JPH09274016A - Method and apparatus for detecting flaw of magnetic metal element - Google Patents
Method and apparatus for detecting flaw of magnetic metal elementInfo
- Publication number
- JPH09274016A JPH09274016A JP8350796A JP8350796A JPH09274016A JP H09274016 A JPH09274016 A JP H09274016A JP 8350796 A JP8350796 A JP 8350796A JP 8350796 A JP8350796 A JP 8350796A JP H09274016 A JPH09274016 A JP H09274016A
- Authority
- JP
- Japan
- Prior art keywords
- flaw detection
- signals
- magnetic
- metal body
- magnetic metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁性金属体の内部
又は表面に存在する介在物等の微小な欠陥を、漏洩磁束
探傷法により検出する方法および装置に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for detecting minute defects such as inclusions existing inside or on the surface of a magnetic metal body by a leakage magnetic flux flaw detection method.
【0002】[0002]
【従来の技術】金属材料などでは、内部、表面に欠陥が
あると強度等その品質に問題が生じる可能性があるた
め、品質管理上あるいは品質保証上、X線透過法、超音
波探傷法など様々な非破壊的な検査が行われている。た
とえば、鋼管溶接部の割れなどの検出には、X線透過
法、超音波探傷法が用いられている。一方、表面近傍の
欠陥や薄い帯状材料に関しては、特にオンラインでは、
電磁気的な方法、すなわち漏洩磁束法や渦流探傷法がよ
く用いられる。2. Description of the Related Art In the case of a metallic material, if there is a defect inside or on the surface, there may be a problem in its quality such as strength. Therefore, for quality control or quality assurance, X-ray transmission method, ultrasonic flaw detection method, etc. Various non-destructive inspections have been carried out. For example, an X-ray transmission method and an ultrasonic flaw detection method are used to detect cracks in a welded portion of a steel pipe. On the other hand, regarding defects near the surface and thin strips, especially online,
An electromagnetic method, that is, a leakage magnetic flux method or an eddy current flaw detection method is often used.
【0003】製缶材料向けの極薄鋼板では、介在物など
の欠陥があると製缶時にフランジクラックが発生するな
どの問題が生じる可能性があるため、漏洩磁束法などを
用いたオンライン高速欠陥検出器が開発されてきた。た
とえば、特開平3ー175352号公報には、図5に示
すように、鋼板21を挟んで、一方の側に鋼板を磁化す
るための磁化器22を、そしてもう一方の側に欠陥によ
り生じる漏洩磁束を検出する磁気センサアレイ23を幅
方向に配し、それぞれを非磁性ロール24,25の中に
入れて探傷する方法が提案されている。このような方法
によれば、センサ23と被検査体21の距離を小さく安
定に保つことができ、鋼板中の微小な欠陥が、非接触で
高速に検出できる。In an ultra-thin steel sheet for can-making materials, defects such as inclusions may cause problems such as flange cracks during can-making. Therefore, online high-speed defects using the magnetic flux leakage method, etc. Detectors have been developed. For example, in Japanese Laid-Open Patent Publication No. 3-175352, as shown in FIG. 5, a steel plate 21 is sandwiched, a magnetizer 22 for magnetizing the steel plate is provided on one side, and a leakage caused by a defect is provided on the other side. A method has been proposed in which a magnetic sensor array 23 for detecting magnetic flux is arranged in the width direction, and the magnetic sensor array 23 is placed in each of the non-magnetic rolls 24 and 25 for flaw detection. According to such a method, the distance between the sensor 23 and the inspection object 21 can be kept small and stable, and minute defects in the steel sheet can be detected at high speed without contact.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、特開平
3ー175352号公報に記載される方法を含め従来の
技術においては、検出すべき内部や表面の欠陥が小さい
場合や、厚い金属帯の内部欠陥を検出する場合には、欠
陥信号が弱くなり、相対的にS/N比が劣化して欠陥が
検出しにくくなる。ノイズとしては特に、被検査体に起
因する地合ノイズが問題になることが多い。地合ノイズ
は、測定条件を最適化することで小さくすることはでき
るが、欠陥信号が小さくなってくるに連れて地合ノイズ
と欠陥信号は区別しにくくなり、欠陥検出が困難になっ
てくる。たとえば、製缶用極薄鋼板などで問題となる介
在物などの異物の検出の場合には、従来技術では充分な
検出能が得られないという問題点がある。However, in the prior art including the method described in Japanese Patent Application Laid-Open No. 3-175352, when the internal or surface defects to be detected are small, or the internal defects of a thick metal strip are detected. In the case of detecting the defect, the defect signal becomes weak and the S / N ratio relatively deteriorates, making it difficult to detect the defect. In particular, background noise caused by the object to be inspected is often a problem as noise. The formation noise can be reduced by optimizing the measurement conditions, but as the defect signal becomes smaller, it becomes difficult to distinguish the formation noise from the defect signal, which makes it difficult to detect the defect. . For example, in the case of detecting foreign matter such as inclusions, which is a problem in ultra-thin steel plates for can making, there is a problem that the conventional technique cannot obtain sufficient detectability.
