JP3140105B2 - Electromagnetic induction type inspection equipment - Google Patents

Electromagnetic induction type inspection equipment

Info

Publication number
JP3140105B2
JP3140105B2 JP25559791A JP25559791A JP3140105B2 JP 3140105 B2 JP3140105 B2 JP 3140105B2 JP 25559791 A JP25559791 A JP 25559791A JP 25559791 A JP25559791 A JP 25559791A JP 3140105 B2 JP3140105 B2 JP 3140105B2
Authority
JP
Japan
Prior art keywords
coil
detection
induction
inspection
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25559791A
Other languages
Japanese (ja)
Other versions
JPH052082A (en
Inventor
和彦 八十濱
博明 小濱
博文 高橋
Original Assignee
偕成エンジニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 偕成エンジニア株式会社 filed Critical 偕成エンジニア株式会社
Priority to JP25559791A priority Critical patent/JP3140105B2/en
Priority to KR1019910018697A priority patent/KR920008489A/en
Priority to TW084208685U priority patent/TW341328U/en
Publication of JPH052082A publication Critical patent/JPH052082A/en
Priority to US08/061,504 priority patent/US5432444A/en
Application granted granted Critical
Publication of JP3140105B2 publication Critical patent/JP3140105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、電磁誘導の変化によ
って被検査物の異常などを検出するための電磁誘導を利
用した検査装置に関し、特に、食品、薬品錠剤、合成樹
脂製品、工作物などの被検査物を励磁コイルによる磁界
中におき、それによる電磁誘導の変化によって被検査物
に混入した異物などを検出する検査装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection apparatus using electromagnetic induction for detecting an abnormality of an inspection object by a change in the electromagnetic induction, and more particularly to a food, a pharmaceutical tablet, a synthetic resin product, a workpiece, and the like. The present invention relates to an inspection apparatus in which an object to be inspected is placed in a magnetic field generated by an exciting coil, and a foreign substance or the like mixed in the object to be inspected due to a change in electromagnetic induction caused by the object.

【0002】[0002]

【従来の技術】交流磁界中に物体をおくと磁束に変化が
生じ、同じ磁場中におかれたコイルのインダクタンスが
変化する。このインダクタンスは、磁場中の物体の誘電
率、透磁率、大きさ、磁場中の位置などの因子に比例し
て変化する。これらのうちのいくつかの既知の因子を一
定にして、物体を磁場中におくと、他の未知因子を正確
に認識することができる。この原理を利用して検体の同
定、物質の在否を認知するなどの非破壊検査機能をもつ
電磁誘導検査装置が多く提案されている。
2. Description of the Related Art When an object is placed in an alternating magnetic field, the magnetic flux changes, and the inductance of a coil placed in the same magnetic field changes. This inductance changes in proportion to factors such as the permittivity, magnetic permeability, size, and position in the magnetic field of the object in the magnetic field. If some of these known factors are kept constant and the object is placed in a magnetic field, other unknown factors can be accurately recognized. Many electromagnetic induction inspection apparatuses having a nondestructive inspection function such as identification of a specimen and recognition of the presence or absence of a substance using this principle have been proposed.

【0003】この種の従来の検査装置の典型例を図10
に従って説明すると、交流電流の印加によって磁界を発
生する電磁コイル1をブリッジ回路2の一辺に介在させ
た構成のものがある。この検査装置では、コイル1が定
常状態の場合、交流電源3によって励磁される電磁コイ
ル1とこれに対応する辺のインダクタLはインダクタン
スが等しく、且つ、他の2辺の抵抗R1、R2を同一に
設定して平衡を維持している。つまり、平衡状態におい
てブリッジ回路2の出力点a、bの差動電圧をとる差動
増幅器4からの出力Voutは理論的に零になる。
FIG. 10 shows a typical example of such a conventional inspection apparatus.
According to the configuration described above, there is a configuration in which an electromagnetic coil 1 that generates a magnetic field by applying an alternating current is interposed on one side of a bridge circuit 2. In this inspection device, when the coil 1 is in a steady state, the electromagnetic coil 1 excited by the AC power supply 3 and the inductor L on the corresponding side have the same inductance, and the resistances R1 and R2 on the other two sides are the same. To maintain equilibrium. That is, in a balanced state, the output Vout from the differential amplifier 4 that takes the differential voltage between the output points a and b of the bridge circuit 2 becomes theoretically zero.

【0004】ところが、電磁コイル1が形成する磁界
(磁束f)に物体Sが入ると、電磁コイル1の自己誘導
インダクタンスが変化する。結果として、ブリッジ回路
2におけるインダクタLと電磁コイル1の平衡が崩れて
出力点a、bに電位差が生じ、物体Sの誘導係数に応じ
た出力Voutが得られる。これによる出力Voutの変化を予
めデータ化しておけば、物体Sの材質、大きさ、更に
は、磁界中を移動する速度などを認識することが可能と
なる。また、既知の検体に対して、その中に混入する異
物も容易に検出できる。この場合、予め規定した基準物
体をインダクタLに対向させておき、正常な被検査物を
電磁コイル1に接近させた時に基準物体と被検査物とが
平衡な定常状態を呈するように設定されている。
However, when the object S enters the magnetic field (magnetic flux f) formed by the electromagnetic coil 1, the self-induced inductance of the electromagnetic coil 1 changes. As a result, the balance between the inductor L and the electromagnetic coil 1 in the bridge circuit 2 breaks down, causing a potential difference between the output points a and b, and an output Vout corresponding to the induction coefficient of the object S is obtained. If the change in the output Vout due to this is converted into data in advance, it is possible to recognize the material and size of the object S, as well as the speed of moving in the magnetic field. Further, a foreign substance mixed in a known sample can be easily detected. In this case, a predetermined reference object is set to face the inductor L, and the reference object and the test object are set so as to exhibit a balanced steady state when a normal test object approaches the electromagnetic coil 1. I have.

