JP5243828B2 - Eddy current flaw detection method and eddy current flaw detection sensor - Google Patents

Eddy current flaw detection method and eddy current flaw detection sensor Download PDF

Info

Publication number
JP5243828B2
JP5243828B2 JP2008083441A JP2008083441A JP5243828B2 JP 5243828 B2 JP5243828 B2 JP 5243828B2 JP 2008083441 A JP2008083441 A JP 2008083441A JP 2008083441 A JP2008083441 A JP 2008083441A JP 5243828 B2 JP5243828 B2 JP 5243828B2
Authority
JP
Japan
Prior art keywords
signal
coil
optical fiber
fiber composite
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008083441A
Other languages
Japanese (ja)
Other versions
JP2009236695A (en
Inventor
明郎 小崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2008083441A priority Critical patent/JP5243828B2/en
Publication of JP2009236695A publication Critical patent/JP2009236695A/en
Application granted granted Critical
Publication of JP5243828B2 publication Critical patent/JP5243828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、非接触型の渦電流探傷方法並びに渦電流探傷センサーに関する。さらに詳述すると、本発明は、管状の検査対象物であって磁性体部材と非磁性体部材とからなる検査対象物におけるき裂等の損傷の検出に用いて好適な渦電流探傷方法並びに渦電流探傷センサーに関する。   The present invention relates to a non-contact type eddy current flaw detection method and an eddy current flaw detection sensor. More specifically, the present invention relates to an eddy current flaw detection method suitable for use in detecting damage such as cracks in a tubular inspection object comprising a magnetic member and a non-magnetic member. The present invention relates to a current flaw detection sensor.

光ファイバ複合架空地線(以下、OPGWと表記する)においては、敷設からの時間経過に伴い、例えば強風振動、腐食、あるいは凍結によって、OPGWを構成する部材であるアルミ管のき裂、貫通孔、あるいは割れ等の損傷が発生する場合がある。   In an optical fiber composite ground wire (hereinafter referred to as OPGW), as time elapses from laying, cracks and through-holes in aluminum pipes that are members of OPGW due to, for example, strong wind vibration, corrosion, or freezing Or damage such as cracks may occur.

管状の検査対象物の損傷を電磁誘導による渦電流を利用して検出する従来の非接触型渦電流探傷方法としては、例えば、図12に示すように、励磁用コイルの配線及び検出用コイルの配線を有する可撓性基板102を配管108に巻き付けると共にこれらコイルの両端部に接続されたコネクタ103a,103bを、配管108を貫通させるボビン105の両端のフランジ部106に固定される取付部材107に取り付けられる固定基板104b及び固定基板104aに固定される渦電流探傷検査用コイル素子101を用いて電気信号の測定を行って配管108の探傷を行うものがある(特許文献1)。   As a conventional non-contact type eddy current flaw detection method for detecting damage of a tubular inspection object using eddy current by electromagnetic induction, for example, as shown in FIG. 12, the wiring of the excitation coil and the detection coil A flexible substrate 102 having wiring is wound around a pipe 108 and connectors 103a and 103b connected to both ends of these coils are attached to mounting members 107 fixed to flanges 106 at both ends of a bobbin 105 passing through the pipe 108. There is a fixed substrate 104b to be attached and an eddy current flaw detection coil element 101 fixed to the fixed substrate 104a to measure an electric signal to detect a pipe 108 (Patent Document 1).

特許第3247666号Japanese Patent No. 3247666

しかしながら、特許文献1の渦電流探傷方法では、上述の構成を有する渦電流探傷検査用コイル素子101を用いて得られる検波信号について特別の処理をすることなく配管108に発生している損傷の検出を行うようにしているので、検査対象物が例えばOPGWのように複雑な構造を有する場合には特に、コイル素子101から得られる検波信号がノイズを含んでしまい測定誤差が生じ易く損傷の検出を十分な精度で行うことができない場合があるという問題がある。   However, in the eddy current flaw detection method disclosed in Patent Document 1, the detection of damage occurring in the pipe 108 without special processing of the detection signal obtained using the eddy current flaw detection coil element 101 having the above-described configuration. Therefore, especially when the inspection object has a complicated structure such as OPGW, the detection signal obtained from the coil element 101 includes noise, and a measurement error is likely to occur. There is a problem that it may not be possible with sufficient accuracy.

そこで、本発明は、例えばOPGWのように鋼線などの磁性体部材とアルミニウム管などの非磁性体部材とを束ねてなる管状の検査対象物における損傷の検出を高い精度で行うことができる渦電流探傷方法を提供することを目的とする。   Therefore, the present invention provides a vortex capable of detecting damage in a tubular inspection object formed by bundling a magnetic member such as a steel wire and a nonmagnetic member such as an aluminum tube with high accuracy, for example, OPGW. An object is to provide a current flaw detection method.

かかる目的を達成するため、請求項1記載の渦電流探傷方法は、X信号−Y信号の2次元座標軸上において非磁性体部材の損傷に伴う検出信号がY軸方向にくるように検波信号を原点を中心として回転させるように設定した上で、磁性体部材である鋼線と非磁性体部材であるアルミ管とからなる管状の検査対象物としての光ファイバ複合架空地線の外側に出力コイル及び検波コイルを巻き回すと共に出力コイル及び検波コイルを用いて探傷周波数を70kHzとして電磁誘導現象を利用した光ファイバ複合架空地線についての電気信号の測定を行い、当該測定によって得られる検波信号のX信号の変動に基づいて光ファイバ複合架空地線を構成する鋼線の損傷を検出すると共にY信号の変動に基づいて光ファイバ複合架空地線を構成するアルミ管の損傷を検出するようにしている。 In order to achieve this object, the eddy current flaw detection method according to claim 1 is characterized in that the detection signal is set so that the detection signal accompanying the damage of the nonmagnetic member is in the Y-axis direction on the two-dimensional coordinate axis of the X signal-Y signal. The output coil is set outside the optical fiber composite ground wire as a tubular inspection object made of a steel wire as a magnetic member and an aluminum tube as a non-magnetic member after setting to rotate around the origin. And measuring the electrical signal of the optical fiber composite ground wire using the electromagnetic induction phenomenon with the flaw detection frequency set to 70 kHz using the output coil and the detection coil, and the detection signal X obtained by the measurement is wound. Al constituting the optical fiber composite overhead ground wire on the basis of the variations of the Y signal and detects a damage of the steel wire constituting the optical fiber composite overhead ground wire on the basis of the variation of the signal It is designed to detect damage to the microtubules .

したがって、この渦電流探傷方法によると、検波信号のX信号の変動に基づいて検査対象物を構成する磁性体部材の損傷を検出すると共にY信号の変動に基づいて検査対象物を構成する非磁性体部材の損傷を検出するようにしているので、磁性体部材と非磁性体部材とからなる管状の検査対象物における磁性体部材の損傷又は非磁性体部材の損傷を適確に検出することができる。   Therefore, according to this eddy current flaw detection method, damage to the magnetic member constituting the inspection object is detected based on the variation of the X signal of the detection signal, and at the same time, the non-magnetic material constituting the inspection object based on the variation of the Y signal. Since damage to the body member is detected, it is possible to accurately detect damage to the magnetic member or damage to the non-magnetic member in the tubular inspection object composed of the magnetic member and the non-magnetic member. it can.

また、請求項2記載の発明は、請求項1記載の渦電流探傷方法において、光ファイバ複合架空地線の外周面と出力コイル及び検波コイルの内周面との間隔が5mm未満であるようにしている。 According to a second aspect of the present invention, in the eddy current flaw detection method according to the first aspect, the distance between the outer peripheral surface of the optical fiber composite ground wire and the inner peripheral surface of the output coil and the detection coil is less than 5 mm. ing.

