JPS6232355A - Eddy current flaw inspector - Google Patents

Eddy current flaw inspector

Info

Publication number
JPS6232355A
JPS6232355A JP60172149A JP17214985A JPS6232355A JP S6232355 A JPS6232355 A JP S6232355A JP 60172149 A JP60172149 A JP 60172149A JP 17214985 A JP17214985 A JP 17214985A JP S6232355 A JPS6232355 A JP S6232355A
Authority
JP
Japan
Prior art keywords
coil
defect
eddy current
magnetic field
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60172149A
Other languages
Japanese (ja)
Inventor
Yoryo Masuko
益子 羊了
Yasuhiro Aikawa
相川 康浩
Akira Kimura
彰 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60172149A priority Critical patent/JPS6232355A/en
Publication of JPS6232355A publication Critical patent/JPS6232355A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute an eddy current flaw inspection by a high detecting capacity, by using a long through-coil for an excitation, and placing plural pieces of air-core detecting coils so as to be opposed in the outside periphery of a body to be inspected. CONSTITUTION:A sine wave voltage generated by an oscillator 10 is supplied to the exciting coil 5 of a detecting part. The coil 5 is a solenoid coil being long enough, therefore, a roughly uniform alternating magnetic field is formed in its inside. Also, to the surface and the surface layer of a body to be inspected 1, the eddy current of the opposite direction flows in the same direction as a current flowing in the coil 5 so as to negate its alternating magnetic field. Moreover, if a defect exists on the surface of the body to be inspected 1, the eddy current goes round the defect and flows, therefore, the magnetic field comes to have a vertical component. As a result, a magnetic field by this defect and a pancake coil 6 are interlinked, and a voltage is induced in the coil 6. This induced voltage is brought to a synchronous detection by a synchronous detector 14 through an amplifying circuit 12 by referring to a phase which has phase-shifted a phase of the oscillator 10 by a phase shifter 13. Also, a high frequency noise component is cut by a band-pass filter 15, and a defect is detected by a pulse height discriminating circuit 16.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は金属棒、金属線、金属管などの表面きず検出
に用いる渦流探傷試験装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an eddy current flaw detection testing device used for detecting surface flaws in metal rods, metal wires, metal tubes, etc.

〔従来の技術〕[Conventional technology]