【0005】更に、図11に示すような相互インダクタ
ンスを利用した検査装置も提案されている。この従来装
置は、交流電源5に励磁される励磁コイル(一次コイ
ル)6と、励磁コイル6の磁束を受けて起電力を生じる
一対の検出コイル(2次コイル)7a、7bと差動増幅
器8とからなる。検出コイル7a、7bは逆方向に巻回
されて直列に差動接続され、定常状態において励磁コイ
ル6の磁束fを均等に受けて起電力を相殺する構成にな
っている。つまり、定常状態では検出コイル7a、7b
の出力点a、bの差動電圧(差動増幅器8の出力Vout)
は理論的に零である。
Further, there has been proposed an inspection apparatus using mutual inductance as shown in FIG. This conventional device comprises an exciting coil (primary coil) 6 excited by an AC power supply 5, a pair of detection coils (secondary coils) 7a and 7b receiving an magnetic flux of the exciting coil 6 to generate an electromotive force, and a differential amplifier 8 Consists of The detection coils 7a and 7b are wound in opposite directions and connected in series in a differential manner, and receive a magnetic flux f of the excitation coil 6 in a steady state to cancel the electromotive force. That is, in the steady state, the detection coils 7a, 7b
Differential voltage at output points a and b (output Vout of differential amplifier 8)
Is theoretically zero.

【0006】この検査装置では通常、励起コイル6と検
出コイル7a、7bとの間に検査路9を形成し、ここに
物体Sを通過させる。物体Sが励起コイル6からの磁束
fを切ることで検出コイル7a、7bが受ける磁束鎖交
数が変化し、検出コイル7a、7bの夫々の起電力が非
平衡になり、差動出力Voutが現れる。これにより、物体
Sの材質、大きさ、あるいは、工作物の欠陥などを検出
することができる。
In this inspection apparatus, usually, an inspection path 9 is formed between the excitation coil 6 and the detection coils 7a and 7b, and the object S is made to pass therethrough. When the object S cuts off the magnetic flux f from the excitation coil 6, the number of magnetic flux linkages applied to the detection coils 7a and 7b changes, and the respective electromotive forces of the detection coils 7a and 7b become unbalanced, and the differential output Vout becomes appear. This makes it possible to detect the material and size of the object S, a defect of the workpiece, and the like.

【0007】[0007]

【発明が解決しようとする課題】上記従来の装置の構成
からも明らかなように、この種の電磁誘導検査装置で
は、誘導コイルを含む平衡回路における誘導インダクタ
ンスの非平衡状態を差動電圧として検出するので、検出
精度を向上させるためには、検体が磁束を鎖交すること
による起電力の変化を高感度に検出する必要がある。
As apparent from the configuration of the above-mentioned conventional apparatus, in this type of electromagnetic induction inspection apparatus, the unbalanced state of the induced inductance in a balanced circuit including an induction coil is detected as a differential voltage. Therefore, in order to improve the detection accuracy, it is necessary to detect a change in the electromotive force due to the interlinkage of the magnetic flux with the sample with high sensitivity.

【0008】ところが、前者の自己インダクタンス型の
検査装置では、自己インダクタンスの変化率(基底イン
ダクタンスに対する変化時のインダクタンスとの差)が
極めて小さく、被検査物が十分に大きい誘電率を持つ
か、あるいは、強磁性体などのように大きな磁場変化を
もたらすものでなければ検出が不可能であった。つま
り、検出感度が極めて低く、被検査物の材質の識別ある
いは非金属の検出などのようにインダクタンス変化率が
小さい検査物には対応できなかった。
However, in the former self-inductance type inspection apparatus, the rate of change of the self-inductance (the difference from the inductance at the time of change with respect to the base inductance) is extremely small, and the test object has a sufficiently large dielectric constant. However, detection cannot be performed unless a large magnetic field change is caused, such as a ferromagnetic material. That is, the detection sensitivity is extremely low, and it cannot be applied to an inspection object having a small inductance change rate such as identification of a material of the inspection object or detection of a nonmetal.

【0009】一方、後者の相互インダクタンス型の電磁
誘導型検査装置は、励磁コイル(一次コイル)6と検出
コイル(二次コイル)7a、7bの間に検査路9が存在
し、検出コイル7a、7bの誘導効率は検査路9の大き
さ(励磁コイルから検出コイルまでの距離d)に反比例
するので、励磁コイルと検出コイルの間隔(検査路)を
大きくするのにも限界があった。つまり、検査路9を必
要とするために装置の大型化を伴ないながらも、検査対
象の物体の大きさが制限され、実質的に大型の対象物を
検査することは不可能であった。また、励磁コイル6の
励磁性能を高めて検査路9を広げると分解能が低下し、
微小な変化が検出不能である。
On the other hand, the latter mutual inductance type electromagnetic induction type inspection apparatus has an inspection path 9 between the excitation coil (primary coil) 6 and the detection coils (secondary coils) 7a, 7b, and the detection coil 7a, Since the induction efficiency of 7b is inversely proportional to the size of the inspection path 9 (the distance d from the excitation coil to the detection coil), there is a limit in increasing the distance between the excitation coil and the detection coil (inspection path). In other words, the size of the object to be inspected is limited, and it is impossible to inspect a substantially large object even though the size of the apparatus is increased due to the necessity of the inspection path 9. In addition, when the excitation performance of the excitation coil 6 is increased and the inspection path 9 is widened, the resolution decreases,
A minute change cannot be detected.