さらに、請求項3記載の渦電流探傷センサーは、電磁誘導現象を利用した検査対象物についての電気信号の測定を行う渦電流探傷センサーであって、磁性体部材である鋼線と非磁性体部材であるアルミ管とからなる管状の検査対象物としての光ファイバ複合架空地線の外側に巻き回される出力コイル及び検波コイルを有し、光ファイバ複合架空地線の外周面と出力コイル及び検波コイルの内周面との間隔が5mm未満であり、探傷周波数を70kHzとして測定を行うようにしている。 The eddy current flaw sensor according to claim 3 is an eddy current flaw sensor for measuring an electric signal of an inspection object using an electromagnetic induction phenomenon , wherein the steel wire and the non-magnetic member are magnetic members. The outer peripheral surface of the optical fiber composite ground wire , the output coil and the detection coil have an output coil and a detection coil wound around the outside of the optical fiber composite ground wire as a tubular inspection object made of an aluminum tube. Ri spacing 5mm below der of the inner peripheral surface of the coil, and to perform the measurement flaw detection frequency as 70 kHz.

この場合には、検査対象物の内部にある非磁性体部材の損傷部から発生する微弱な信号を周りの磁性体部材からの強い信号により埋もれてしまうことなく検出することができ、検査対象物の非磁性体部材と磁性体部材の損傷をより適確に検出することができる。   In this case, the weak signal generated from the damaged part of the non-magnetic member inside the inspection object can be detected without being buried by the strong signal from the surrounding magnetic member. It is possible to more accurately detect damage to the non-magnetic member and the magnetic member.

また、請求項4記載の渦電流探傷方法は、磁性体部材である鋼線と非磁性体部材であるアルミ管とからなる管状の検査対象物としての光ファイバ複合架空地線の外周面と光ファイバ複合架空地線に巻き回される出力コイル及び検波コイルの内周面との間隔が5mm未満であることを特徴とする渦電流センサーを用いることにより、光ファイバ複合架空地線の外側に巻き回される出力コイル及び検波コイルを用いて探傷周波数を70kHzとして電磁誘導現象を利用した光ファイバ複合架空地線についての電気信号の測定を行い、当該測定によって得られる検波信号の変動に基づいて光ファイバ複合架空地線を構成するアルミ管の損傷を鋼線からの信号に影響されることなく検出可能とするようにしている。 Further, the eddy current testing method of claim 4, wherein the outer peripheral surface and the light of the optical fiber composite overhead ground wire as inspection object tubular made of an aluminum tube which is a non-magnetic member and the steel wire is a magnetic member By using an eddy current sensor characterized in that the distance between the output coil wound around the fiber composite ground wire and the inner peripheral surface of the detection coil is less than 5 mm, the wire is wound outside the fiber composite ground wire. perform the measurement of the electrical signal for the optical fiber composite overhead ground wire using electromagnetic induction phenomenon flaw detection frequency using the output coil and the detection coil as a 70kHz wound, light based on the variation of the detection signal obtained by the measurement It is made possible to detect the damage of the aluminum pipe constituting the fiber composite overhead ground wire without being affected by the signal from the steel wire .

さらに、請求項5記載の渦電流探傷センサーは、電磁誘導現象を利用した検査対象物についての電気信号の測定を行う渦電流探傷センサーであって、磁性体部材である鋼線と非磁性体部材であるアルミ管とからなる管状の検査対象物としての光ファイバ複合架空地線の外側に巻き回される出力コイル及び検波コイルを有し、光ファイバ複合架空地線の外周面と出力コイル及び検波コイルの内周面との間隔を5mm未満とすることにより、出力コイル及び検波コイルを用いての探傷周波数を70kHzとした電磁誘導現象を利用した光ファイバ複合架空地線についての電気信号の測定によって得られる検波信号の変動に基づいて光ファイバ複合架空地線を構成するアルミ管の損傷を鋼線からの信号に影響されることなく検出可能とするようにしている。 Furthermore, the eddy current flaw detection sensor according to claim 5 is an eddy current flaw detection sensor that measures an electric signal of an inspection object using an electromagnetic induction phenomenon, and is a steel wire that is a magnetic member and a non-magnetic member. The outer peripheral surface of the optical fiber composite ground wire , the output coil and the detection coil have an output coil and a detection coil wound around the outside of the optical fiber composite ground wire as a tubular inspection object made of an aluminum tube. By measuring the electrical signal of the optical fiber composite ground wire using the electromagnetic induction phenomenon with a flaw detection frequency of 70 kHz using the output coil and the detection coil by setting the distance from the inner peripheral surface of the coil to less than 5 mm damage of the aluminum tube constituting the optical fiber composite overhead ground wire as a detectable without being influenced by the signal from the steel wire on the basis of the variations of the resulting detection signal There.

この渦電流探傷方法及び渦電流探傷センサーによると、検査対象物の内部にある非磁性体部材の損傷部から発生する微弱な信号を周りの磁性体部材からの強い信号により埋もれてしまうことなく検出することができ、検査対象物の非磁性体部材と磁性体部材の損傷をより適確に検出することができる   According to this eddy current flaw detection method and eddy current flaw detection sensor, a weak signal generated from a damaged portion of a non-magnetic member inside the inspection object is detected without being buried by a strong signal from the surrounding magnetic member. Damage to the non-magnetic member and magnetic member of the inspection object can be detected more accurately.

本発明によれば、磁性体部材と非磁性体部材とからなる管状の検査対象物における磁性体部材の損傷又は非磁性体部材の損傷を適確に検出することができ、例えばOPGWのような管状の検査対象物であって磁性体部材と非磁性体部材とからなる検査対象物における損傷の検出を高い精度で行うことが可能であるので、損傷発生有無の検査の信頼性の向上を図ることができる。   According to the present invention, damage to a magnetic member or damage to a nonmagnetic member in a tubular inspection object made up of a magnetic member and a nonmagnetic member can be accurately detected, such as OPGW. Since it is possible to detect damage in a tubular inspection object, which is an inspection object comprising a magnetic member and a non-magnetic member, with high accuracy, the reliability of inspection for occurrence of damage is improved. be able to.

さらに、本発明によれば、測定によって得られる検波信号のノイズを低減してより適確に検査対象物の損傷を検出することが可能であるので、損傷発生有無の検査の信頼性の更なる向上を図ることができる。   Furthermore, according to the present invention, it is possible to detect the damage of the inspection object more accurately by reducing the noise of the detection signal obtained by the measurement. Improvements can be made.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1及び図2に、本発明の渦電流探傷方法の実施形態の一例を示す。この渦電流探傷方法は、磁性体部材と非磁性体部材とからなる管状の検査対象物の外側に出力コイル及び検波コイルを巻き回すと共に出力コイル及び検波コイルを用いて電磁誘導現象を利用した検査対象物についての電気信号の測定を行い、当該測定によって得られる検波信号のX信号の変動に基づいて検査対象物を構成する磁性体部材の損傷を検出すると共にY信号の変動に基づいて検査対象物を構成する非磁性体部材の損傷を検出するようにしている。   1 and 2 show an example of an embodiment of the eddy current flaw detection method of the present invention. In this eddy current flaw detection method, an output coil and a detection coil are wound around a tubular inspection object made of a magnetic member and a non-magnetic member, and an inspection using an electromagnetic induction phenomenon is performed using the output coil and the detection coil. The measurement of the electrical signal of the object is performed, the damage of the magnetic member constituting the inspection object is detected based on the fluctuation of the X signal of the detection signal obtained by the measurement, and the inspection object is detected based on the fluctuation of the Y signal Damage to the non-magnetic member constituting the object is detected.

本実施形態では、電磁誘導現象を利用した電気信号の測定において図1及び図2に示す渦電流探傷センサー1を用いる。渦電流探傷センサー1は、図1及び図2に示すように、大きくは、円筒状のボビン2と接続端子固定基板5と基板固定部材7とからなる。   In the present embodiment, the eddy current flaw detection sensor 1 shown in FIGS. 1 and 2 is used in the measurement of an electric signal using an electromagnetic induction phenomenon. As shown in FIGS. 1 and 2, the eddy current flaw detection sensor 1 is mainly composed of a cylindrical bobbin 2, a connection terminal fixing substrate 5, and a substrate fixing member 7.

ボビン2は、軸中心位置に貫通孔2aを有する円筒状に形成される。貫通孔2aの直径は、渦電流探傷センサー1が電気信号の測定を行う管状の検査対象物(図示していない)の外径に合わせて調整される。ボビン2は例えばポリアセタール等の合成樹脂などの非導電性材料によって形成される。   The bobbin 2 is formed in a cylindrical shape having a through hole 2a at the axial center position. The diameter of the through hole 2a is adjusted in accordance with the outer diameter of a tubular inspection object (not shown) on which the eddy current flaw detection sensor 1 measures an electric signal. The bobbin 2 is formed of a nonconductive material such as a synthetic resin such as polyacetal.