貫通コイルを使用した渦流探傷試験は、棒、線、管など
の金属の導電体の表面または表層にある欠陥の検出に広
く用いられる。しかし、この方式は、被検体の寸法が大
きくなるにつれて、欠陥検出能力が低下するという欠点
がある。その理由は、検出コイルの平均径をD、欠陥の
被検体表面円周方向長さをQとするとき、充填率がほぼ
一定ならば、欠陥検出能力は、はぼ 検出コイルの長さL  π・D に比例するからである(第2図参照)、すなわち被検体
1の外径dが増加するにつれて1/πDが小さくなり、
その結果欠陥検出能力も低くなっていく。これの対策と
しては、検出コイルの円周方向長さしと欠陥の円周方向
長さQの比Q/Lを大きくすることであり、具体的には
プローブコイルを探出することが行なわれる。すなわち
プローブコイルを被検体のまわりを回転させる方式(回
転プローブ方式)か数多くのプローブコイルを被検体の
まわりに配置する方式(マルチプローブ方式)が考えら
れ、実際、回転プローブ方式は広く使われている。とこ
ろが、プローブコイルは貫通形コイルに比ベリフトオフ
(ギャップ)変動の影響を受けやすいという欠点がある
。回転ブーローブ方式において、これを軽減する方法と
して1例えば特開昭58−179354号公報に示され
るように、機械的なならい機構により被検体表面とプロ
ーブとの間隔を一定に保つことが提示されている。しか
しこの方法はならい機構が複雑になるという問題がある
。また円形断面形状を持たない被検体1例えば角形鋼管
など、では事実」一回転プローブ方式では探傷が困難で
ある。マルチプローブ方式に採用できる方式としては1
例えば特開昭59−9552号公報に示されるように、
標準比較方式のプローブと多重周波渦流探傷技術とを組
合せたリフトオフ変動に起因する信号抑制方法が提示さ
れている。しかしこの方法は電子回路が複雑になるとい
う問題がある。
Eddy current testing using penetrating coils is widely used to detect defects on the surface or surface layer of metal conductors such as rods, wires, and tubes. However, this method has the disadvantage that the defect detection ability decreases as the size of the object increases. The reason for this is that when the average diameter of the detection coil is D and the length of the defect in the circumferential direction on the surface of the object to be inspected is Q, if the filling rate is approximately constant, the defect detection ability is equal to the length of the detection coil L π・This is because it is proportional to D (see Figure 2), that is, as the outer diameter d of the object 1 increases, 1/πD becomes smaller.
As a result, the defect detection ability also decreases. A countermeasure for this is to increase the ratio Q/L between the circumferential length of the detection coil and the circumferential length Q of the defect. Specifically, the probe coil is detected. . In other words, there are two methods: rotating the probe coil around the object (rotating probe method) or arranging many probe coils around the object (multi-probe method).In fact, the rotating probe method is widely used. There is. However, the probe coil has the disadvantage that it is more susceptible to relative lift-off (gap) fluctuations than the through-type coil. In the rotary boolobe method, as a method to reduce this problem, for example, as shown in Japanese Patent Application Laid-Open No. 179354/1982, it has been proposed to maintain a constant distance between the surface of the subject and the probe using a mechanical tracing mechanism. There is. However, this method has a problem in that the tracing mechanism becomes complicated. Furthermore, in the case of the object 1 to be inspected that does not have a circular cross-sectional shape, such as a rectangular steel pipe, it is difficult to detect flaws using the one-rotation probe method. There are 1 methods that can be adopted for the multi-probe method.
For example, as shown in Japanese Patent Application Laid-Open No. 59-9552,
A signal suppression method due to lift-off variation is presented that combines a standard comparison type probe and multi-frequency eddy current testing technology. However, this method has the problem that the electronic circuit becomes complicated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上述べてきたように、貫通コイル方式は被検体の径が
大きくなると、欠陥検出能力が低下する。
As described above, in the through-coil method, as the diameter of the object increases, the defect detection ability decreases.

プローブコイル方式は原理上被検体の径に無関係に一定
の検出感度が得られるが、リフトオフの影響を受けやす
く、リフトオフ変動が不可避な現場での探傷では実質的
に十分な検出感度が得られなかった。被検体の径が大き
い場合に、リフトオフの変動の影響を交番づにくく、し
かも欠陥検出能力が高いという方法は、回転プローブ方
式にしろマルチプローブ方式にしろ、機械的または電子
回路的に複雑[こなり、コスト上また運転および保守上
In principle, the probe coil method can provide a constant detection sensitivity regardless of the diameter of the object to be inspected, but it is susceptible to lift-off, and it is practically impossible to obtain sufficient detection sensitivity in on-site flaw detection where lift-off fluctuations are unavoidable. Ta. When the diameter of the specimen is large, methods that reduce the effects of lift-off fluctuations and have high defect detection ability require complicated mechanical or electronic circuits, whether using a rotating probe method or a multi-probe method. cost and operation and maintenance.

問題があった。There was a problem.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、このよう従来の問題に着目してなされたも
ので、励磁用に十分長い貫通コイルを用い、複数個の空
心の検出コイルをその面が被検体の外周面に、間隔をお
いて、相対向するごとく、被検体の周りに配置したこと
を特徴とする。
This invention was made by focusing on such conventional problems, and uses a sufficiently long through coil for excitation, and a plurality of air-core detection coils are placed at intervals with their surfaces facing the outer circumferential surface of the test object. , are arranged around the subject so as to face each other.