【0010】ほかに、相互インダクタンス型の検査装置
が不可避的に内在する欠点がある。たとえば、図11に
示すように、検査時に検出コイル7aの近傍に検体Sが
存在して検出コイル7aに鎖交する磁束に変化を及ぼす
と検出コイル7aのインダクタンスが変化するが、この
時点で基準インダクタンスとなるべき検出コイル7bの
インダクタンスも多かれ少なかれ変化する。すなわち、
物体Sによって検出コイル7aの起電力を、同時に変化
する検出コイル7bの起電力が打ち消すことになる。こ
の起電力の相殺作用は検体Sのコイルに対する相対位置
によって複雑に変化し、所期の起電力変化量が場合によ
っては無視できないほどの検出誤差をもたらす。
Another disadvantage is that a mutual inductance type inspection device is inevitably included. For example, as shown in FIG. 11, the inductance of the detection coil 7a changes when the sample S is present in the vicinity of the detection coil 7a at the time of the test and changes the magnetic flux linked to the detection coil 7a. The inductance of the detection coil 7b, which should be the inductance, also changes more or less. That is,
The object S cancels the electromotive force of the detection coil 7a, which changes simultaneously with the electromotive force of the detection coil 7b. This canceling action of the electromotive force changes in a complicated manner depending on the relative position of the sample S to the coil, and the expected electromotive force change amount sometimes causes a detection error that cannot be ignored.

【0011】上述したように、従来の電磁誘導型検査装
置では、検査対象物の大きさが制限され、食品に混入す
る異物あるいは工作物の欠陥等の微小対象物の検出に精
度が劣り、被検査物の材質同定などの微妙な検査には到
底対応できないなどの欠点があった。
As described above, in the conventional electromagnetic induction type inspection apparatus, the size of the inspection object is limited, and the accuracy of detecting a minute object such as a foreign substance mixed in food or a defect of a workpiece is inferior. There is a drawback in that it cannot respond to delicate inspections such as material identification of inspection objects.

【0012】この発明は上記した従来装置の欠点を解消
するためになされたもので、その目的とするところは、
誘電体、磁性体を問わずあらゆる検査対象物を高感度、
高精度で検査、検出できる電磁誘導型検査装置を提供す
ることにある。この発明の他の目的は、食品、薬品錠
剤、合成樹脂製品、工作物などの被検査物の在否のみな
らず、それらの被検査物に含まれる異物乃至欠陥などを
分解能よく検出でき、しかも、被検査物の大きさに関係
なく小型化に対応できる高性能電磁誘導型検査装置を提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks of the conventional apparatus.
High sensitivity for all inspection objects regardless of dielectric or magnetic
An object of the present invention is to provide an electromagnetic induction type inspection device capable of performing inspection and detection with high accuracy. Another object of the present invention is to detect not only the presence or absence of inspection objects such as foods, pharmaceutical tablets, synthetic resin products, and workpieces, but also foreign objects or defects contained in those inspection objects with high resolution, and Another object of the present invention is to provide a high-performance electromagnetic induction type inspection apparatus that can cope with miniaturization regardless of the size of an object to be inspected.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、この発明による電磁誘導装置は次のような手段を採
用する。
To achieve the above object, the electromagnetic induction device according to the present invention employs the following means.

【0014】磁性体と非磁性体を被検査物とし、 a)交流電流を出力する交流電源と、 b)交流電流の印加により励磁して磁場を形成する励磁
コイルと、該励磁コイルの励磁によって電磁誘導して起
電力を発生させる少なくとも一つの誘導コイルとを備
え、該誘導コイルを該励磁コイルの外周面あるいは内周
面に密接に同軸巻回して一体に構成してなる検出コイル
部と、 c)検出コイル部の内部中空孔と一方端に対向する位置
のいずれかに選択可能に設けられる被検査部と、 d)誘導コイルの出力から被検査物による磁場の変化を
検出する検出回路と、からなる検査装置であって、該検
出回路を、該検出コイル部と同一構成のインダクタを該
検出コイル部に直列接続してなる平衡回路と、該平衡回
路からの出力を増幅する増幅器と、該増幅器の出力から
被検査物を判定する判定回路と、で構成してなる。
A magnetic substance and a non-magnetic substance are inspected, a) an AC power supply for outputting an AC current, b) an excitation coil which forms a magnetic field by being excited by the application of the AC current, and A detection coil unit comprising at least one induction coil for generating an electromotive force by electromagnetic induction, and integrally forming the induction coil so as to be coaxially wound closely on the outer peripheral surface or the inner peripheral surface of the excitation coil; c) a portion to be inspected, which is selectably provided at one of a position facing one end and an inner hollow hole of the detection coil portion; and d) a detection circuit for detecting a change in a magnetic field due to the object to be inspected from an output of the induction coil. The detection circuit, the detection circuit, a balanced circuit in which an inductor having the same configuration as the detection coil unit is connected in series to the detection coil unit, and an amplifier that amplifies the output from the balanced circuit, The amplification A determination circuit for determining an object to be inspected from the output of the device.

【0015】[0015]

【作用】誘導コイルは励磁コイルの磁場の磁束に鎖交し
て起電力を誘導し、励磁コイルが形成する磁場中に被検
査物をおくことで変化する磁束鎖交数に対応してインダ
クタンスが変化する。検出回路を、検出コイル部と同一
構成のインダクタを備える平衡回路、増幅器、判定回路
で構成し、誘導コイルのインダクタンスの変化を増幅、
判定することで、インダクタンスの変化量を容易に把握
できる。
The induction coil interlinks with the magnetic flux of the magnetic field of the exciting coil to induce electromotive force, and the inductance corresponding to the number of magnetic flux interlinkage that changes when the object to be inspected is placed in the magnetic field formed by the exciting coil. Change. The detection circuit is composed of a balance circuit, an amplifier, and a determination circuit having an inductor of the same configuration as the detection coil unit, and amplifies a change in inductance of the induction coil.
By making the determination, the amount of change in the inductance can be easily grasped.