また、ボビン2は、軸方向の中央付近において、周壁に、周方向に一回りする環状の溝2dを二つ有する。そして、二つの溝2d,2dを形成することにより、二つの溝2d,2dの間の仕切り2bがボビン2の軸方向中央付近に形成されると共にフランジ部2cがボビン2の軸方向両側端部に形成される。   Further, the bobbin 2 has two annular grooves 2d that make one turn in the circumferential direction on the peripheral wall near the center in the axial direction. Then, by forming the two grooves 2d and 2d, the partition 2b between the two grooves 2d and 2d is formed near the center in the axial direction of the bobbin 2, and the flange portions 2c are both end portions in the axial direction of the bobbin 2. Formed.

そして、一方の溝2dに出力コイル(図示省略)が巻き回されると共に他方の溝2dに検波コイル(図示省略)が巻き回される。なお、これらのコイルとして、あるいは、これらのコイルとボビンとが一体のものとして、フレキシブル配線基盤(Flexible PWBとも呼ばれる)を用いても良い。   An output coil (not shown) is wound around one groove 2d and a detection coil (not shown) is wound around the other groove 2d. Note that a flexible wiring board (also referred to as Flexible PWB) may be used as these coils or as an integrated body of these coils and bobbins.

渦電流探傷センサー1は仕切り2bを挟んで溝2dに巻き回される出力コイルと検波コイルとによって渦電流探傷を行う。このため、二つの溝2d,2dの間隔であって仕切り2bの幅は、二つのコイルが相互に渦電流探傷センサーとしての出力コイル及び検波コイルとして作動可能な範囲内で設定される。   The eddy current flaw detection sensor 1 performs eddy current flaw detection using an output coil and a detection coil wound around the groove 2d with the partition 2b interposed therebetween. Therefore, the distance between the two grooves 2d and 2d and the width of the partition 2b are set within a range in which the two coils can operate as an output coil and a detection coil as an eddy current flaw detection sensor.

ここで、本発明の渦電流探傷センサー1は、検査対象物の外周面と、出力コイル及び検波コイルを溝2dに巻き回した際のこれらコイルの内周面との間隔を10mm未満とすることが好ましく、より好ましくは5mm未満とすることであり、最も好ましくは2mm未満とすることである。   Here, in the eddy current flaw detection sensor 1 of the present invention, the interval between the outer peripheral surface of the inspection object and the inner peripheral surface of these coils when the output coil and the detection coil are wound around the groove 2d is less than 10 mm. Is preferable, more preferably less than 5 mm, and most preferably less than 2 mm.

なお、出力コイル及び検波コイルをボビン2の溝2dに巻き回した際のコイルの内周面と溝2dの底面とは一致する。したがって、ボビン2の貫通孔2aの直径を検査対象物の外径と一致させると、検査対象物の外周面と出力コイル及び検波コイルの内周面との間隔は溝2dの底部2eにおけるボビン2の周壁の厚さによって決定される。   Note that when the output coil and the detection coil are wound around the groove 2d of the bobbin 2, the inner peripheral surface of the coil coincides with the bottom surface of the groove 2d. Therefore, when the diameter of the through-hole 2a of the bobbin 2 is matched with the outer diameter of the inspection object, the distance between the outer peripheral surface of the inspection object and the inner peripheral surface of the output coil and the detection coil is the bobbin 2 at the bottom 2e of the groove 2d. It is determined by the thickness of the peripheral wall.

接続端子固定基板5は、本実施形態では、ボビン2の軸方向長さよりも短い長方形の板状に形成され、長手方向をボビン2の軸方向と合わせて配置される。   In the present embodiment, the connection terminal fixing substrate 5 is formed in a rectangular plate shape that is shorter than the axial length of the bobbin 2, and is arranged with the longitudinal direction aligned with the axial direction of the bobbin 2.

基板固定部材7は、二個を一組として、ボビン2の両側端部のフランジ部2cに一組ずつ、ボビン2の軸方向と垂直方向にフランジ部2cを両側から挟んで取り付けられる。このため、基板固定部材7はΩ型であってΩ型の凹部7aが半円の曲面に形成され、凹部7aの半円の曲面はフランジ部2cの周面の形状(具体的にはフランジ部2cの半径)に合わせて形成される。   The two board fixing members 7 are attached to the flange portions 2c at both end portions of the bobbin 2 as a set, with the flange portions 2c sandwiched from both sides in the direction perpendicular to the axial direction of the bobbin 2. Therefore, the substrate fixing member 7 is an Ω type, and an Ω type concave portion 7a is formed in a semicircular curved surface, and the semicircular curved surface of the concave portion 7a is a shape of the peripheral surface of the flange portion 2c (specifically, the flange portion). 2c radius).

基板固定部材7は、また、Ω型の凹部7aの両側の端部7bに貫通孔7cを有する。そして、二個の基板固定部材7の凹部7aを向かい合わせてフランジ部2cを挟むと共に、向かい合った端部7bの双方の貫通孔7cを貫通するボルト8aとナット8bとによって端部7bを締め付けることによって基板固定部材7はフランジ部2cに固定される。   The substrate fixing member 7 also has through holes 7c at both end portions 7b of the Ω-shaped recess 7a. Then, the concave portions 7a of the two board fixing members 7 face each other to sandwich the flange portion 2c, and the end portion 7b is tightened by the bolt 8a and the nut 8b that penetrate both through holes 7c of the opposite end portions 7b. Thus, the substrate fixing member 7 is fixed to the flange portion 2c.

接続端子固定基板5は、長方形の長手方向の両側に貫通孔5cを有する。そして、接続端子固定基板5は、基板固定部材7の端部7bを締め付けるボルト8aを貫通孔5cを貫通させて基板固定部材7の端部に固定される。すなわち、基板固定部材7を向かい合わせてフランジ部2cを挟む際に、向かい合う基板固定部材7の端部7bの貫通孔7cと接続端子固定基板5の貫通孔5cとの位置を合わせて基板固定部材7の間に接続端子固定基板5を挟み、向かい合う基板固定部材7と接続端子固定基板5とが束ねられて固定される。   The connection terminal fixing substrate 5 has through holes 5c on both sides in the longitudinal direction of the rectangle. Then, the connection terminal fixing substrate 5 is fixed to the end portion of the substrate fixing member 7 with a bolt 8 a that fastens the end portion 7 b of the substrate fixing member 7 passing through the through hole 5 c. That is, when the board fixing member 7 faces each other and the flange portion 2c is sandwiched, the positions of the through holes 7c of the end 7b of the board fixing member 7 facing each other and the through holes 5c of the connection terminal fixing board 5 are matched to each other. 7, the connection terminal fixing substrate 5 is sandwiched between them, and the substrate fixing member 7 and the connection terminal fixing substrate 5 facing each other are bundled and fixed.

接続端子固定基板5には、出力コイルの両端と電気的に接続される接続端子6a及び検波コイルの両端と電気的に接続される接続端子6bが取り付けられる。そして、出力コイルと接続端子6a、並びに、検波コイルと接続端子6bとを電気的に接続させるため、接続端子固定基板5には、さらに、出力コイルの両端を結び付けるための二つで一組の接続孔5a及び検波コイルの両端を結び付けるための二つで一組の接続孔5bが設けられると共に、接続孔5aと接続端子6aとの間、並びに、接続孔5bと接続端子6bとの間にリード5dが設けられる。   A connection terminal 6a electrically connected to both ends of the output coil and a connection terminal 6b electrically connected to both ends of the detection coil are attached to the connection terminal fixing substrate 5. Then, in order to electrically connect the output coil and the connection terminal 6a, and the detection coil and the connection terminal 6b, the connection terminal fixing substrate 5 further includes a pair of two for connecting both ends of the output coil. A pair of connection holes 5b for connecting both ends of the connection hole 5a and the detection coil are provided, and between the connection hole 5a and the connection terminal 6a, and between the connection hole 5b and the connection terminal 6b. A lead 5d is provided.