以下この発明を図面に基づいて詳細に説明する。The present invention will be explained in detail below based on the drawings.

第1図はこの発明に係る渦流探傷装置の検出部を示す図
である。この発明はいわゆる相互誘導方式を採っている
。1は金属管などの被検体、2および3はナイロン、ベ
ークライトなどて作られるボビン、4はボビン3の段削
り部、5はボビン2に巻回した励磁コイル、6は段削り
部に固着された検出コイルである。
FIG. 1 is a diagram showing a detection section of an eddy current flaw detection apparatus according to the present invention. This invention employs a so-called mutual induction method. 1 is an object to be tested such as a metal tube, 2 and 3 are bobbins made of nylon, Bakelite, etc., 4 is a stepped portion of the bobbin 3, 5 is an excitation coil wound around the bobbin 2, and 6 is fixed to the stepped portion. This is a detection coil.

検出コイル6は、極細マグネットワイヤを用いた空心の
偏平な円形コイル(以後「パンケーキ・コイル」と呼ぶ
)である。このパンケーキ・コイル6を円筒面に平行に
設置する。この検出コイル用ボビン3は、上記励磁用ボ
ビン2の中に挿入する構造になっている。
The detection coil 6 is an air-centered flat circular coil (hereinafter referred to as a "pancake coil") using an ultra-fine magnet wire. This pancake coil 6 is installed parallel to the cylindrical surface. This detection coil bobbin 3 is structured to be inserted into the excitation bobbin 2.

なお第1図において中央部は検出コイル6の配置状況を
示すために励磁コイル5およびそのボビン2を描いてい
ないが、これらが実際は連続して存在することはもちろ
んである。パンケーキ・コイル6の導線は検出コイルボ
ビン3に2個所設けられた溝7を通して外部に取り出さ
れ、渦流探傷装置制御部へ導かれる。
In FIG. 1, the excitation coil 5 and its bobbin 2 are not shown in the center in order to show the arrangement of the detection coil 6, but it goes without saying that in reality, these exist continuously. The conducting wire of the pancake coil 6 is taken out to the outside through grooves 7 provided in two places in the detection coil bobbin 3, and guided to the eddy current flaw detection apparatus control section.

第3図に、この発明に係る渦流探傷装置の電子回路を示
す。10は発振器、11は電力増幅器、12は検出した
信号用の増幅器、13は移相器、14は同期検波回路、
15は帯域濾波器、16は波高弁別回路である。この図
では検出コイル6の出力は直接増幅器12に接続されて
いるが、2個のコイルでブリッジ回路の2辺になるよう
に構成してもよい、また複数個の検出コイルを直列に接
続するようにしてもよい。
FIG. 3 shows an electronic circuit of an eddy current flaw detection device according to the present invention. 10 is an oscillator, 11 is a power amplifier, 12 is an amplifier for the detected signal, 13 is a phase shifter, 14 is a synchronous detection circuit,
15 is a bandpass filter, and 16 is a pulse height discrimination circuit. In this figure, the output of the detection coil 6 is directly connected to the amplifier 12, but it is also possible to configure two coils to form two sides of a bridge circuit, or connect multiple detection coils in series. You can do it like this.

〔作用〕[Effect]

以下この発明の作用について説明する。発振器10で発
生された正弦波電圧は、電力増幅器11で増幅され、検
出部の励磁コイル5に供給される。
The operation of this invention will be explained below. The sine wave voltage generated by the oscillator 10 is amplified by the power amplifier 11 and supplied to the excitation coil 5 of the detection section.