【0016】誘導コイルを励磁コイルの外周面あるいは
内周面に配設することで、誘導コイルと励磁コイルを同
軸に一体化した検出コイル部が構成される。この際、励
磁コイルの交流磁界による誘導コイルの電磁誘導は、誘
導コイルと励磁コイルを密接に一体化させることで、漏
れ磁束を減らして鎖交率を高め、高い効率で相互インダ
クタンスを起こさせる。また、被検査部として、内部中
空孔と一方端に対向する位置のいずれかを選択可能であ
るため、検査装置における検出部の構成を必要に応じて
小型化でき、しかも被検査物の大きさに制約を与えるこ
ともない。発明の他の目的、特徴は添付図面に基づく以
下の詳しい説明で明らかにする。
By disposing the induction coil on the outer peripheral surface or the inner peripheral surface of the excitation coil, a detection coil unit in which the induction coil and the excitation coil are coaxially integrated is formed. At this time, electromagnetic induction of the induction coil by the AC magnetic field of the excitation coil reduces the leakage magnetic flux by increasing the integration ratio between the induction coil and the excitation coil, thereby causing mutual inductance with high efficiency. In addition, since the portion to be inspected can be selected from either the internal hollow hole or a position facing one end, the configuration of the detecting unit in the inspection device can be reduced as necessary, and the size of the object to be inspected can be reduced. Does not impose any restrictions. Other objects and features of the present invention will become apparent from the following detailed description with reference to the accompanying drawings.

【0017】[0017]

【実施例】この発明の第1の実施例として図1に概略的
に示す電磁誘導型検査装置は、交流電流を出力する交流
電源11と、被検査物に対向して電磁誘導の変化を形成
する検出コイル部13と、検出コイル部13からの出力
から被検査物の態様を判定する検出回路15とからな
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As a first embodiment of the present invention, an electromagnetic induction type inspection apparatus schematically shown in FIG. 1 forms an AC power supply 11 for outputting an alternating current and a change in electromagnetic induction facing an object to be inspected. And a detection circuit 15 for determining an aspect of the inspection object from an output from the detection coil unit 13.

【0018】検出コイル部13は、交流電源11からの
交流電流の印加を受けて励磁し交流磁界(磁束f)を形
成する励磁コイル13aと、励磁コイル13aの外周面
の一方端の一部に密接に同軸巻回され励磁コイル13a
の交流磁界によって電磁誘導して起電力を出力する誘導
コイル13bとからなる。一次側の励磁コイル13aと
二次側の誘導コイル13bが一体になっており、誘導コ
イル13bが励磁コイル13aによる励起磁束fの全て
に鎖交するので、極めて高い効率で誘導コイル13bに
相互インダクタンスが起り、大きい交流起電力が出力さ
れる。そこで、図示のように、励磁コイル13aによる
磁束fを鎖交するように被検査物Sをおくと誘導コイル
13bのインダクタンスに変化がみられる。このインダ
クタンスの変化は被検査物Sの大きさ、材質などの因子
によって異なる。励磁コイル13aによる磁場に被検査
物Sが存在していない定常状態における誘導コイル13
bのインダクタンスと、同上磁場中に被検査物Sが存在
する場合のインダクタンスとの差を判定することで、単
に被検査物Sの在否乃至大きさのみならず、その材質、
更には被検査物Sに混入する異物の存在をも正確に識別
することができる。
The detection coil unit 13 is provided with an excitation coil 13a which is excited by receiving an AC current from the AC power supply 11 to form an AC magnetic field (magnetic flux f), and a part of one end of the outer peripheral surface of the excitation coil 13a. Closely coaxially wound excitation coil 13a
And an induction coil 13b that outputs an electromotive force by electromagnetic induction by the AC magnetic field. The excitation coil 13a on the primary side and the induction coil 13b on the secondary side are integrated, and the induction coil 13b is linked to all of the excitation magnetic flux f generated by the excitation coil 13a. Occurs, and a large AC electromotive force is output. Therefore, as shown in the drawing, when the inspection object S is placed so as to link the magnetic flux f generated by the excitation coil 13a, the inductance of the induction coil 13b changes. This change in inductance depends on factors such as the size and material of the inspection object S. Induction coil 13 in a steady state where test object S does not exist in the magnetic field generated by exciting coil 13a
By determining the difference between the inductance of the test object S and the inductance when the test object S is present in the same magnetic field, not only the existence or size of the test object S but also its material,
Further, the presence of a foreign substance mixed in the inspection object S can be accurately identified.

【0019】上記検出コイル部13は、図2に示すよう
に、ボビン16に導電性線材を多重巻回して励磁コイル
13aを形成し、励磁コイル13aの外周面にアルミ箔
などの電磁シールド層17と絶縁シート18を層状に巻
きつけ、更に絶縁シート18の外周面に導電性線材を多
重巻回して誘導コイル13bを形成することで構成でき
る。検出コイル部13として使用する際は、ボビン16
を取り除いてもよい。しかしながら、基本的に励磁コイ
ルと誘導コイルよりなる検出コイル部の製作方法、構成
要素は特にこれに限定するものではなく、様々な方法で
製作できることは言うまでもない。
As shown in FIG. 2, the detection coil unit 13 forms an exciting coil 13a by winding a conductive wire around a bobbin 16 in multiple layers, and forms an electromagnetic shielding layer 17 such as aluminum foil on the outer peripheral surface of the exciting coil 13a. And the insulating sheet 18 are wound in layers, and a conductive wire is wound multiple times around the outer peripheral surface of the insulating sheet 18 to form the induction coil 13b. When used as the detection coil unit 13, the bobbin 16
May be removed. However, the method and components for manufacturing the detection coil section basically composed of the excitation coil and the induction coil are not particularly limited thereto, and it goes without saying that the detection coil section can be manufactured by various methods.

【0020】[0020]

【0021】検出回路15は誘導コイル13bの出力Vo
utの変化を識別する機能を有するものである。図3に示
す第1の実施例では、検出回路15を平衡回路22、増
幅器24、判定回路25で構成している。
The detection circuit 15 detects the output Vo of the induction coil 13b.
It has the function of identifying changes in ut. In the first embodiment shown in FIG. 3, the detection circuit 15 includes a balance circuit 22, an amplifier 24, and a determination circuit 25.