そして、出力コイルの両端と電気的に接続される接続端子6aにはX信号とY信号との表示角度の設定(具体的には、X信号−Y信号の2次元座標軸上で原点中心に所定の角度を回転させて表示する機能のこと。位相器の設定角度ともいう。)が可能な市販の単周波数型渦流探傷装置からの出力側のケーブルが接続され、当該接続端子6aを介して出力コイルに対して交流電圧が供給される。また、検波コイルの両端と電気的に接続される接続端子6bには前記渦流探傷装置からの配線が接続され、出力コイルに供給される交流電圧によって検査対象物に誘起されて検波コイルによって検知される誘導電圧が当該接続端子6bを介して前記渦流探傷装置に入力される。なお、検波信号とは具体的には電圧である。   The connection terminal 6a that is electrically connected to both ends of the output coil is set with a display angle of the X signal and the Y signal (specifically, predetermined on the origin center on the two-dimensional coordinate axis of the X signal-Y signal). The output side cable from a commercially available single frequency type eddy current flaw detector capable of rotating the angle of the phaser (also referred to as a set angle of the phase shifter) is connected and output via the connection terminal 6a. An AC voltage is supplied to the coil. In addition, a wiring from the eddy current flaw detector is connected to the connection terminal 6b that is electrically connected to both ends of the detection coil, and is induced in the inspection object by the AC voltage supplied to the output coil and detected by the detection coil. The induced voltage is input to the eddy current flaw detector through the connection terminal 6b. The detection signal is specifically a voltage.

検査対象物の内部にある非磁性体部材の損傷部から発生する微弱な信号を周りの磁性体部材からの強い信号により埋もれてしまうことなく分離して検出できるようにするために、検査対象物の非磁性体部材にあらかじめ損傷を付与した試験片を渦電流探傷センサー1のボビン2の貫通孔2aに挿入し、損傷のない位置でバランス(即ち0点設定)させた後、試験片軸方向に沿って渦電流探傷センサー1を移動させ、損傷に伴う検出信号(X信号とY信号)を得る。   In order to be able to detect the weak signal generated from the damaged part of the non-magnetic member inside the inspection object separately without being buried by the strong signal from the surrounding magnetic member, A test piece in which a non-magnetic member is previously damaged is inserted into the through-hole 2a of the bobbin 2 of the eddy current flaw detection sensor 1, balanced at a position where there is no damage (that is, set to 0 point), and then the test piece axial direction The detection signal (X signal and Y signal) accompanying the damage is obtained by moving the eddy current flaw detection sensor 1 along the line.

X信号−Y信号の2次元座標軸上で、非磁性体部材の損傷に伴う検出信号がほぼY軸方向にくるように、原点を中心として回転すべき表示角度(位相器の設定角度)を求めておく。装置に位相器の表示機能がない場合には、損傷部の検出信号として得られるX信号とY信号とを用いて、三角形の底辺をX信号の値(単位はV)とし高さをY信号の値(単位はV)とする角度を90度(Y軸の角度)から差し引くことにより、回転すべき表示角度が求まる。   On the two-dimensional coordinate axis of the X signal-Y signal, the display angle (set angle of the phase shifter) to be rotated around the origin is obtained so that the detection signal accompanying the damage of the nonmagnetic member is substantially in the Y axis direction. Keep it. If the device does not have a phaser display function, the base of the triangle is set to the value of the X signal (unit is V) and the height is set to the Y signal using the X signal and Y signal obtained as the detection signal of the damaged portion. The display angle to be rotated is obtained by subtracting the angle (the unit is V) from 90 degrees (Y-axis angle).

次に、前項で求めた回転すべき表示角度(位相器の設定角度)に設定を行った後、渦電流探傷センサー1のボビン2の貫通孔2aに管状の検査対象物を貫通させた状態で、損傷のない位置でバランス(即ち0点設定)させた後、渦電流探傷センサー1を検査対象物の軸方向に移動させながら、出力コイルに供給される交流電圧によって検査対象物に誘起される誘導電圧を検波コイルによって検出する。   Next, after setting the display angle to be rotated (set angle of the phase shifter) obtained in the previous section, the tubular inspection object is passed through the through hole 2a of the bobbin 2 of the eddy current flaw detection sensor 1. After balancing (ie, setting 0 point) at a position without damage, the eddy current flaw detection sensor 1 is induced in the inspection object by the AC voltage supplied to the output coil while moving in the axial direction of the inspection object. The induced voltage is detected by a detection coil.

そして、本発明は、管状の検査対象物の外側に出力コイル及び検波コイルを巻き回し、出力コイルに供給される交流電圧によって検査対象物に誘起されて検波コイルによって検出される誘導電圧のX信号の変動に基づいて検査対象物を構成する磁性体部材の損傷を検出すると共にY信号の変動に基づいて検査対象物を構成する非磁性体部材の損傷を検出する。   In the present invention, the output coil and the detection coil are wound around the outside of the tubular inspection object, and the X signal of the induced voltage detected by the detection coil is induced in the inspection object by the AC voltage supplied to the output coil. The damage of the magnetic member that constitutes the inspection object is detected based on the fluctuation of the Y, and the damage of the non-magnetic member that constitutes the inspection object is detected based on the fluctuation of the Y signal.

具体的には、渦電流探傷センサー1を用いた測定によって得られる検波信号について、X信号に変動が認められる場合には鋼管などの磁性体部材に損傷が発生していると判断され、Y信号に変動が認められる場合にはアルミニウム管などの非磁性体部材に損傷が発生していると判断される。   Specifically, regarding the detection signal obtained by the measurement using the eddy current flaw detection sensor 1, if a change is observed in the X signal, it is determined that a magnetic member such as a steel pipe is damaged, and the Y signal In the case where fluctuation is observed, it is determined that the nonmagnetic member such as an aluminum tube is damaged.

なお、検査対象物に損傷が発生していると判断するためのX信号の変動の程度は特定の基準に限定されるものではなく、作業者が適宜設定すれば良い。具体的には例えば、検波コイルによって検出される渦電流の電圧が出力コイルに供給する交流電圧の2割を超える変動をした場合には検査対象物に損傷が発生していると判断することなどが考えられる。   Note that the degree of variation of the X signal for determining that the inspection object is damaged is not limited to a specific standard, and may be set appropriately by the operator. Specifically, for example, when the voltage of the eddy current detected by the detection coil fluctuates more than 20% of the AC voltage supplied to the output coil, it is determined that the inspection object is damaged. Can be considered.

ここで、本実施形態の渦電流探傷センサー1自体は測定位置を計測するものではない。したがって、センサーの移動が所定の速度で行われる場合には、検波信号のデータを記録する際に測定開始からの経過時間を記録すると共に測定開始からの経過時間と検査開始位置からの移動距離とを対応させておくことによって、検査対象物に発生している損傷の位置を特定することができる。   Here, the eddy current flaw detection sensor 1 itself of the present embodiment does not measure the measurement position. Therefore, when the sensor is moved at a predetermined speed, when the detection signal data is recorded, the elapsed time from the start of measurement is recorded and the elapsed time from the start of measurement and the moving distance from the inspection start position By making these correspond, it is possible to specify the position of damage occurring on the inspection object.

以上のように構成された本発明の渦電流探傷方法によれば、検波信号のX信号の変動に基づいて検査対象物を構成する磁性体部材の損傷を検出すると共にY信号の変動に基づいて検査対象物を構成する非磁性体部材の損傷を検出するようにしているので、磁性体部材と非磁性体部材とからなる管状の検査対象物における磁性体部材の損傷又は非磁性体部材の損傷を適確に検出することができる。   According to the eddy current flaw detection method of the present invention configured as described above, damage to the magnetic member constituting the inspection object is detected based on the variation of the X signal of the detection signal, and based on the variation of the Y signal. Since damage to the non-magnetic member constituting the inspection object is detected, damage to the magnetic member or damage to the non-magnetic member in the tubular inspection object comprising the magnetic member and the non-magnetic member Can be accurately detected.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、市販の渦流探傷装置に備わっている表示角度(位相器の設定角度)を変えて、磁性体部材の損傷をY信号で、非磁性体部材の損傷をX信号で評価することや、磁性体部材の損傷はなく非磁性体部材の損傷のみを検出・評価すれば良いケースにおいてX信号やY信号でなく振幅のみで評価するなども本発明に含まれる。   In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention. For example, by changing the display angle (setting angle of the phase shifter) provided in a commercially available eddy current flaw detector, the damage of the magnetic member can be evaluated with the Y signal, and the damage of the nonmagnetic member can be evaluated with the X signal. In the case where it is sufficient to detect and evaluate only the damage of the non-magnetic member without damage to the body member, the present invention also includes the evaluation based on only the amplitude instead of the X signal or Y signal.