【0005】本発明はこのような問題点を解決するため
になされたもので、従来の漏洩磁束探傷法では十分に検
出できなかった微小な欠陥の検出ができるようにするこ
とを目的とする。The present invention has been made to solve the above problems, and an object thereof is to enable detection of minute defects which could not be sufficiently detected by the conventional leakage magnetic flux flaw detection method.
【0006】[0006]
【課題を解決するための手段】前記課題は、被検査磁性
金属体に磁場を印加して検査部を磁化し、磁性金属体の
欠陥から発生する漏洩磁束を、少なくとも測定条件の1
項目が相互に異なる複数の磁気センサにより検出して複
数の漏洩磁束探傷信号を得、これらの複数の漏洩磁束探
傷信号の実質的に同一の検査部位から得られた信号同士
に対し、当該複数の信号の内少なくとも二つの信号中に
共通して存在する欠陥信号をノイズ信号に対して相対的
に強調するような演算を含む信号処理を行って得られる
複合探傷信号を用いて、磁性金属体の欠陥を検出するこ
とを特徴とする磁性金属体の探傷方法により解決され
る。Means for Solving the Problems The above-mentioned problem is to apply a magnetic field to a magnetic metal body to be inspected to magnetize an inspection part, and to detect leakage magnetic flux generated from a defect of the magnetic metal body at least as a measurement condition.
A plurality of magnetic flux sensor flaw detection signals are obtained by detecting with a plurality of magnetic sensors whose items are different from each other, and the plurality of leak magnetic flux flaw detector signals are detected from the substantially same inspection site. Using a complex flaw detection signal obtained by performing signal processing including a calculation for relatively emphasizing a defect signal commonly present in at least two of the signals with respect to the noise signal, This is solved by a flaw detection method for a magnetic metal body, which is characterized by detecting defects.
【0007】また、この方法は、(1) 磁性金属体を磁化
するための磁化器と、(2) E型形状の強磁性体で作られ
3個の磁極の列が磁性金属体の走行方向に沿うように配
置したE型コアおよびE型コアの中央磁極に巻いたコイ
ルとからなり、被検査磁性金属体の同一個所を挟むよう
に両側に配置された1対のE型磁気センサと、(3) これ
らの1対のE型磁気センサにより検出された2つの漏洩
磁束探傷信号中に共通して存在する欠陥信号をノイズ信
号に対して相対的に強調するような演算を含む信号処理
を行って得られる複合探傷信号を得る演算器と、(4) そ
の複合探傷信号から磁性金属体の欠陥の有無または欠陥
の等級を判断するための判定回路とを有してなる磁性金
属体探傷装置により実施することができる。In this method, (1) a magnetizer for magnetizing a magnetic metal body, and (2) a row of three magnetic poles made of an E-shaped ferromagnetic body, in which the running direction of the magnetic metal body is formed. A pair of E-type magnetic sensors arranged on both sides so as to sandwich the same portion of the magnetic metal body to be inspected, and an E-type core arranged along the center and a coil wound around the central magnetic pole of the E-type core, (3) A signal processing including an operation for emphasizing a defect signal commonly present in the two leakage magnetic flux flaw detection signals detected by the pair of E-type magnetic sensors relative to the noise signal is performed. A magnetic metal flaw detector comprising an arithmetic unit for obtaining a composite flaw detection signal obtained by performing the operation, and (4) a determination circuit for determining the presence or absence of a defect of the magnetic metal body or the grade of the defect from the composite flaw detection signal. Can be carried out.
【0008】複数の信号の内少なくとも二つの信号中に
共通して存在する欠陥信号をノイズ信号に対して相対的
に強調するような演算を含む信号処理を行っているの
で、S/N比が向上し、微小欠陥を精度良く検出するこ
とができる。Since signal processing including an operation for emphasizing a defective signal commonly present in at least two signals among a plurality of signals relative to a noise signal is performed, the S / N ratio is improved. It is possible to improve, and it is possible to detect minute defects with high accuracy.