【0022】平衡回路22では、定常状態における誘導
コイル13bのインダクタンスを実数部Lとして、これ
に直列接続させるインダクタを虚数部−Lとして、平衡
させておく。このインダクタンス−Lを構成する方法
は、図3に示す平衡回路22のように、検出コイル部1
3に略々同一構造の平衡インダクタ部23を検出コイル
部13と直列接続する。すなわち、平衡インダクタ部2
3を、検出コイル部13の励磁コイル13aと同一構成
の励磁コイル23aと、検出コイル部13の誘導コイル
13bと巻回方向以外は同一構成の誘導コイル23bと
で構成する。
In the balance circuit 22, the inductance of the induction coil 13b in the steady state is balanced with the real part L, and the inductor connected in series with the real part L is defined as the imaginary part -L. The method of configuring the inductance -L is the same as that of the balancing circuit 22 shown in FIG.
3, a balanced inductor section 23 having substantially the same structure is connected in series with the detection coil section 13. That is, the balanced inductor section 2
3 is composed of an excitation coil 23a having the same configuration as the excitation coil 13a of the detection coil unit 13, and an induction coil 23b having the same configuration as the induction coil 13b of the detection coil unit 13 except for the winding direction.

【0023】上記検査装置において励磁コイル13a、
23aを共通の交流電源11で励磁して夫々の誘導コイ
ル13b、23bを電磁誘導させると各コイルで等量の
起電力が発生するが、誘導コイル13b、23bの巻回
方向が逆であるため逆符号のインダクタンスとなる。つ
まり、検出コイル部13が定常状態であるかぎり、誘導
コイル13b、23bで発生する起電力は打ち消しあ
い、差動出力は実質的に零となる。ところが、検出コイ
ル部13における励磁コイル13aの磁場中に被検査物
Sを存在させると、誘導コイル13b、23bのインダ
クタンスが非平衡となり差動出力Voutが現れる。これに
より、被検査物の微妙な変化を検出することができる。
この差動出力Voutは、増幅器24に出力される。これに
より判定回路25での判定が容易になる。また、判定回
路25に差動出力の基準を設定しておけば、被検査物の
規格検査を簡単に実行することができる。
In the above inspection apparatus, the excitation coils 13a,
When the induction coil 23a is excited by the common AC power supply 11 and the induction coils 13b and 23b are electromagnetically induced, an equal amount of electromotive force is generated in each coil, but the winding directions of the induction coils 13b and 23b are opposite. The inductance has the opposite sign. That is, as long as the detection coil unit 13 is in a steady state, the electromotive forces generated in the induction coils 13b and 23b cancel each other out, and the differential output becomes substantially zero. However, when the inspection object S is present in the magnetic field of the excitation coil 13a in the detection coil unit 13, the inductances of the induction coils 13b and 23b become unbalanced, and a differential output Vout appears. Thereby, a subtle change in the inspection object can be detected.
This differential output Vout is output to the amplifier 24. This facilitates the determination by the determination circuit 25. Further, if the reference of the differential output is set in the determination circuit 25, the standard inspection of the inspection object can be easily performed.

【0024】上記した実施例を利用すると、被検査物中
の混入異物、あるいは、工作物内部の欠陥などの微小異
常の検出を容易に行なうことが可能となる。すなわち、
図4に示すように、基準となる製品Srefを平衡インダク
タ部23の磁場中に常設しておき、検出コイル部13の
磁場中に被検査物Sを置く。この時、基準製品Srefと被
検査物Sが同一である定常状態の場合、つまり、被検査
物Sに異物混入などの異常がなければ、誘導コイル13
b、23bが平衡を保つので差動出力Voutが実質的に零
になる。ところが、被検査物Sの内部に異物eが存在す
ると、誘導コイル13b、23bの誘導平衡が崩れ、差
動出力Voutが現れ、これによって、異物eの存在を認識
することができる。言うまでもなく、基準製品Srefと被
検査物Sは夫々、平衡インダクタ部23と検出コイル部
13に対して同じ相対位置におく必要がある。
By using the above-described embodiment, it is possible to easily detect a foreign substance mixed in the inspection object or a minute abnormality such as a defect inside the workpiece. That is,
As shown in FIG. 4, the reference product Sref is permanently provided in the magnetic field of the balanced inductor section 23, and the test object S is placed in the magnetic field of the detection coil section 13. At this time, if the reference product Sref and the inspection object S are in the same steady state, that is, if the inspection object S has no abnormality such as entry of foreign matter, the induction coil 13
Since b and 23b maintain balance, the differential output Vout becomes substantially zero. However, when the foreign matter e exists inside the inspection object S, the induction balance of the induction coils 13b and 23b is broken, and a differential output Vout appears, whereby the presence of the foreign matter e can be recognized. Needless to say, the reference product Sref and the inspection object S need to be located at the same relative position with respect to the balanced inductor section 23 and the detection coil section 13, respectively.

【0025】また、被検査物Sがたとえば金属工作物で
ある場合は、図5に示すように、平衡インダクタ部23
に基準製品Srefを配置し、検出コイル部13の被検査物
Sを対向配置させることで、被検査物Sのクラックなど
の欠陥cの有無を高分解能をもって確実に検出すること
ができる。被検査物Sが金属であり、検査対象がスポッ
ト溶接部分の欠陥である場合、励磁コイル13aが形成
する磁界によって被検査物Sの全体が磁化するが、欠陥
cで発生する渦電流の影響で誘導コイル13bの相互イ
ンダクタンスが変化する。このように、金属の溶接部分
のクラック、ピンホールなど視認検査で発見しにくい欠
陥でも、効果的に欠陥の程度まで検出することができる
など、各種非破壊検査に威力を発揮する。
When the inspection object S is a metal workpiece, for example, as shown in FIG.
By arranging the reference product Sref and the inspection object S of the detection coil unit 13 facing each other, the presence or absence of a defect c such as a crack in the inspection object S can be reliably detected with high resolution. When the inspection object S is a metal and the inspection object is a defect in a spot welded portion, the entire inspection object S is magnetized by the magnetic field formed by the exciting coil 13a, but is affected by an eddy current generated by the defect c. The mutual inductance of the induction coil 13b changes. As described above, the present invention is effective in various nondestructive inspections, for example, it is possible to effectively detect even a defect such as a crack or a pinhole in a welded portion of a metal that is difficult to be detected by visual inspection to the extent of the defect.