ここで、振幅は数式1によって定義される。
(数1) 振幅(V)={(X信号の値(V))+(Y信号の値(V))1/2
Here, the amplitude is defined by Equation 1.
(Equation 1) Amplitude (V) = {(X signal value (V)) 2 + (Y signal value (V)) 2 } 1/2

すなわち、振幅は、X信号−Y信号の図において原点からの距離を示している。そして、X信号が0である場合には、振幅はY信号の高さを示している。   That is, the amplitude indicates the distance from the origin in the X signal-Y signal diagram. When the X signal is 0, the amplitude indicates the height of the Y signal.

本発明の渦電流探傷方法を実際のOPGWの損傷の検出に適用した実施例を図3から図11を用いて説明する。   An embodiment in which the eddy current flaw detection method of the present invention is applied to detection of actual OPGW damage will be described with reference to FIGS.

本実施例において検査対象物として用いたOPGWの断面を図3に示す。このOPGW10は、中心部の光ファイバ収納アルミ管11とこの光ファイバ収納アルミ管11を取り囲む八本のアルミ覆鋼線14とからなる。   FIG. 3 shows a cross section of the OPGW used as the inspection object in this example. The OPGW 10 includes an optical fiber housing aluminum tube 11 at the center and eight aluminum-clad steel wires 14 surrounding the optical fiber housing aluminum tube 11.

光ファイバ収納アルミ管11は、外周壁であるアルミ管11aと、アルミ管11a内部に配設される三本の光ファイバユニット12と、これら三本の光ファイバユニット12のアルミ管11a内部での位置を固定するための三つの溝13aを有する溝付きアルミスペーサ13とからなる。   The optical fiber housing aluminum tube 11 includes an aluminum tube 11a that is an outer peripheral wall, three optical fiber units 12 disposed inside the aluminum tube 11a, and the aluminum tube 11a of the three optical fiber units 12 inside. It consists of a grooved aluminum spacer 13 having three grooves 13a for fixing the position.

なお、本実施例の光ファイバユニット12は、中央の光ファイバとその周囲の六本の光ファイバとを束ねてなるものである。また、アルミ覆鋼線14は鋼線の周りにアルミを被覆させたものである。   The optical fiber unit 12 of this embodiment is a bundle of a central optical fiber and six surrounding optical fibers. The aluminum-clad steel wire 14 is obtained by coating aluminum around a steel wire.

以上のように、本実施例において検査対象物として用いるOPGW10は、磁性体部材と非磁性体部材とからなるものであり、本発明を適用するのに好適なものである。なお、実際のOPGWの保守点検においては外部からは明確に視認することができない中心部のアルミ管11aの損傷が特に問題になるので、本発明によればOPGWのアルミ管11aの損傷の検出を適確に行うことが可能になることは実際のOPGWの保守点検に対して非常に有益である。   As described above, the OPGW 10 used as the inspection object in the present embodiment is composed of the magnetic member and the non-magnetic member, and is suitable for applying the present invention. In the actual maintenance and inspection of the OPGW, damage to the aluminum tube 11a at the center that cannot be clearly seen from the outside becomes a particular problem. Therefore, according to the present invention, the damage to the aluminum tube 11a of the OPGW is detected. Being able to do it properly is very beneficial for actual OPGW maintenance.

本実施例においては、図1及び図2に示す渦電流探傷センサー1を用いて損傷の検出を行った。なお、本実施例では、探傷周波数は70kHz、低域通過フィルタは10Hzとした。X信号−Y信号の2次元座標軸上で回転すべき表示角度の設定(位相器の設定)は40度とした。   In this example, damage was detected using the eddy current flaw detection sensor 1 shown in FIGS. In this example, the flaw detection frequency was 70 kHz, and the low-pass filter was 10 Hz. The setting of the display angle to be rotated on the two-dimensional coordinate axis of the X signal-Y signal (setting of the phase shifter) was 40 degrees.

また、本実施例で用いたOPGW10(線種の規格としてはOPGW−60である。60は避雷用地線としての面積60mmを表しており、図3の八本のアルミ覆鋼線14の総面積に該当する。)の外径は11.4mmであり、渦電流探傷センサー1のボビン2の貫通孔2aの直径はこのOPGW10の外径に合わせて調整された。 Further, OPGW10 used in this example (OPGW-60 as the line type standard. 60 represents an area of 60 mm 2 as a lightning protection ground wire, and is a total of the eight aluminum-clad steel wires 14 in FIG. The diameter of the through hole 2a of the bobbin 2 of the eddy current flaw detection sensor 1 was adjusted in accordance with the outer diameter of the OPGW 10.

本実施例では、(1)損傷の態様の違いによる探傷性能の差の有無の確認、並びに(2)センサーの仕様の違いによる探傷性能の差の有無の確認を行った。   In this example, (1) the presence or absence of a difference in flaw detection performance due to a difference in damage mode was confirmed, and (2) the presence or absence of a difference in flaw detection performance due to a difference in sensor specifications was confirmed.

(1)損傷の態様の違いによる探傷性能の差の有無の確認
まず、損傷の態様の違いによる本発明の渦電流探傷方法の探傷性能の差の有無を確認するため、OPGW10のアルミ管11aに人工的に貫通孔や軸方向き裂を付与し、或いは実際の自然現象による凍結で割れを起こさせて、これらの損傷の検出を行った。なお、アルミ管11aの検出対象の損傷の他には損傷のないことを確認したOPGW10を用いて測定を行った。
(1) Confirmation of presence or absence of difference in flaw detection performance due to difference in damage mode First, in order to confirm whether or not there is a difference in flaw detection performance of the eddy current flaw detection method of the present invention due to a difference in damage mode, the aluminum tube 11a of OPGW 10 is used. These damages were detected by artificially providing through-holes and axial cracks, or causing cracks by freezing due to actual natural phenomena. In addition, it measured using OPGW10 which confirmed that there was no damage other than the damage of the detection target of the aluminum pipe 11a.

まず、アルミ管11aに損傷として貫通孔(直径3mm)を有するOPGW10を用いて測定を行った。所定の探傷周波数70kHz、低域通過フィルタ10Hz、回転すべき表示角度の設定(位相器の設定)40度と設定し、OPGW10をボビン2の貫通孔2aに貫通させた状態で、損傷のない位置でバランス(即ち0点設定)させた後、渦電流探傷センサー1をOPGW10の軸方向に移動させて損傷部分を通過することにより、検波コイルによって検出されて市販の渦流探傷装置の表示画面上(あるいは、同装置を介してPC画面上)に表示された検波信号の軌跡として図4に示す結果が得られた。なお、図4において、横軸は検波信号のX信号の値(単位はV)、縦軸はY信号の値(単位はV)である。横軸、縦軸ともに、一目盛りは2Vを表している。   First, it measured using OPGW10 which has a through-hole (diameter 3mm) as damage to the aluminum tube 11a. A predetermined flaw detection frequency of 70 kHz, a low-pass filter of 10 Hz, a display angle to be rotated (phaser setting) of 40 degrees, and the OPGW 10 is passed through the through-hole 2a of the bobbin 2 and is not damaged. , The eddy current flaw detection sensor 1 is moved in the axial direction of the OPGW 10 and passed through the damaged portion, and is detected by the detection coil on the display screen of a commercially available eddy current flaw detection device ( Alternatively, the result shown in FIG. 4 was obtained as the locus of the detection signal displayed on the PC screen via the same device. In FIG. 4, the horizontal axis represents the value of the X signal of the detection signal (unit: V), and the vertical axis represents the value of the Y signal (unit: V). Both the horizontal axis and the vertical axis indicate 2V.