【0009】[0009]
【発明の実施の形態】測定条件とは、漏洩磁束検出にお
いて一般的に考えられる条件を指しており、項目として
は、たとえば、フィルター、金属帯の測定面、センサと
検査対象との距離、磁化力、磁化方向、センサの種類な
どが考えられる。本発明においては、これらのうち少な
くともが相互に異なる複数の磁気センサにより複数の漏
洩磁束探傷信号を得ている。BEST MODE FOR CARRYING OUT THE INVENTION The measurement condition refers to a condition generally considered in the detection of magnetic flux leakage, and items include, for example, a filter, a measurement surface of a metal band, a distance between a sensor and an inspection object, and a magnetization. Force, magnetization direction, sensor type, etc. are considered. In the present invention, a plurality of leakage magnetic flux flaw detection signals are obtained by a plurality of magnetic sensors, at least of which different from each other.
【0010】演算の対象となる信号として、非検査磁性
金属体の実質的に同一場所の表裏面から得られた信号の
対を用いることができる。欠陥信号は被検査磁性金属体
の表裏面で同じように得られるのに対し、ノイズ成分は
被検査磁性金属体の表面性状等の影響を受けるので表裏
面で異なった信号となる。よって、表裏面の信号同士を
演算することにより、欠陥信号成分をノイズ成分に対し
て相対的に高めることができる。As a signal to be calculated, a pair of signals obtained from the front and back surfaces of the non-inspection magnetic metal body at substantially the same location can be used. The defect signal is similarly obtained on the front and back surfaces of the magnetic metal body to be inspected, whereas the noise component is affected by the surface properties of the magnetic metal body to be inspected and the like, so that different signals are produced on the front and back surfaces. Therefore, the defect signal component can be increased relative to the noise component by calculating the signals on the front and back surfaces.
【0011】演算の対象となる信号として、フィルタ定
数が相互に異なる複数のフィルタによりそれぞれ信号処
理された信号を用いることができる。即ち、例えば図3
に示すように、第1のバンドパスフィルターを欠陥周波
数を含む低めの周波数帯域とし、第2のバンドパスフィ
ルターを欠陥周波数を含む高めの周波数帯域とすると、
欠陥信号は両者で共通であるが、ノイズ成分は、両者の
周波数帯域が異なることから、必ずしも同じ位置に現れ
るとは限らない。よって、これらのバンドパスフィルタ
をそれぞれ通過した信号同士を演算することにより、欠
陥信号成分をノイズ成分に対して相対的に高めることが
できる。As a signal to be calculated, it is possible to use a signal that has been subjected to signal processing by a plurality of filters having mutually different filter constants. That is, for example, in FIG.
As shown in, when the first bandpass filter is a lower frequency band including the defective frequency and the second bandpass filter is a higher frequency band including the defective frequency,
Although the defect signal is common to both, the noise component does not always appear at the same position because the frequency bands of both are different. Therefore, the defective signal component can be relatively increased with respect to the noise component by calculating the signals that have respectively passed through these bandpass filters.
【0012】なお、この場合は複数のセンサを用いて、
それぞれの出力を周波数帯域の異なるフィルタに通して
も良いし、一つのセンサのみを用い、センサからの出力
を分岐して、周波数帯域の異なるフィルタを通してもよ
い。In this case, using a plurality of sensors,
Each output may be passed through a filter having a different frequency band, or only one sensor may be used and the output from the sensor may be branched and passed through a filter having a different frequency band.
【0013】演算の対象となる信号として、センサと金
属体探傷面との距離(リフトオフ)が相互に異なる複数
の磁気センサより得られた信号を用いることができる。
リフトオフが変わると、図4に示すように、センサが検
出する金属体上のカバー範囲が変化することから、検出
対象となるノイズ源が変化して、その結果センサが検出
するノイズが異なったものとなる。そのため、リフトオ
フが変わった場合、欠陥信号は同じように検出されるの
に対し、ノイズの方は異なったものとなる。よって、リ
フトオフの異なるセンサから得られた信号同士の演算に
より、欠陥信号成分をノイズ成分に対して相対的に高め
ることができる。As a signal to be calculated, a signal obtained from a plurality of magnetic sensors having different distances (lift-off) between the sensor and the metal body flaw detection surface can be used.
When the lift-off changes, as shown in FIG. 4, the cover range on the metal body detected by the sensor changes, so that the noise source to be detected changes, and as a result, the noise detected by the sensor changes. Becomes Therefore, if the lift-off changes, the defect signal will be detected in the same way, whereas the noise will be different. Therefore, the defect signal component can be relatively increased with respect to the noise component by calculating the signals obtained from the sensors having different lift-offs.
【0014】演算の対象となる信号として、種類の異な
る複数の磁気センサから得られた信号を用いることがで
きる。センサの種類によって、カバー範囲が異なった
り、あるいは、E型コアを用いたセンサの様に差分機能
があるものと一般のセンサのように差分機能の無いもの
という点で異なったりする。いずれのセンサも欠陥信号
を検出するように設計されているが、ノイズ信号はこれ
らの種類の違いに起因して異なっている。よって、種類
が相互に異なる複数のセンサから得られた信号同士を演
算することにより、欠陥信号成分をノイズ成分に対して
相対的に高めることができる。Signals obtained from a plurality of different types of magnetic sensors can be used as signals to be calculated. Depending on the type of sensor, the range of coverage may differ, or it may differ in that it has a differential function such as a sensor using an E-type core and that it does not have a differential function like a general sensor. Both sensors are designed to detect defective signals, but the noise signals are different due to these types of differences. Therefore, the defect signal component can be relatively increased with respect to the noise component by calculating the signals obtained from the plurality of sensors of different types.
【0015】また、ここで示した項目以外でも、欠陥か
らの信号が得られ、ノイズに関しては、それぞれの測定
条件で出方が相互に異なるものであれば、演算の対象と
なる信号として使用することができる。In addition to the items shown here, if a signal from a defect is obtained and noise is different in the output under each measurement condition, it is used as a signal to be calculated. be able to.
【0016】このように、複数のお互いに異なる測定条
件により得られた複数の漏洩磁束探傷信号の実質的に同
一の検査部位から得られた信号同士に対し、当該複数の
信号の内少なくとも二つの信号中に共通して存在する欠
陥信号をノイズ信号に対して相対的に強調するような演
算を含む信号処理を行って得られる複合探傷信号を用い
て、欠陥を検出する。In this way, for signals obtained from substantially the same inspection site among a plurality of leakage magnetic flux flaw detection signals obtained under a plurality of mutually different measurement conditions, at least two of the plurality of signals are concerned. Defects are detected by using a composite flaw detection signal obtained by performing signal processing including an operation for emphasizing a defect signal commonly present in the signals with respect to a noise signal.
【0017】漏洩磁束探傷信号を2種類用いる場合の演
算を式で一般的に表すと(1)式のようになる。When the two types of leakage magnetic flux flaw detection signals are used, the calculation is generally expressed by the equation (1).
【0018】 A(x) =M1(x) *M2(x) …… (1) ここで、xは検査体上の位置、M1(x) は、ある測定条
件(測定条件1)で得られた位置xにおける漏洩磁束探
傷信号値、M2(x) は、別の測定条件(測定条件2)で
得られた位置xにおける漏洩磁束探傷信号値を示し、*
は演算子(たとえば、乗算、自乗和、M1(x) 、M2
(x) 両者の絶対値をとった後の足し算、M1(x) 、M2
(x) 両者の絶対値をとった後の小さい方をとる演算子な
ど)を示す。A(x)は位置xにおける演算の結果であ
る。A (x) = M1 (x) * M2 (x) (1) where x is the position on the inspection body and M1 (x) is obtained under a certain measurement condition (measurement condition 1). The leakage flux flaw detection signal value at the position x, M2 (x) indicates the leakage flux flaw detection signal value at the position x obtained under another measurement condition (measurement condition 2), *
Is an operator (eg multiplication, sum of squares, M1 (x), M2
(x) Addition after taking the absolute value of both, M1 (x), M2
(x) An operator that takes the smaller one after taking the absolute value of both). A (x) is the result of the calculation at position x.