【0026】評価実験において、長さ2.0cm、内径
5.2cm、厚さ5mmの合成樹脂性のボビンに導線を30
0回巻回して励磁コイル13a、23aを夫々形成し、
更にその上に導線を300回巻回して誘導コイル13
b、23bを夫々形成して検出コイル部13及び平衡イ
ンダクタ部23を構成し、励磁コイル13a、23aに
周波数0.2〜1kHz 、電圧15Vの交流電流を印加し
た。この場合、励磁コイル13a、23aのインダクタ
ンスは5.8mHであり、誘導コイル13b、23bのそ
れは6.5mHであった。この検査装置で対角距離20mm
のナットを被検査物Sとして検査したところ、深さ0.
1mm、長さ3mmの微小クラックが検出できた。
In the evaluation experiment, 30 conductors were attached to a synthetic resin bobbin 2.0 cm long, 5.2 cm inside diameter and 5 mm thick.
The coils are wound 0 times to form the exciting coils 13a and 23a, respectively.
Furthermore, the conductor is wound 300 times on the induction coil 13.
The detection coil unit 13 and the balanced inductor unit 23 were formed by respectively forming the components b and 23b, and an alternating current having a frequency of 0.2 to 1 kHz and a voltage of 15 V was applied to the excitation coils 13a and 23a. In this case, the inductance of the excitation coils 13a and 23a was 5.8 mH, and that of the induction coils 13b and 23b was 6.5 mH. 20mm diagonal distance with this inspection device
Was inspected as the inspection object S, it was found that the
A minute crack having a length of 1 mm and a length of 3 mm was detected.

【0027】上記実施例では、検出コイル部13の一次
側励磁コイル13aの外周面の一方端側の一部に誘導コ
イル13bを巻回させた構成であったが、励磁コイルと
誘導コイルを同軸で一部を接触させて一体化させればど
のような構成を採ってもよい。以下に検出コイル部の改
変例を説明する。
In the above embodiment, the induction coil 13b is wound around a part of one end of the outer peripheral surface of the primary excitation coil 13a of the detection coil unit 13. However, the excitation coil and the induction coil are coaxial. Any configuration may be adopted as long as a part is brought into contact and integrated. Hereinafter, a modified example of the detection coil unit will be described.

【0028】図6の検出コイル部33は、励磁コイル3
3aの外周面の長さ方向の略中央に誘導コイル33bを
設けている。この構成では励磁コイル33aの両端にお
いて同一の相互インダクタンス特性が得られる可逆性を
備えている。ここでは、被検査物Sを励磁コイル33a
の一端部(図中、上端)に対向配置させているが、円筒
形状の励磁コイル33aの内部中空孔34を検査通路と
して被検査物を通過乃至落下させて、その時のインダク
タンス変化を測定するようにしてもよい。
The detection coil unit 33 shown in FIG.
An induction coil 33b is provided substantially at the center in the length direction of the outer peripheral surface of 3a. This configuration has reversibility such that the same mutual inductance characteristics can be obtained at both ends of the exciting coil 33a. Here, the inspection object S is connected to the exciting coil 33a.
Is arranged to face one end (the upper end in the figure) of the above, but the object to be inspected is passed or dropped by using the internal hollow hole 34 of the cylindrical excitation coil 33a as an inspection path, and the inductance change at that time is measured. It may be.

【0029】図7に示す検出コイル部43では励磁コイ
ル43aの内側に誘導コイル43bを密接状に同軸巻回
して設けている。この構成によれば、誘導コイル43b
が励磁コイル43aに内蔵されるため、検出コイル部の
小型化、ひいては、検査装置全体の小型化が可能とな
る。
In the detection coil unit 43 shown in FIG. 7, an induction coil 43b is provided inside the excitation coil 43a by closely coaxial winding. According to this configuration, the induction coil 43b
Is built in the exciting coil 43a, so that the size of the detection coil unit can be reduced, and the size of the entire inspection apparatus can be reduced.

【0030】図8は、励磁コイル63aの外周面に対を
なす誘導コイル63bを設けた検出コイル部63であ
る。あるいは、図9に示すように逆方向に巻回して直列
結線した一対の誘導コイル73bを励磁コイル73aの
内部に収めて検出コイル部73を構成してもよい。どち
らの実施例でも、双方の誘導コイルを逆方向に巻回して
直列接続することで、単体で差動回路を構成することが
できる。評価実験において、長さ15cm、内径3cm、厚
さ1mmの合成樹脂性のボビンに導線を1000回巻回し
て励磁コイル63aを形成し、更にその上に導線を10
00回巻回して両誘導コイル63bを形成して検出コイ
ル部63を構成し、励磁コイル63aに周波数0.1〜
1kHz 、電圧15Vの交流電流を印加した。この場合、
励磁コイル、誘導コイルのインダクタンスは夫々、10
0mHであった。この検査装置で直径0.1mmの鉄球が検
出できた。
FIG. 8 shows a detection coil unit 63 provided with a pair of induction coils 63b on the outer peripheral surface of the excitation coil 63a. Alternatively, as shown in FIG. 9, a pair of induction coils 73b wound in the opposite direction and connected in series may be housed inside the excitation coil 73a to form the detection coil unit 73. In either embodiment, a differential circuit can be configured by itself by winding both induction coils in opposite directions and connecting them in series. In the evaluation experiment, a conducting wire was wound 1000 times around a synthetic resin bobbin having a length of 15 cm, an inner diameter of 3 cm, and a thickness of 1 mm to form an exciting coil 63a.
The detection coil section 63 is formed by winding both turns to form both induction coils 63b.
An alternating current of 1 kHz and a voltage of 15 V was applied. in this case,
The inductances of the excitation coil and the induction coil are 10
It was 0 mH. An iron ball having a diameter of 0.1 mm was detected by this inspection device.