また、市販の渦流探傷装置の表示画面上(あるいは、同装置を介してPC画面上)に表示されたデータを、横軸を時間軸にすると共に縦軸をY信号の値にして表示することにより図5(A)に示す結果が得られ、横軸を時間軸にすると共に縦軸をX信号の値にして表示することにより図5(B)に示す結果が得られた。図5(A)と図5(B)ともに、縦軸は一目盛りが1Vを、横軸は一目盛りが0.5secを表している。   In addition, the data displayed on the display screen of a commercially available eddy current flaw detector (or on the PC screen via the same device) is displayed with the horizontal axis as the time axis and the vertical axis as the Y signal value. The result shown in FIG. 5A was obtained, and the result shown in FIG. 5B was obtained by displaying the horizontal axis as the time axis and the vertical axis as the value of the X signal. In both FIG. 5A and FIG. 5B, the vertical axis represents 1 V on a scale, and the horizontal axis represents 0.5 sec on a scale.

図4及び図5に示す結果から、Y信号の値の変動が大きいので非磁性体であるアルミ管11aに損傷が発生していると判断され、一方で、X信号の値の変動は大きいとは言えないので磁性体である鋼線には損傷は発生していないと判断された。   From the results shown in FIG. 4 and FIG. 5, it is determined that the non-magnetic aluminum tube 11a is damaged because the fluctuation of the Y signal value is large. On the other hand, the fluctuation of the X signal value is large. Therefore, it was judged that the steel wire, which is a magnetic material, was not damaged.

また、アルミ管11aに損傷として軸方向き裂(幅2mm×長さ10mm)を有するOPGW10(線種の規格としてはOPGW−60)を用いて測定を行い、渦電流の検波信号の軌跡について図6に示す結果が得られ、時間経過に伴うX,Y信号の値の変動について図7に示す結果が得られた。さらに、アルミ管11aに損傷として凍結割れ(割れ長さ0.9mm)を有するOPGW10(線種の規格としてはOPGW−60)を用いて測定を行い、検波信号の軌跡について図8に示す結果が得られ、時間経過に伴うX、Y信号の値の変動について図9に示す結果が得られた。図6と図8においては、横軸、縦軸ともに、一目盛りは2Vを表している。図7と図9においては、ともに、縦軸は一目盛りが1Vを、横軸は一目盛りが0.5secを表している。   In addition, measurement was performed using an OPGW10 (OPGW-60 as the line type standard) having an axial crack (width 2 mm × length 10 mm) as damage to the aluminum tube 11a, and the locus of the detection signal of the eddy current is illustrated. The results shown in FIG. 6 were obtained, and the results shown in FIG. 7 were obtained for the fluctuations in the values of the X and Y signals over time. Furthermore, measurement was performed using OPGW10 (OPGW-60 as the standard of the line type) having a frozen crack (crack length: 0.9 mm) as damage to the aluminum tube 11a, and the result of the detection signal locus shown in FIG. The results shown in FIG. 9 were obtained for fluctuations in the values of the X and Y signals with time. 6 and 8, the scale represents 2V on both the horizontal axis and the vertical axis. In both FIG. 7 and FIG. 9, the vertical axis represents 1V and the horizontal axis represents 0.5 sec.

図7及び図9に示す結果から、いずれの場合についても、Y信号の値の変動が大きいので非磁性体であるアルミ管11aに損傷が発生していると判断され、一方で、X信号の値の変動は大きいとは言えないので磁性体である鋼線には損傷は発生していないと判断された。   From the results shown in FIGS. 7 and 9, in any case, it is determined that the non-magnetic aluminum tube 11a is damaged because the fluctuation in the value of the Y signal is large. Since the fluctuation of the value cannot be said to be large, it was judged that the steel wire, which is a magnetic material, was not damaged.

これらの結果から、本発明の渦電流探傷方法によれば、損傷の種類に拘わらず、さらに、長さが1mmにも満たない微小な損傷であっても、損傷の検出を適確に高い精度で行うことが可能であることが確認された。   From these results, according to the eddy current flaw detection method of the present invention, regardless of the type of damage, even if the damage is as small as less than 1 mm, the detection of damage is accurately and accurately performed. It has been confirmed that it is possible to do this.

(2)センサーの仕様の違いによる探傷性能の差の有無の確認
次に、センサーの仕様の違いによる本発明の渦電流探傷方法の探傷性能の差の有無を確認するため、検査対象物の外周面と出力コイル及び検波コイルの内周面との間隔即ち溝2dの底部2eにおけるボビン2の周壁の厚さを1.6mm,4.3mm,9.3mmの三段階に変化させてOPGW10(線種の規格としてはOPGW−60)のアルミ管11aに人工的に貫通孔や軸方向き裂を付与した損傷、或いは実際の自然現象により凍結で割れを起こさせた損傷の検出を行った。なお、アルミ管11aの検出対象の損傷の他には損傷のないことを確認したOPGW10を用いて測定を行った。
(2) Confirmation of difference in flaw detection performance due to difference in sensor specifications Next, in order to confirm whether there is a difference in flaw detection performance of the eddy current flaw detection method of the present invention due to difference in sensor specifications, the outer circumference of the inspection object The distance between the surface and the inner peripheral surface of the output coil and the detection coil, that is, the thickness of the peripheral wall of the bobbin 2 at the bottom 2e of the groove 2d is changed in three steps of 1.6 mm, 4.3 mm, and 9.3 mm. As a species standard, OPGW-60) aluminum tube 11a was artificially provided with a through hole or an axial crack, or damage caused by freezing due to an actual natural phenomenon was detected. In addition, it measured using OPGW10 which confirmed that there was no damage other than the damage of the detection target of the aluminum pipe 11a.

まず、アルミ管11aに損傷として軸方向き裂(幅2mm×長さ10mm)を有するOPGW10を用いて測定を行い、図10に示す結果が得られた。図10において、横軸は検査対象物の外周面と出力コイル及び検波コイルの内周面との間隔(単位はmm)であり、縦軸は振幅(単位はV)である。また、各試験片として以下の諸元を有する試験片を用いた。
試験片1:線種A,幅0.2mm×長さ5mmの軸方向き裂
試験片2:線種B,幅0.2mm×長さ5mmの軸方向き裂
試験片3:線種A,幅0.2mm×長さ15mmの軸方向き裂
試験片4:線種B,幅0.2mm×長さ15mmの軸方向き裂
なお、線種Aと線種Bとでは製造メーカーが異なる。
First, measurement was performed using an OPGW 10 having an axial crack (width 2 mm × length 10 mm) as damage to the aluminum tube 11a, and the result shown in FIG. 10 was obtained. In FIG. 10, the horizontal axis represents the distance (unit: mm) between the outer peripheral surface of the inspection object and the inner peripheral surface of the output coil and detector coil, and the vertical axis represents the amplitude (unit: V). Moreover, the test piece which has the following specifications was used as each test piece.
Test piece 1: Line type A, axial crack of width 0.2 mm × length 5 mm Test piece 2: Line type B, axial crack of width 0.2 mm × length 5 mm Test piece 3: Line type A, Axial crack with width 0.2 mm x length 15 mm Test piece 4: Line type B, axial crack with width 0.2 mm x length 15 mm The manufacturer differs between line type A and line type B.

ここで、振幅は数式2によって定義される。
(数2) 振幅(V)={(X信号の値(V))+(Y信号の値(V))1/2
Here, the amplitude is defined by Equation 2.
(Expression 2) Amplitude (V) = {(X signal value (V)) 2 + (Y signal value (V)) 2 } 1/2

すなわち、振幅は、X信号−Y信号の図(図4、図6、図8)において原点からの距離を示している。そして、X信号が0である場合(図5及び図7のケース)には、振幅はY信号の高さを示している。   That is, the amplitude indicates the distance from the origin in the X signal-Y signal diagrams (FIGS. 4, 6, and 8). When the X signal is 0 (the case of FIGS. 5 and 7), the amplitude indicates the height of the Y signal.