この励磁コイル5は十分長いソレノイドコイルになって
いるため、その内部はほぼ均一な交番磁界が形成される
。被検体の表面および表層にはその交番磁界を打ち消す
ように、すなわち励磁コイル5に流れる電流と同じ(円
周)方向で向きが反対の渦電流が流れる。被検体に欠陥
が存在しないときは発生磁界はボビン表面に平行であり
、磁界とパンケーキ・コイル6とは鎖交しないため、パ
ンケーキ・コイル6には電圧が発生しない。ところが被
検体表面に欠陥があると渦電流は欠陥を迂回して流れる
ため、それによる磁界は垂直成分をもつようになる。そ
の結果この欠陥による磁界とパンケーキ・コイル6とは
鎖交するようになり、パンケーキ・コイル6に電圧が誘
起される。この誘起電圧を増幅器12で増幅し、発振器
10の位相を移相器13で移相した位相を参照して同期
検波器14で同期検波する。この際、移相量は被検体の
りフトオフの影響が最小になるように選ぶ。以後さらに
帯域濾波器15で高周波ノイズ成分をカットシ、波高弁
別回路16により欠陥を検出する。
Since this excitation coil 5 is a sufficiently long solenoid coil, a substantially uniform alternating magnetic field is formed inside it. Eddy currents flow in the same (circumferential) direction as the current flowing through the excitation coil 5 but opposite in direction to the surface and surface layer of the subject so as to cancel out the alternating magnetic field. When there is no defect in the object to be inspected, the generated magnetic field is parallel to the bobbin surface and the magnetic field does not interlink with the pancake coil 6, so no voltage is generated in the pancake coil 6. However, if there is a defect on the surface of the object, the eddy current flows around the defect, and the resulting magnetic field has a perpendicular component. As a result, the magnetic field due to this defect and the pancake coil 6 become interlinked, and a voltage is induced in the pancake coil 6. This induced voltage is amplified by an amplifier 12, and synchronously detected by a synchronous detector 14 with reference to the phase obtained by shifting the phase of the oscillator 10 by a phase shifter 13. At this time, the amount of phase shift is selected so that the influence of lift-off of the subject is minimized. Thereafter, a bandpass filter 15 further cuts out high frequency noise components, and a pulse height discrimination circuit 16 detects defects.

〔発明の実施例〕[Embodiments of the invention]

以下実施例および実験結果について説明する。 Examples and experimental results will be described below.

第4図および第5図に各々実験に用いた励磁コイル用ボ
ビン2および検出コイル用ボビン3の寸法を示す。単位
はl11mである。励磁コイル用ボビン2には線径0.
6nmのマグネタ1〜ワイヤを108回巻いた。検出コ
イルは外径4III11の真ちゅうの棒に線径0.05
+omの極細マグネットワイヤを200回巻き、製作し
た。そして検出コイル2個を検出コイル用ボビン3の段
部に装着し、このボビン3を励磁コイル用ボビン2に挿
入して検出部とした。円形パンケーキ・コイル6の有効
検出範囲は直径の約0.75倍であるから1本実施例で
は全円周のうち4X0.75X2=6++nがその有効
範囲となる。そこでこの範囲に人工欠陥がはいるように
して実験した。
FIGS. 4 and 5 show the dimensions of the exciting coil bobbin 2 and the detection coil bobbin 3 used in the experiment, respectively. The unit is l11m. The excitation coil bobbin 2 has a wire diameter of 0.
A 6 nm magnetor wire was wound 108 times. The detection coil is a brass rod with an outer diameter of 4III11 and a wire diameter of 0.05.
It was manufactured by winding +om ultra-fine magnet wire 200 times. Then, two detection coils were attached to the stepped portion of the detection coil bobbin 3, and this bobbin 3 was inserted into the excitation coil bobbin 2 to form a detection section. Since the effective detection range of the circular pancake coil 6 is approximately 0.75 times the diameter, in this embodiment, the effective range is 4X0.75X2=6++n out of the entire circumference. Therefore, we conducted an experiment in which artificial defects were placed within this range.