【0031】上記のように検出コイル部を構成する励磁
コイルと誘導コイルの形態を様々に改変させることがで
き、特に図示の実施例のみに限定するものではない。た
とえば、上記したいずれの実施例における誘導コイルも
断面積が励磁コイルより小さいが、反対に誘導コイルの
ほうを大きくしてもよく、導線巻回状態、磁束鎖交条件
などの設計要素によって適宜設定すればよい。
As described above, the shapes of the exciting coil and the induction coil constituting the detecting coil unit can be variously modified, and the present invention is not particularly limited to the illustrated embodiment. For example, the induction coil in any of the above-described embodiments also has a smaller cross-sectional area than the excitation coil. On the contrary, the induction coil may be larger, and may be set as appropriate according to design factors such as the winding state of the conductor and the flux linkage conditions. do it.

【0032】また、検出コイル部に配置する被検査物
は、励磁コイルの軸方向のいずれか一方端に対向させて
近接させることで磁束鎖交効率を高めることができ、こ
れによって検出感度が高まるが、被検査物の配置位置を
特に限定するものではなく、励磁コイルが形成する磁束
が及ぶ範囲であれば、どの位置に被検査物を置いてもよ
い。たとえば、円筒形状の励磁コイルの内部中空孔を通
路として被検査物を通過乃至落下させてもよい。
Further, the object to be inspected arranged in the detection coil section is opposed to any one end in the axial direction of the exciting coil so as to be close to the end, so that the efficiency of magnetic flux linkage can be increased, thereby increasing the detection sensitivity. However, the position of the test object is not particularly limited, and the test object may be placed at any position as long as the magnetic flux formed by the exciting coil can reach. For example, the inspection object may be passed or dropped using the internal hollow hole of the cylindrical excitation coil as a passage.

【0033】[0033]

【発明の効果】以上説明したように、この発明の電磁誘
導型検出装置は、同軸状に密接に一体化した励磁コイル
と誘導コイルとで検出コイル部を構成し、励磁コイルが
形成する磁界にある被検査物による誘導コイルの相互イ
ンダクタンスの変化を漏れ磁束を減らし、効率よく検出
するようにした。これにより、食品、薬品錠剤、合成樹
脂製品、工作物など誘電体、磁性体、導体−非導体、金
属−非金属を問わず各種対象物の在否乃至材質を判定で
きるだけでなく、それらの被検査物に含まれる微小な異
物乃至欠陥などによる微小な磁束変化をも分解能よく高
感度、高精度で検査、検出できる。
As described above, the electromagnetic induction type detection device of the present invention comprises a detection coil portion composed of an excitation coil and an induction coil which are coaxially and closely integrated, and is adapted to generate a magnetic field formed by the excitation coil. A change in the mutual inductance of the induction coil due to a certain test object is reduced and the leakage magnetic flux is detected efficiently. This makes it possible not only to determine the presence or material of various objects irrespective of dielectrics, magnetic materials, conductors / non-conductors, metals / non-metals such as foods, pharmaceutical tablets, synthetic resin products, and workpieces, but also Even a minute change in magnetic flux due to a minute foreign matter or a defect included in the inspection object can be inspected and detected with high resolution and high sensitivity and high accuracy.

【0034】しかも、検出コイルの外部の被検査部も選
択可能であるため、被検査物の大きさを問わず様々な検
査ができ、しかも、励磁コイルと誘導コイルを一体化し
ているので装置の大きさを自由に変えることができ、小
型化も容易にできる。
In addition, since the portion to be inspected outside the detection coil can be selected, various inspections can be performed regardless of the size of the object to be inspected. In addition, since the excitation coil and the induction coil are integrated, the device can be used. The size can be freely changed, and the size can be easily reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による電磁誘導型検査装置の第1の実
施例を示す概略図。
FIG. 1 is a schematic diagram showing a first embodiment of an electromagnetic induction type inspection apparatus according to the present invention.

【図2】図1における検出コイル部の構成を示す半断面
側面図。
FIG. 2 is a half sectional side view showing a configuration of a detection coil unit in FIG.

【図3】第1の実施例を示す概略構成図。FIG. 3 is a schematic configuration diagram showing a first embodiment.

【図4】図3の検査装置による検査適用の一例を示す説
明図。
FIG. 4 is an explanatory view showing an example of application of inspection by the inspection device of FIG. 3;

【図5】図3の検査装置による検査適用の他例を示す説
明図。
FIG. 5 is an explanatory view showing another example of application of the inspection by the inspection device of FIG. 3;

【図6】第2の実施例を示す概略図。FIG. 6 is a schematic view showing a second embodiment.

【図7】第3の実施例を示す概略図。FIG. 7 is a schematic view showing a third embodiment.

【図8】第4の実施例を示す概略図。FIG. 8 is a schematic view showing a fourth embodiment.

【図9】第5の実施例を示す概略図。FIG. 9 is a schematic view showing a fifth embodiment.

【図10】従来の電磁誘導型検査装置の一例を示す概略
説明図。
FIG. 10 is a schematic explanatory view showing an example of a conventional electromagnetic induction type inspection apparatus.

【図11】従来の電磁誘導型検査装置の他例を示す概略
説明図。
FIG. 11 is a schematic explanatory view showing another example of a conventional electromagnetic induction type inspection apparatus.