また、アルミ管11aに損傷として凍結割れ(割れ長さが0.9mm、3.4mm、4.6mmの3種類)を有するOPGW10を用いて測定を行い、図11に示す結果が得られた。図11も、横軸は検査対象物の外周面と出力コイル及び検波コイルの内周面との間隔(単位はmm)であり、縦軸は振幅(単位はV)である。また、各試験片として以下の諸元を有する試験片を用いた。
試験片5:線種B,貫通部長さ0.9mmの凍結割れ
試験片6:線種A,貫通部長さ4.6mmの凍結割れ
試験片7:線種C,貫通部長さ3.4mmの凍結割れ
なお、線種Aと線種Bとでは製造メーカーが異なり、
線種Bと線種Cとでは製造メーカーは同じであるがロットが異なる。
Further, measurement was performed using OPGW10 having frozen cracks (three types of crack lengths of 0.9 mm, 3.4 mm, and 4.6 mm) as damage to the aluminum tube 11a, and the results shown in FIG. 11 were obtained. In FIG. 11 as well, the horizontal axis is the interval (unit: mm) between the outer peripheral surface of the inspection object and the inner peripheral surface of the output coil and detector coil, and the vertical axis is the amplitude (unit: V). Moreover, the test piece which has the following specifications was used as each test piece.
Specimen 5: Freeze cracking with line type B, penetrating part length 0.9 mm Specimen 6: Freezing crack with line type A, penetrating part length 4.6 mm Specimen 7: Freezing crack with line type C, penetrating part length 3.4 mm In addition, the manufacturer is different between line type A and line type B,
Line type B and line type C have the same manufacturer but different lots.

これらの結果から、本発明の渦電流探傷方法においては、検査対象物の外周面と出力コイル及び検波コイルの内周面との間隔が小さいほど損傷に起因する検出信号が顕著に得られる傾向にあり、検査対象物の外周面と出力コイル及び検波コイルの内周面との間隔を10mm未満とすることが好ましく、より好ましくは5mm未満とすることであり、最も好ましくは2mm未満とすることであることが確認された。   From these results, in the eddy current flaw detection method of the present invention, the detection signal resulting from the damage tends to be more prominent as the distance between the outer peripheral surface of the inspection object and the inner peripheral surface of the output coil and the detection coil is smaller. Yes, the distance between the outer peripheral surface of the inspection object and the inner peripheral surfaces of the output coil and the detection coil is preferably less than 10 mm, more preferably less than 5 mm, and most preferably less than 2 mm. It was confirmed that there was.

なお、本実施例では、図3に示す断面を有するOPGW10を検査対象物として用いているが、本発明の渦電流探傷方法の適用に適したOPGWの断面構成はこれに限られるものではなく、更に言えば、本発明の適用に適した検査対象物はOPGWに限られるものではない。   In this embodiment, the OPGW 10 having the cross section shown in FIG. 3 is used as the inspection object, but the cross sectional configuration of the OPGW suitable for application of the eddy current flaw detection method of the present invention is not limited to this. Furthermore, the inspection object suitable for application of the present invention is not limited to OPGW.

本発明の実施に用いられる渦電流探傷センサーの一例を示す側面図である。It is a side view which shows an example of the eddy current flaw detection sensor used for implementation of this invention. 本発明の実施に用いられる渦電流探傷センサーの一例を示す正面図である。It is a front view which shows an example of the eddy current flaw detection sensor used for implementation of this invention. 実施例において検査対象物として用いたOPGWの断面図である。It is sectional drawing of OPGW used as a test subject in an Example. アルミ管に貫通孔を有するOPGWの渦電流の検波信号の軌跡を示す図である。It is a figure which shows the locus | trajectory of the detection signal of the eddy current of OPGW which has a through-hole in an aluminum tube. アルミ管に貫通孔を有するOPGWの渦電流のX又はY信号を示す図である。 (A)はY信号を示す図である。(B)はX信号を示す図である。It is a figure which shows the X or Y signal of the eddy current of OPGW which has a through-hole in an aluminum tube. (A) is a figure which shows Y signal. (B) is a diagram showing an X signal. アルミ管にき裂を有するOPGWの渦電流の検波信号の軌跡を示す図である。It is a figure which shows the locus | trajectory of the detection signal of the eddy current of OPGW which has a crack in an aluminum tube. アルミ管にき裂を有するOPGWの渦電流のX又はY信号を示す図である。 (A)はY信号を示す図である。(B)はX信号を示す図である。It is a figure which shows the X or Y signal of the eddy current of OPGW which has a crack in an aluminum tube. (A) is a figure which shows Y signal. (B) is a diagram showing an X signal. アルミ管に凍結割れを有するOPGWの渦電流の検波信号の軌跡を示す図である。It is a figure which shows the locus | trajectory of the detection signal of the eddy current of OPGW which has a freeze crack in an aluminum pipe. アルミ管に凍結割れを有するOPGWの渦電流のX又はY信号を示す図である。 (A)はY信号を示す図である。(B)はX信号を示す図である。It is a figure which shows the X or Y signal of the eddy current of OPGW which has a freeze crack in an aluminum pipe. (A) is a figure which shows Y signal. (B) is a diagram showing an X signal. アルミ管にき裂を有するOPGWの損傷の検出における検査対象物外周面とコイル内周面との間隔の変化に伴う振幅の変動を説明する図である。It is a figure explaining the fluctuation | variation of the amplitude accompanying the change of the space | interval of the test subject outer peripheral surface and coil inner peripheral surface in the detection of the damage of OPGW which has a crack in an aluminum pipe. アルミ管に凍結割れを有するOPGWの損傷の検出における検査対象物外周面とコイル内周面との間隔の変化に伴う振幅の変動を説明する図である。It is a figure explaining the fluctuation | variation of the amplitude accompanying the change of the space | interval of the test subject outer peripheral surface and coil inner peripheral surface in the detection of the damage of OPGW which has a freeze crack in an aluminum pipe. 従来の渦電流探傷センサーを示す斜視図である。It is a perspective view which shows the conventional eddy current flaw detection sensor.

符号の説明Explanation of symbols

1 渦電流探傷センサー
2 ボビン
5 接続端子固定基板
7 基板固定部材
1 Eddy current flaw detection sensor 2 Bobbin 5 Connection terminal fixing board 7 Board fixing member

Claims (5)