渦流探傷袋口は市販のものを用いた。試料として外径1
0m、肉厚1mの鋼管に人工欠陥として深さ0.3nm
、幅0.51111、長さ10−の溝を加工したものを
用いた。使用周波数RkHzで実験した結果を第6図に
示す。第6図より十分高いS/N比で検出【ノているこ
とがわかる。さらに上記において、パンケーキ・コイル
6のみによる自己誘導方式で実験したところ、ガタ信号
の影響が大きく全く検出できなかった。
A commercially available eddy current flaw detection bag opening was used. Outer diameter 1 as a sample
0m, depth of 0.3nm as an artificial defect in a steel pipe with a wall thickness of 1m
, a groove with a width of 0.51111 mm and a length of 10 mm was used. FIG. 6 shows the results of an experiment at the operating frequency of RkHz. From FIG. 6, it can be seen that detection is achieved with a sufficiently high S/N ratio. Further, in the above, when an experiment was conducted using a self-induction method using only the pancake coil 6, the influence of the backlash signal was so large that it could not be detected at all.

以上の説明において検出コイル6は空心の偏平な円形コ
イルとしたが、角形であっても勿論よい。
In the above description, the detection coil 6 is an air-centered flat circular coil, but it may of course be rectangular.

検出コイル6の形状は検出すべき欠陥の形態に応じ適切
な形を選択することが好ましLl。
It is preferable that the shape of the detection coil 6 is selected appropriately depending on the form of the defect to be detected.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば極めて簡単な構
成で、プローブコイルに付随するリフトオフ効果を大幅
に軽減でき、その結果試料の多少の振動が不可避な実際
の現場での渦流探傷において高い検出能力を得ることが
できる。
As explained above, according to the present invention, the lift-off effect associated with the probe coil can be significantly reduced with an extremely simple configuration, resulting in high detection in eddy current flaw detection in actual sites where some vibration of the sample is unavoidable. ability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明に係る渦流探傷試験装置の検出部を示
す斜視図であり、ボビン2の中央部は切除して示す。 第2図は従来の貫通形検出コイルとそれを貫通する被検
体の横断面図である。 第3図は本発明に係る渦流探傷装置の電子回路部の構成
を示すブロック図である。 第4図および第5図は本発明の渦流探傷装置の励磁コイ
ル用ボビンおよび検出コイル用ボビンの一例の寸法を示
す断面図であり、第6図はこれらのボビンを用いた渦流
探傷における欠陥検出信号の一例を示すグラフ、第7図
は従来法による欠陥検出信号を示すグラフである。 1・・・・・・被検体    2・・・励磁コイル用ボ
ビン3・・・・・・検出コイル用ボビン 4・・・・・・検出コイル用ボビンの段削り個所5・・
・・・・励磁コイル(励磁用貫通コイル)6・・・・・
・検出コイル(検出用空心偏平コイル)7・・・・・・
溝      8・・・・・・人工欠陥lO・・・・・
・発振器    11・・・・・・電力増幅器12・・
・・・・増幅器    13・・・・・・移相器14・
・・・・・同期検波器  15・・・・・・帯域濾波器
16・・・・・・波高弁別回路 17・・・・・・貫通
形検出コイル18・・・・・・表面欠陥 嶌48図 嶌58図 驚4b図 克5b図 嶌6に 声7図 4号也瓜 手続補正書(自発) 昭和60年 9月 9日 の表示 昭和60年特許願第172149号j、9e明
の名称    渦流探傷試験装置3、補正をする者 事件との関係   特許出願人 住所    東京都千代田区大手町二丁目6番3号  
−名称 4、代理 の対象 明細書の発明の詳細な説明の欄、および図面6
、補正の内容 (1)明細書簡2亘第(3行のrl/πD」をrQ/π
D」と訂正する。 (2)第2図を添付した別紙の通りに訂正する。 7、添付書類の目餘 図面・・・1葉 糖2図
FIG. 1 is a perspective view showing a detection section of an eddy current flaw detection testing device according to the present invention, with the central portion of the bobbin 2 cut away. FIG. 2 is a cross-sectional view of a conventional penetrating detection coil and a subject passing through it. FIG. 3 is a block diagram showing the configuration of the electronic circuit section of the eddy current flaw detection apparatus according to the present invention. 4 and 5 are cross-sectional views showing the dimensions of an example of the excitation coil bobbin and the detection coil bobbin of the eddy current flaw detection apparatus of the present invention, and FIG. 6 shows defect detection in eddy current flaw detection using these bobbins. A graph showing an example of a signal, FIG. 7 is a graph showing a defect detection signal according to a conventional method. 1...Object to be inspected 2...Bobbin for exciting coil 3...Bobbin for detection coil 4...Step-cut portion of bobbin for detection coil 5...
...Excitation coil (through-hole coil for excitation) 6 ...
・Detection coil (air-centered flat coil for detection) 7...
Groove 8...Artificial defect lO...
・Oscillator 11...Power amplifier 12...
...Amplifier 13... Phase shifter 14.
... Synchronous detector 15 ... Bandpass filter 16 ... Wave height discrimination circuit 17 ... Penetrating detection coil 18 ... Surface defect 48 Zushima 58 Zukin 4b Zuke 5b Zushima 6 Voice 7 Figure 4 Yaguan procedural amendment (voluntary) Displayed on September 9, 1985 Patent application No. 172149 1985 J, 9e Ming name Eddy current Flaw Detection Testing Device 3, Relationship with the Amendment Case Patent Applicant Address 2-6-3 Otemachi, Chiyoda-ku, Tokyo
- Name 4, object of representation Detailed description of the invention in the specification and drawing 6
, Contents of amendment (1) 2nd line of specification letter (3rd line rl/πD") to rQ/π
D” and correct it. (2) Correct Figure 2 as shown in the attached sheet. 7. Attached document drawing of eyelids... 1. Foliage 2.

Claims (1)

【特許請求の範囲】[Claims] 被検体をその軸方向に貫通させる配置とした励磁用貫通
コイルと、該励磁用貫通コイルを貫通する被検体外周面
に偏平面が対向する配置とした複数個の検出用空心偏平
コイルを備える渦流探傷試験装置。
A vortex current comprising an excitation penetrating coil arranged to penetrate the test object in the axial direction thereof, and a plurality of air-core flat flat detection coils arranged so that the flat plane faces the outer circumferential surface of the test object passing through the excitation penetrating coil. Flaw detection testing equipment.
JP60172149A 1985-08-05 1985-08-05 Eddy current flaw inspector Pending JPS6232355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60172149A JPS6232355A (en) 1985-08-05 1985-08-05 Eddy current flaw inspector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60172149A JPS6232355A (en) 1985-08-05 1985-08-05 Eddy current flaw inspector

Publications (1)

Publication Number Publication Date
JPS6232355A true JPS6232355A (en) 1987-02-12

Family

ID=15936471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60172149A Pending JPS6232355A (en) 1985-08-05 1985-08-05 Eddy current flaw inspector

Country Status (1)

Country Link
JP (1) JPS6232355A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234152A (en) * 1987-03-23 1988-09-29 Chubu Electric Power Co Inc Fault detecting device for overhead wire
JPS63234149A (en) * 1987-03-23 1988-09-29 Chubu Electric Power Co Inc Fault detecting device for overhead wire
US6850056B2 (en) 2000-09-05 2005-02-01 Nippon Steel Corporation Flaw detection device for steel bar
JP2008164393A (en) * 2006-12-27 2008-07-17 Yazaki Corp Device and method for determining deterioration of shielding conductor of high voltage cable
JP2010236928A (en) * 2009-03-30 2010-10-21 Central Res Inst Of Electric Power Ind Method and sensor for detection of eddy current flaw
JP2015508897A (en) * 2012-02-23 2015-03-23 インスティトゥート ドクトル フェルスター ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Penetration coil configuration, test apparatus having penetration coil configuration, and test method
CN106932472A (en) * 2017-03-05 2017-07-07 北京工业大学 A kind of two-way excitation eddy current sensor of magnetic screen type
JP2019082369A (en) * 2017-10-30 2019-05-30 矢崎エナジーシステム株式会社 Corrosion diagnostic method and corrosion diagnostic device
GB2600466A (en) * 2020-10-30 2022-05-04 Energyline Science & Tech Limited A method and system for assessing the integrity of overhead power line conductors

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234152A (en) * 1987-03-23 1988-09-29 Chubu Electric Power Co Inc Fault detecting device for overhead wire
JPS63234149A (en) * 1987-03-23 1988-09-29 Chubu Electric Power Co Inc Fault detecting device for overhead wire
US6850056B2 (en) 2000-09-05 2005-02-01 Nippon Steel Corporation Flaw detection device for steel bar
JP2008164393A (en) * 2006-12-27 2008-07-17 Yazaki Corp Device and method for determining deterioration of shielding conductor of high voltage cable
JP2010236928A (en) * 2009-03-30 2010-10-21 Central Res Inst Of Electric Power Ind Method and sensor for detection of eddy current flaw
JP2015508897A (en) * 2012-02-23 2015-03-23 インスティトゥート ドクトル フェルスター ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Penetration coil configuration, test apparatus having penetration coil configuration, and test method
CN106932472A (en) * 2017-03-05 2017-07-07 北京工业大学 A kind of two-way excitation eddy current sensor of magnetic screen type
JP2019082369A (en) * 2017-10-30 2019-05-30 矢崎エナジーシステム株式会社 Corrosion diagnostic method and corrosion diagnostic device
GB2600466A (en) * 2020-10-30 2022-05-04 Energyline Science & Tech Limited A method and system for assessing the integrity of overhead power line conductors

Similar Documents

Publication Publication Date Title
US4602212A (en) Method and apparatus including a flux leakage and eddy current sensor for detecting surface flaws in metal products
US4107605A (en) Eddy current flaw detector utilizing plural sets of four planar coils, with the plural sets disposed in a common bridge
AU595748B2 (en) Magnetic flux leakage probe with radially offset coils for use in nondestructives testing of pipes and tubes
US3952315A (en) Eddy current discontinuity probe utilizing a permanent magnet bobbin with at least one A.C. energized coil mounted in a groove thereon
JPH06331602A (en) Method and equipment for checking structural defect of long magnetic material nondestructively
JP4003975B2 (en) Metal inspection method and metal inspection apparatus
JP2013205024A (en) Detector for non-destructive examination employing alternating field
JP2639264B2 (en) Steel body inspection equipment
WO2017158898A1 (en) Inspection device, inspection method and non-contact sensor
JP4804006B2 (en) Flaw detection probe and flaw detection apparatus
JPS6232355A (en) Eddy current flaw inspector
WO2017082770A1 (en) Method for eddy-current testing of electrically conductive objects and device for realizing said method
JP6452880B1 (en) Method and apparatus for inspecting flaws or defects in tubular body
JP3572452B2 (en) Eddy current probe
WO2006113504A2 (en) Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers
JPS61198055A (en) Insertion type probe for eddy current examination
EP0186964A1 (en) Eddy current probes for detecting faults in structures and methods of detecting such faults
JP3140105B2 (en) Electromagnetic induction type inspection equipment
JP2000227420A (en) Multi-probe type eddy current examination and eddy current test equipment
JPS61147158A (en) Defect detecting device for strip
JP3268219B2 (en) Eddy current detector
JPS6135348A (en) Flaw detecting device for wire rope
JP3223991U (en) Nondestructive inspection equipment
SU555332A1 (en) Eddy current transducer for flaw detection of blind holes and pipes
RU2651618C1 (en) Method of eddy current control of extended electrical conductive objects and device for its implementation