【符号の説明】[Explanation of symbols]

11…交流電源、15…検出回路、S…被検査物、f…
磁場、 13、33、43、63、73…検出コイル部 13a、33a、43a、63a、73a…励磁コイ
ル、 13b、33b、43b、63b、73b…誘導コイ
ル。
11 ... AC power supply, 15 ... Detection circuit, S ... Test object, f ...
Magnetic field, 13, 33, 43, 63, 73: detection coil unit 13a, 33a, 43a, 63a, 73a: excitation coil, 13b, 33b, 43b, 63b, 73b: induction coil.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁性体と非磁性体を被検査物とし、 a)交流電流を出力する交流電源と、 b)交流電流の印加により励磁して磁場を形成する励磁
コイルと、該励磁コイルの励磁によって電磁誘導して起
電力を発生させる少なくとも一つの誘導コイルとを備
え、該誘導コイルを該励磁コイルの外周面あるいは内周
面に密接に同軸巻回して一体に構成してなる検出コイル
部と、 c)検出コイル部の内部中空孔と一方端に対向する位置
のいずれかに選択可能に設けられる被検査部と、 d)誘導コイルの出力から被検査物による磁場の変化を
検出する検出回路と、 からなる検査装置であって、 該検出回路を、該検出コイル部と同一構成のインダクタ
を該検出コイル部に直列接続してなる平衡回路と、該平
衡回路からの出力を増幅する増幅器と、該増幅器の出力
から被検査物を判定する判定回路と、で構成した電磁誘
導型検査装置。
1. An inspection apparatus comprising: a magnetic material and a non-magnetic material; a) an AC power supply for outputting an AC current; b) an excitation coil for exciting and forming a magnetic field by applying an AC current; A detection coil unit comprising at least one induction coil for generating electromotive force by electromagnetic induction by excitation, wherein the induction coil is closely coaxially wound around an outer peripheral surface or an inner peripheral surface of the excitation coil and integrally formed. C) a part to be inspected which is selectively provided at one of positions facing the inner hollow hole of the detection coil part and one end; and d) detection for detecting a change in a magnetic field due to the object to be inspected from an output of the induction coil. A detection circuit comprising: a detection circuit; a balanced circuit in which an inductor having the same configuration as the detection coil unit is connected in series to the detection coil unit; and an amplifier for amplifying an output from the balanced circuit. And the increase A determination circuit test objects from the output of the vessel, in construction the electromagnetic induction type inspection device.
JP25559791A 1990-10-23 1991-10-02 Electromagnetic induction type inspection equipment Expired - Lifetime JP3140105B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP25559791A JP3140105B2 (en) 1990-10-23 1991-10-02 Electromagnetic induction type inspection equipment
KR1019910018697A KR920008489A (en) 1990-10-23 1991-10-23 Inspection device by electromagnetic induction
TW084208685U TW341328U (en) 1991-10-02 1991-10-23 Electromagnetic induction type inspection device
US08/061,504 US5432444A (en) 1990-10-23 1993-05-14 Inspection device having coaxial induction and exciting coils forming a unitary coil unit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-283368 1990-10-23
JP02283368 1990-10-23
JP25559791A JP3140105B2 (en) 1990-10-23 1991-10-02 Electromagnetic induction type inspection equipment

Publications (2)

Publication Number Publication Date
JPH052082A JPH052082A (en) 1993-01-08
JP3140105B2 true JP3140105B2 (en) 2001-03-05

Family

ID=26542305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25559791A Expired - Lifetime JP3140105B2 (en) 1990-10-23 1991-10-02 Electromagnetic induction type inspection equipment

Country Status (2)

Country Link
JP (1) JP3140105B2 (en)
KR (1) KR920008489A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849153B1 (en) * 2002-03-04 2008-07-30 시크파 홀딩 에스.에이. Measurement probe and authentication device comprising the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4809039B2 (en) 2005-11-07 2011-11-02 偕成エンジニア株式会社 Electromagnetic induction type inspection apparatus and electromagnetic induction type inspection method
JP5020518B2 (en) * 2006-02-03 2012-09-05 勝三 川西 Weighing packaging machine, weighing machine, packaging machine, article sorting device
JP5203148B2 (en) * 2008-11-20 2013-06-05 Jfeアドバンテック株式会社 Fluid-containing magnetic powder concentration detector
JP2019012085A (en) * 2018-10-22 2019-01-24 株式会社荏原製作所 Metal detection sensor and method of detecting metal using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849153B1 (en) * 2002-03-04 2008-07-30 시크파 홀딩 에스.에이. Measurement probe and authentication device comprising the same

Also Published As

Publication number Publication date
KR920008489A (en) 1992-05-28
JPH052082A (en) 1993-01-08

Similar Documents

Publication Publication Date Title
US5432444A (en) Inspection device having coaxial induction and exciting coils forming a unitary coil unit
US3693075A (en) Eddy current system for testing tubes for defects,eccentricity,and wall thickness
US5548214A (en) Electromagnetic induction inspection apparatus and method employing frequency sweep of excitation current
GB2262346A (en) Detecting defects in steel material
JP4003975B2 (en) Metal inspection method and metal inspection apparatus
Fava et al. Multilayer planar rectangular coils for eddy current testing: Design considerations
US6377040B1 (en) Eddy current probe and process for checking the edges of metal articles
JP3140105B2 (en) Electromagnetic induction type inspection equipment
Zhang et al. Model of ferrite-cored driver-pickup coil probe application of TREE method for eddy current nondestructive evaluation
US2441380A (en) Magnetic analysis
JPH05149923A (en) Apparatus and method for electromagnetic induction inspection by use of change in frequency phase
Wei et al. A transducer made up of fluxgate sensors for testing wire rope defects
JP2001318080A (en) Detection coil and inspecting device using the same
JPH0474667B2 (en)
JPS6232355A (en) Eddy current flaw inspector
JP3572452B2 (en) Eddy current probe
US4675605A (en) Eddy current probe and method for flaw detection in metals
JPH05142204A (en) Electromagnetic-induction type inspecting apparatus
JPH1038854A (en) Non-destructive inspection method and device of conductive material
JPH07198770A (en) Improved probe device and method for measuring critical superconducting current in non-contacting state
Touil et al. Simple Giant Magnetoresistance Probe Based Eddy Current System of Defect Characterization for Non-Destructive Testing
Dalal Radia et al. Detection of Defects Using GMR and Inductive Probes
Tesfaye et al. Improving Flaw Detection through Integration of a Novel Eddy Current Probe with Fluxgate Magnetic Sensor
JPS61147158A (en) Defect detecting device for strip
JP2003344362A (en) Eddy current flaw detection probe and eddy current flaw detector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11