X信号−Y信号の2次元座標軸上において非磁性体部材の損傷に伴う検出信号がY軸方向にくるように検波信号を原点を中心として回転させるように設定した上で、磁性体部材である鋼線と非磁性体部材であるアルミ管とからなる管状の検査対象物としての光ファイバ複合架空地線の外側に出力コイル及び検波コイルを巻き回すと共に前記出力コイル及び前記検波コイルを用いて探傷周波数を70kHzとして電磁誘導現象を利用した前記光ファイバ複合架空地線についての電気信号の測定を行い、当該測定によって得られる検波信号のX信号の変動に基づいて前記光ファイバ複合架空地線を構成する鋼線の損傷を検出すると共にY信号の変動に基づいて前記光ファイバ複合架空地線を構成するアルミ管の損傷を検出することを特徴とする渦電流探傷方法。 It is a magnetic member after setting the detection signal to rotate around the origin so that the detection signal accompanying damage to the non-magnetic member is in the Y-axis direction on the two-dimensional coordinate axis of the X signal-Y signal. An output coil and a detection coil are wound around an optical fiber composite overhead ground wire as a tubular inspection object made of a steel wire and an aluminum tube which is a nonmagnetic member , and flaw detection is performed using the output coil and the detection coil. An electrical signal is measured for the optical fiber composite ground wire with a frequency of 70 kHz and utilizing an electromagnetic induction phenomenon, and the optical fiber composite ground wire is configured based on the variation of the X signal of the detection signal obtained by the measurement. vortex and detects a damage of the aluminum tube constituting the optical fiber composite overhead ground wire on the basis of the variations of the Y signal and detects a damage of the steel wire to Nagaresagu scratch method. 前記光ファイバ複合架空地線の外周面と前記出力コイル及び前記検波コイルの内周面との間隔が5mm未満であることを特徴とする請求項1記載の渦電流探傷方法。 2. The eddy current flaw detection method according to claim 1, wherein a distance between an outer peripheral surface of the optical fiber composite ground wire and an inner peripheral surface of the output coil and the detection coil is less than 5 mm. 電磁誘導現象を利用した検査対象物についての電気信号の測定を行う渦電流探傷センサーであって、磁性体部材である鋼線と非磁性体部材であるアルミ管とからなる管状の検査対象物としての光ファイバ複合架空地線の外側に巻き回される出力コイル及び検波コイルを有し、前記光ファイバ複合架空地線の外周面と前記出力コイル及び前記検波コイルの内周面との間隔が5mm未満であり、探傷周波数を70kHzとして測定を行うことを特徴とする渦電流探傷センサー。 A multi-coil sensors for measuring the electrical signal of test object using electromagnetic induction phenomenon, as the inspection object tubular made of an aluminum tube which is a non-magnetic member and the steel wire is a magnetic member An output coil and a detection coil that are wound around the outside of the optical fiber composite ground wire , and an interval between the outer peripheral surface of the optical fiber composite ground wire and the inner peripheral surface of the output coil and the detection coil is 5 mm. der is, eddy current sensor, characterized in that to make measurements flaw detection frequency as 70kHz below. 磁性体部材である鋼線と非磁性体部材であるアルミ管とからなる管状の検査対象物としての光ファイバ複合架空地線の外周面と前記光ファイバ複合架空地線に巻き回される出力コイル及び検波コイルの内周面との間隔が5mm未満であることを特徴とする渦電流センサーを用いることにより、前記光ファイバ複合架空地線の外側に巻き回される前記出力コイル及び前記検波コイルを用いて探傷周波数を70kHzとして電磁誘導現象を利用した前記光ファイバ複合架空地線についての電気信号の測定を行い、当該測定によって得られる検波信号の変動に基づいて前記光ファイバ複合架空地線を構成する前記アルミ管の損傷を前記鋼線からの信号に影響されることなく検出可能とすることを特徴とする渦電流探傷方法。 An outer peripheral surface of an optical fiber composite ground wire as a tubular inspection object made of a steel wire as a magnetic member and an aluminum tube as a non-magnetic member , and an output coil wound around the optical fiber composite ground wire And using the eddy current sensor characterized in that the distance between the detection coil and the inner peripheral surface is less than 5 mm, the output coil and the detection coil wound around the optical fiber composite ground wire The flaw detection frequency is set to 70 kHz and an electric signal is measured for the optical fiber composite ground wire using an electromagnetic induction phenomenon, and the optical fiber composite ground wire is configured based on a fluctuation of a detection signal obtained by the measurement. An eddy current flaw detection method which makes it possible to detect damage to the aluminum tube without being affected by a signal from the steel wire . 電磁誘導現象を利用した検査対象物についての電気信号の測定を行う渦電流探傷センサーであって、磁性体部材である鋼線と非磁性体部材であるアルミ管とからなる管状の検査対象物としての光ファイバ複合架空地線の外側に巻き回される出力コイル及び検波コイルを有し、前記光ファイバ複合架空地線の外周面と前記出力コイル及び前記検波コイルの内周面との間隔を5mm未満とすることにより、前記出力コイル及び前記検波コイルを用いての探傷周波数を70kHzとした電磁誘導現象を利用した前記光ファイバ複合架空地線についての電気信号の測定によって得られる検波信号の変動に基づいて前記光ファイバ複合架空地線を構成する前記アルミ管の損傷を前記鋼線からの信号に影響されることなく検出可能とすることを特徴とする渦電流探傷センサー。 A multi-coil sensors for measuring the electrical signal of test object using electromagnetic induction phenomenon, as the inspection object tubular made of an aluminum tube which is a non-magnetic member and the steel wire is a magnetic member And an output coil and a detection coil wound around the outside of the optical fiber composite ground wire , and the distance between the outer peripheral surface of the optical fiber composite ground wire and the inner peripheral surface of the output coil and the detection coil is 5 mm. By making the value less than, the fluctuation of the detection signal obtained by the measurement of the electrical signal about the optical fiber composite ground wire using the electromagnetic induction phenomenon in which the flaw detection frequency using the output coil and the detection coil is 70 kHz is reduced. characterized by a detectable without being influenced damage the aluminum tube constituting the optical fiber composite overhead ground wire to the signal from the steel wire based Current flaw detection sensor.
JP2008083441A 2008-03-27 2008-03-27 Eddy current flaw detection method and eddy current flaw detection sensor Expired - Fee Related JP5243828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008083441A JP5243828B2 (en) 2008-03-27 2008-03-27 Eddy current flaw detection method and eddy current flaw detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008083441A JP5243828B2 (en) 2008-03-27 2008-03-27 Eddy current flaw detection method and eddy current flaw detection sensor

Publications (2)

Publication Number Publication Date
JP2009236695A JP2009236695A (en) 2009-10-15
JP5243828B2 true JP5243828B2 (en) 2013-07-24

Family

ID=41250831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008083441A Expired - Fee Related JP5243828B2 (en) 2008-03-27 2008-03-27 Eddy current flaw detection method and eddy current flaw detection sensor

Country Status (1)

Country Link
JP (1) JP5243828B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2600466A (en) * 2020-10-30 2022-05-04 Energyline Science & Tech Limited A method and system for assessing the integrity of overhead power line conductors
CN112485323A (en) * 2020-11-17 2021-03-12 詹灶顺 Automatic current interruption detection early warning device for metal pipeline wall damage

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58109874A (en) * 1981-12-23 1983-06-30 Electron Kiyooto:Kk Metal detector
JPH01113647A (en) * 1987-10-27 1989-05-02 Furukawa Electric Co Ltd:The Method of detecting flaw of aluminum-coated steel stranded wire
JPH05149926A (en) * 1991-11-29 1993-06-15 Fujikura Ltd Flaw detecting coil for metallic wire body
JP3247666B2 (en) * 1998-07-03 2002-01-21 東京瓦斯株式会社 Flaw detection coil element and flaw detection coil
JP3705327B2 (en) * 1998-08-18 2005-10-12 株式会社トクヤマ Metal pipe internal damage inspection method
JP2006200913A (en) * 2005-01-18 2006-08-03 Tokyo Electric Power Services Co Ltd Detector of thickness loss in hollow metal body
JP2007271495A (en) * 2006-03-31 2007-10-18 Central Res Inst Of Electric Power Ind Corrosion evaluation method using eddy current test

Also Published As

Publication number Publication date
JP2009236695A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
EP0910784B1 (en) Eddy current inspection technique
US8274276B2 (en) System and method for the non-destructive testing of elongate bodies and their weldbond joints
US7705589B2 (en) Sensor for detecting surface defects of metal tube using eddy current method
US6400146B1 (en) Sensor head for ACFM based crack detection
US7038445B2 (en) Method, system and apparatus for ferromagnetic wall monitoring
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
JP3247666B2 (en) Flaw detection coil element and flaw detection coil
US7876096B2 (en) Detecting failures in flexible multistrand steel structures
CA2821256C (en) Broadband eddy current probe
JP5243828B2 (en) Eddy current flaw detection method and eddy current flaw detection sensor
JP5290020B2 (en) Eddy current flaw detection method and eddy current flaw detection sensor
CN1339701A (en) Method and device for fault detection of parts
WO2015190414A1 (en) Nondestructive inspection device
JP6378554B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JPH1096756A (en) Detecting method for defect of insulated wire and device therefor
JP2001183346A (en) Coil element for leakage flux flaw detection inspection, coil for leakage flux detection inspection, and/or leakage flux flaw detection inspecting device
JP3159132B2 (en) Method for measuring stress in steel pipes
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
JP3076310B2 (en) Eddy current probe
JPH08278289A (en) Flaw detection device and method for ferromagnetic tube
US10181371B1 (en) Apparatus for magnetostrictive sensor for guided-wave-based inspection, and its associated system and method
CN212989236U (en) Small-pipe-diameter inner-penetrating type detection probe based on alternating-current electromagnetic field
KR20110042907A (en) Eddy current probe for detecting defects of metal tube
JP3321648B2 (en) Method and apparatus for judging the quality of connection of steel core aluminum stranded wire
KR20030026442A (en) Inspection Unit of Surface defect in Line Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees