示す結果が得られた。この結果から、コアなしセンサの場合には、従来センサの場合と同様に検査対象物10の管軸方向及び管軸方向に近い方向の損傷に加えて、検査対象物10の管軸方向に対して傾斜する方向及び周方向の損傷も幅が狭くても概ね検出することが可能であることが確認された。なお、管軸方向に対して45度の角度で傾斜する方向の損傷は検出することができなかった。なお、図1〜図4に示す渦電流探傷センサ1によっては管軸方向に対して45度の角度で傾斜する方向の損傷を検出することができないという点については、二つの直交ボビン3A,3Bのうちのどちらか一方の軸心方向を平行ボビン2の軸心方向と直交する方向からずれるように配置することによって解消され得る(図5,図6参照)。   Further, damage was detected using a coreless sensor, and the result shown in FIG. 10 was obtained. From this result, in the case of the sensor without the core, in addition to the damage in the tube axis direction of the inspection object 10 and the direction close to the tube axis direction as in the case of the conventional sensor, It was confirmed that the damage in the tilting direction and the circumferential direction can be generally detected even if the width is narrow. Note that damage in a direction inclined at an angle of 45 degrees with respect to the tube axis direction could not be detected. It should be noted that two orthogonal bobbins 3A and 3B cannot be detected by the eddy current flaw detection sensor 1 shown in FIGS. 1 to 4 in a direction inclined at an angle of 45 degrees with respect to the tube axis direction. Can be eliminated by disposing one of the axial centers so as to deviate from the direction orthogonal to the axial direction of the parallel bobbin 2 (see FIGS. 5 and 6).

さらに、フェライトコアセンサを用いて損傷の検出を行い、図11に示す結果が得られた。この結果から、フェライトコアセンサの場合には、コアなしセンサの場合と同様に検査対象物10の軸心方向から周方向まで方向に拘わらず損傷を殆ど検出することができ、加えて、コアなしセンサを用いた場合よりも幅の狭い損傷を検出することができることが確認された。   Furthermore, damage was detected using a ferrite core sensor, and the results shown in FIG. 11 were obtained. From this result, in the case of the ferrite core sensor, it is possible to detect almost any damage regardless of the direction from the axial center direction to the circumferential direction of the inspection object 10 as in the case of the coreless sensor. It was confirmed that it was possible to detect damage that was narrower than when a sensor was used.

なお、フェライトコアセンサを用いた損傷の検出の場合における、OPGW10の管軸方向で幅1mm・長さ10mmの線状き裂を検出した際の検出信号の軌跡として図12に示す結果が得られ、OPGW10の周方向で幅1mmの線状き裂を検出した際の検出信号の軌跡として図14に示す結果が得られた。なお、検出信号の軌跡とはセンサの検波コイルによって検出されて渦流探傷装置を介してコンピュータのモニタに表示されるX信号−Y信号の2次元座標平面における電圧値の変化の軌跡であり、図12,14において横軸は電気信号のX信号の値(単位はV)であり縦軸はY信号の値(単位はV)である。横軸及び縦軸ともに一目盛りは2〔V〕である。   In the case of damage detection using a ferrite core sensor, the result shown in FIG. 12 is obtained as a locus of a detection signal when a linear crack having a width of 1 mm and a length of 10 mm is detected in the tube axis direction of the OPGW 10. The result shown in FIG. 14 was obtained as the locus of the detection signal when a linear crack having a width of 1 mm was detected in the circumferential direction of OPGW10. The locus of the detection signal is a locus of a change in voltage value on the two-dimensional coordinate plane of the X signal-Y signal detected by the detection coil of the sensor and displayed on the computer monitor via the eddy current flaw detector. 12 and 14, the horizontal axis represents the value of the X signal (unit is V), and the vertical axis represents the value of the Y signal (unit is V). The scale on both the horizontal and vertical axes is 2 [V].

また、渦流探傷装置を介してコンピュータのモニタに表示されたデータを、横軸を時間軸にすると共に縦軸をY信号の値にして表示することにより、OPGW10の管軸方向の損傷の検出について図13(A)に示す結果が得られ、周方向の損傷の検出について図15(A)に示す結果が得られた。また、横軸を時間軸にすると共に縦軸をX信号の値にして表示することにより、OPGW10の管軸方向の損傷の検出について図13(B)に示す結果が得られ、周方向の損傷の検出について図15(B)に示す結果が得られた。なお、図13,15において、縦軸は一目盛りが1〔V〕であり、横軸は一目盛りが0.5〔sec〕である。   Further, the data displayed on the computer monitor via the eddy current flaw detector is displayed with the horizontal axis as the time axis and the vertical axis as the value of the Y signal, thereby detecting damage in the tube axis direction of the OPGW 10. The result shown in FIG. 13A was obtained, and the result shown in FIG. 15A was obtained for detection of damage in the circumferential direction. In addition, by displaying the horizontal axis as the time axis and the vertical axis as the value of the X signal, the result shown in FIG. 13B for the detection of damage in the tube axis direction of the OPGW 10 is obtained, and the damage in the circumferential direction is obtained. As a result, the result shown in FIG. 15B was obtained. 13 and 15, the vertical axis is 1 [V], and the horizontal axis is 0.5 [sec].

図13及び図15に示す結果から、Y信号の値の変動が大きいので非磁性体であるアルミニウム管11aに損傷が発生していると判断され、一方で、X信号の値の変動は大きいとは言えないので磁性体である鋼線14には損傷は発生していないと判断された。   From the results shown in FIGS. 13 and 15, it is determined that the non-magnetic aluminum tube 11a is damaged because the fluctuation of the Y signal value is large. On the other hand, the fluctuation of the X signal value is large. Therefore, it was judged that the steel wire 14 that is a magnetic body was not damaged.

これらの結果から、本発明の渦電流探傷方法並びに渦電流探傷センサによれば、検査対象物の軸心方向の損傷に限らず、軸心方向に対して傾斜した方向の損傷であっても、さらに、検査対象物の軸心の周方向の損傷であっても、損傷の検出を適確に高い精度で行うことが可能であることが確認された。   From these results, according to the eddy current flaw detection method and the eddy current flaw detection sensor of the present invention, not only damage in the axial direction of the inspection object but also damage in a direction inclined with respect to the axial direction, Furthermore, it was confirmed that the damage can be detected accurately and accurately even if the damage is in the circumferential direction of the axis of the inspection object.

なお、本実施例では、図8に示す断面を有するOPGW10を検査対象物として用いているが、本発明の渦電流探傷方法並びに渦電流探傷センサの適用に適したOPGWの断面構成はこれに限られるものではなく、更に言えば、本発明の適用に適した検査対象物はOPGWに限られるものではない。   In this embodiment, the OPGW 10 having the cross section shown in FIG. 8 is used as the inspection object. However, the cross sectional configuration of the OPGW suitable for application of the eddy current flaw detection method and eddy current flaw detection sensor of the present invention is not limited thereto. In other words, the inspection object suitable for application of the present invention is not limited to OPGW.

1 渦電流探傷センサ
2 平行ボビン
2a 貫通孔
2b 溝
2c 凹部
3A 第一の直交ボビン
3B 第二の直交ボビン
3a 貫通孔
3b 溝
4 出力コイル
5 検波コイル
6 接続端子固定基板
6a 接続孔
6b 接続孔
6c 貫通孔
6d リード
7 基板固定部材
7a 凹部
7b 端部
7c 貫通孔
8a ボルト
8b ナット
9a 接続端子
9b 接続端子
10 検査対象物(OPGW)
11 光ファイバ収納アルミニウム管
11a アルミニウム管
12 光ファイバユニット
13 溝付きアルミスペーサ
13a 溝
14 アルミ覆鋼線
DESCRIPTION OF SYMBOLS 1 Eddy current flaw detection sensor 2 Parallel bobbin 2a Through-hole 2b Groove 2c Recess 3A 1st orthogonal bobbin 3B 2nd orthogonal bobbin 3a Through-hole 3b Groove 4 Output coil 5 Detection coil 6 Connection terminal fixed board 6a Connection hole 6b Connection hole 6c Through hole 6d Lead 7 Substrate fixing member 7a Recess 7b End 7c Through hole 8a Bolt 8b Nut 9a Connection terminal 9b Connection terminal 10 Inspection object (OPGW)
11 Optical fiber housing aluminum tube 11a Aluminum tube 12 Optical fiber unit 13 Grooved aluminum spacer 13a Groove 14 Aluminum covered steel wire

Claims (6)

磁性体部材と非磁性体部材とからなる管状の検査対象物の外側に、前記検査対象物の周方向に出力コイルを巻き回すと共に前記検査対象物の軸心方向に対して傾斜する方向の軸の周方向に検波コイルを巻き回し、前記出力コイルと前記検波コイルとを用いて電磁誘導現象を利用した前記検査対象物についての電気信号の測定を行い、当該測定によって得られる電気信号の変動に基づいて少なくとも前記非磁性体部材の損傷を検出することを特徴とする渦電流探傷方法。   An axis in a direction in which an output coil is wound in the circumferential direction of the inspection object on the outside of a tubular inspection object made of a magnetic member and a non-magnetic member and is inclined with respect to the axial center direction of the inspection object A measurement coil is wound in the circumferential direction, and an electrical signal is measured for the inspection object using an electromagnetic induction phenomenon using the output coil and the detection coil, and fluctuations in the electrical signal obtained by the measurement are measured. An eddy current flaw detection method characterized by detecting damage to at least the non-magnetic member based on the method. 磁性体部材と非磁性体部材とからなる管状の検査対象物の外側に、前記検査対象物の軸心方向に対して傾斜する方向の複数の軸の周方向に出力コイルと検波コイルとを別々に巻き回すと共に当該出力コイルと検波コイルとを前記検査対象物の周方向に並べて配置し、前記出力コイルと検波コイルとを用いて電磁誘導現象を利用した前記検査対象物についての電気信号の測定を行い、当該測定によって得られる電気信号の変動に基づいて少なくとも前記非磁性体部材の損傷を検出することを特徴とする渦電流探傷方法。   The output coil and the detection coil are separately provided in the circumferential direction of a plurality of axes in a direction inclined with respect to the axial direction of the inspection object on the outside of the tubular inspection object made of a magnetic member and a nonmagnetic member. The output coil and the detection coil are arranged side by side in the circumferential direction of the inspection object, and an electrical signal is measured for the inspection object using an electromagnetic induction phenomenon using the output coil and the detection coil. And detecting at least damage to the non-magnetic member based on fluctuations in the electrical signal obtained by the measurement. 前記検波コイルとして、前記軸の方向が相互に異なる複数のコイルを用いることを特徴とする請求項1または2に記載の渦電流探傷方法。   The eddy current flaw detection method according to claim 1 or 2, wherein a plurality of coils having different directions of the axes are used as the detection coil. 磁性体部材と非磁性体部材とからなる管状の検査対象物の外側に、前記検査対象物の周方向に巻き回された出力コイルと前記検査対象物の軸心方向に対して傾斜する方向の軸の周方向に巻き回された検波コイルとを有し、前記出力コイルと前記検波コイルとを用いて電磁誘導現象を利用した前記検査対象物についての電気信号の測定を行うことを特徴とする渦電流探傷センサ。   An output coil wound in the circumferential direction of the inspection object and a direction inclined with respect to the axial direction of the inspection object on the outside of the tubular inspection object made of a magnetic member and a nonmagnetic member A detection coil wound in a circumferential direction of an axis, and measuring an electrical signal of the inspection object using an electromagnetic induction phenomenon using the output coil and the detection coil. Eddy current flaw detection sensor. 磁性体部材と非磁性体部材とからなる管状の検査対象物の外側に、前記検査対象物の軸心方向に対して傾斜する方向の複数の軸の周方向に別々に巻き回されると共に前記検査対象物の周方向に並べて配置された出力コイルと検波コイルとを有し、当該出力コイルと検波コイルとを用いて電磁誘導現象を利用した前記検査対象物についての電気信号の測定を行うことを特徴とする渦電流探傷センサ。   It is separately wound around the circumference of a plurality of axes in a direction inclined with respect to the axial direction of the inspection object, outside the tubular inspection object consisting of a magnetic member and a non-magnetic member, and Measuring an electrical signal of the inspection object using an electromagnetic induction phenomenon using an output coil and a detection coil arranged side by side in the circumferential direction of the inspection object, and using the output coil and the detection coil An eddy current flaw detection sensor. 前記検波コイルとして、前記軸の方向が相互に異なる複数のコイルを有することを特徴とする請求項4または5に記載の渦電流探傷センサ。   The eddy current flaw sensor according to claim 4, wherein the detection coil includes a plurality of coils whose directions of the axes are different from each other.
JP2009083060A 2009-03-30 2009-03-30 Eddy current flaw detection method and eddy current flaw detection sensor Expired - Fee Related JP5290020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083060A JP5290020B2 (en) 2009-03-30 2009-03-30 Eddy current flaw detection method and eddy current flaw detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009083060A JP5290020B2 (en) 2009-03-30 2009-03-30 Eddy current flaw detection method and eddy current flaw detection sensor

Publications (2)

Publication Number Publication Date
JP2010236928A true JP2010236928A (en) 2010-10-21
JP5290020B2 JP5290020B2 (en) 2013-09-18

Family

ID=43091393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083060A Expired - Fee Related JP5290020B2 (en) 2009-03-30 2009-03-30 Eddy current flaw detection method and eddy current flaw detection sensor

Country Status (1)

Country Link
JP (1) JP5290020B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169008A1 (en) * 2011-06-07 2012-12-13 三菱電機株式会社 Wire rope flaw detecting apparatus
GB2600466A (en) * 2020-10-30 2022-05-04 Energyline Science & Tech Limited A method and system for assessing the integrity of overhead power line conductors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2235654A1 (en) 2007-12-21 2010-10-06 Koninklijke Philips Electronics N.V. Detection of errors in the inference engine of a clinical decision support system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232355A (en) * 1985-08-05 1987-02-12 Nippon Steel Corp Eddy current flaw inspector
JPH033608A (en) * 1989-05-31 1991-01-09 Tohoku Electric Power Co Inc Diagnosing method for abnormality of electric wire
JPH07113788A (en) * 1993-10-13 1995-05-02 Yoshihiro Murakami Probe coil for eddy current flaw detection
JPH10170481A (en) * 1996-12-13 1998-06-26 Sumitomo Metal Ind Ltd Eddy current flaw detector
JPH10318988A (en) * 1997-03-19 1998-12-04 株式会社原子力エンジニアリング Eddy current flaw detection probe
JP2007271495A (en) * 2006-03-31 2007-10-18 Central Res Inst Of Electric Power Ind Corrosion evaluation method using eddy current test

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232355A (en) * 1985-08-05 1987-02-12 Nippon Steel Corp Eddy current flaw inspector
JPH033608A (en) * 1989-05-31 1991-01-09 Tohoku Electric Power Co Inc Diagnosing method for abnormality of electric wire
JPH07113788A (en) * 1993-10-13 1995-05-02 Yoshihiro Murakami Probe coil for eddy current flaw detection
JPH10170481A (en) * 1996-12-13 1998-06-26 Sumitomo Metal Ind Ltd Eddy current flaw detector
JPH10318988A (en) * 1997-03-19 1998-12-04 株式会社原子力エンジニアリング Eddy current flaw detection probe
JP2007271495A (en) * 2006-03-31 2007-10-18 Central Res Inst Of Electric Power Ind Corrosion evaluation method using eddy current test

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013011241; 小崎明郎: 'OPGWアルミ管診断への渦電流法の適用性' 平成20年電気学会電子・情報・システム部門大会 , 20081008, pp.674-679 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169008A1 (en) * 2011-06-07 2012-12-13 三菱電機株式会社 Wire rope flaw detecting apparatus
CN103562715A (en) * 2011-06-07 2014-02-05 三菱电机株式会社 Wire rope flaw detecting apparatus
JP5661181B2 (en) * 2011-06-07 2015-01-28 三菱電機株式会社 Wire rope flaw detector
US9075023B2 (en) 2011-06-07 2015-07-07 Mitsubishi Electric Corporation Wire rope flaw detector
KR101547049B1 (en) 2011-06-07 2015-08-24 미쓰비시덴키 가부시키가이샤 Wire rope flaw detecting apparatus
GB2600466A (en) * 2020-10-30 2022-05-04 Energyline Science & Tech Limited A method and system for assessing the integrity of overhead power line conductors

Also Published As

Publication number Publication date
JP5290020B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP4275173B2 (en) Two-dimensional eddy current probe and associated inspection method
US6400146B1 (en) Sensor head for ACFM based crack detection
US6791319B2 (en) Eddy current probe with transverse polygonal detecting coil
US7038445B2 (en) Method, system and apparatus for ferromagnetic wall monitoring
CN109781838B (en) Vortex-ultrasonic detection probe based on V-shaped coil excitation
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
US6014024A (en) Apparatus and method for detecting and/or measuring flaws in conductive material
CA2821256C (en) Broadband eddy current probe
JP5290020B2 (en) Eddy current flaw detection method and eddy current flaw detection sensor
CN211478151U (en) Array probe for eddy current testing of curved surface workpiece
JP5243828B2 (en) Eddy current flaw detection method and eddy current flaw detection sensor
JP6378554B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP7351332B2 (en) Eddy current flaw detection probe, flaw detection method, and eddy current flaw detection equipment
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
WO2009093070A1 (en) Eddy current inspection system and method of eddy current flaw detection
US5986452A (en) Apparatus and method for detecting flaws in conductive material
WO2006113504A2 (en) Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers
JP2002214202A (en) Eddy current flaw detection probe
JP2001183346A (en) Coil element for leakage flux flaw detection inspection, coil for leakage flux detection inspection, and/or leakage flux flaw detection inspecting device
JP2016133459A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP3076310B2 (en) Eddy current probe
KR200247319Y1 (en) Surface probe for eddy current inspection device
KR20110042907A (en) Eddy current probe for detecting defects of metal tube
JPH02126153A (en) Tube inspecting device using remote field eddy current method
Roy et al. Comparative study of E-shaped coil and evolution of new methodology for crack detection using eddy current testing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

LAPS Cancellation because of no payment of annual fees