【0019】その際、欠陥による信号の変化は、たと
えその大きさが違ったとしても、複数の異なる測定条件
全てにおいて検出でき、同じ位置にその変化が現れるよ
うに、そしてノイズが位置的にそれぞれ異なった出方
をするように、測定条件を選択すれば、その欠陥信号と
ノイズの性質の差を利用したS/N比の向上が可能であ
る。一方の漏洩磁束探傷信号で地合ノイズが大きい位置
では、もう一方の漏洩磁束探傷信号では地合ノイズが小
さいため、たとえば両者の同一の検査部位からの信号値
同士の乗算によって、両信号で共通に現れる欠陥信号に
比べ、ノイズ部が相対的に弱められるのである。自乗
和、M1(x) 、M2(x) 両者の絶対値をとった後の足し
算に関しても、同様の効果が期待できる。両者の絶対値
のうち小さい方を取る演算では、欠陥部では両漏洩磁束
探傷信号とも大きな値をとるため、小さい方を取るとい
う演算の結果もさほど小さくならないのに対し、ノイズ
部はどちらか一方が小さくなること場合があり、小さい
方を取ることで、演算結果はかなり小さくなる可能性が
ある。そのため、相対的には欠陥部がノイズ部に比べ、
強調される。At this time, a signal change due to a defect can be detected under all of a plurality of different measurement conditions even if the magnitudes thereof are different, so that the change appears at the same position, and noise is positionally different. If the measurement conditions are selected so as to output in different ways, it is possible to improve the S / N ratio by utilizing the difference between the characteristics of the defect signal and the noise. At the position where the ground noise is large in one of the leakage magnetic flux flaw detection signals, the ground noise is small in the other leakage magnetic flux flaw detection signal. Therefore, for example, by multiplying the signal values from the same inspected portion of both, the two signals are common. The noise portion is relatively weakened as compared with the defect signal appearing at. The same effect can be expected in addition after the absolute values of both the sum of squares and M1 (x) and M2 (x) are taken. In the calculation that takes the smaller of the absolute values of both, the result of the calculation that takes the smaller one does not become so small because the defect magnetic flux flaw detection signal has a large value in the defective part, while the noise part May be small, and by taking the smaller one, the calculation result may be considerably smaller. Therefore, the defective part is relatively
To be emphasized.
【0020】演算の種類は、両漏洩磁束信号で似通った
欠陥信号が強められ、一方両者で必ずしも同じ位置に、
あるいは同じ波形として現れないノイズが相対的に弱め
られる演算であればよい。これはノイズや欠陥信号の性
質に応じて、また、装置化する上での制約などに応じ
て、選択することが可能である。The type of calculation is such that a similar defect signal is strengthened by both leakage magnetic flux signals, while both are always at the same position,
Alternatively, the calculation may be performed so that noises that do not appear as the same waveform are relatively weakened. This can be selected according to the characteristics of the noise or the defect signal, or according to the restrictions in implementing the device.
【0021】前記の例では、2種類の漏洩磁束探傷信号
間の演算を例に取り説明したが、2種類に限る必要はな
い。多くの測定条件の異なる信号を使用することで、欠
陥信号は強調され、ノイズは相対的に強調の程度が少な
くなるという効果が増すことが期待できる。たとえば、
M1(x) 、M2(x) 、M3(x) 、M4(x) を、それぞれ
異なる条件でとった漏洩磁束探傷信号データとすると、
以下の(2)式に示すB(x) を、欠陥の有無の判定に使
用できる。 B(x) =abs [M1(x) ×M2(x) ×M3(x)]+abs[M4(x)] …… (2) ここで、abs[Y] はYの絶対値をとる関数である。In the above example, the calculation between two types of leakage magnetic flux flaw detection signals has been described as an example, but it is not necessary to limit to two types. It is expected that the use of many signals with different measurement conditions will enhance the effect that the defect signal is emphasized and the noise is relatively less emphasized. For example,
Letting M1 (x), M2 (x), M3 (x), and M4 (x) be leakage flux flaw detection signal data taken under different conditions,
B (x) shown in the following equation (2) can be used to determine the presence or absence of a defect. B (x) = abs [M1 (x) x M2 (x) x M3 (x)] + abs [M4 (x)] (2) where abs [Y] is a function that takes the absolute value of Y. is there.
【0022】また、ここではある一種類の演算結果を欠
陥の有無の判定に使用する場合について述べているが、
これは一つに限らず、2つ以上を使うことも可能であ
る。たとえば、上記A(x) とB(x) それぞれの判定結果
を組み合わせて最終的な判定をくだすことも可能であ
る。また、従来の漏洩磁束探傷信号単体での判定をも加
えることができる。このような場合、判定回路は、単に
ある一つの信号に対してだけではなく、複数の信号につ
いて、それぞれの閾値を越えているかどうかを調べ、さ
らに、その結果を組み合わせて、欠陥の有無、等級に関
する最終的な判定を行うことになる。Further, here, the case where a certain one kind of calculation result is used for judging the presence or absence of a defect is described.
This is not limited to one, and it is possible to use two or more. For example, it is possible to make a final judgment by combining the judgment results of A (x) and B (x). In addition, it is possible to add a determination based on the conventional leakage magnetic flux flaw detection signal alone. In such a case, the determination circuit checks not only for one signal but also for a plurality of signals whether or not the respective thresholds are exceeded, and further, by combining the results, presence / absence of a defect and a grade. Will be the final decision.
【0023】これらにより、単純な従来の漏洩磁束法の
みでは、S/Nが悪く検出できないような微小な欠陥の
検出が可能になる。As a result, it becomes possible to detect minute defects whose S / N is bad and cannot be detected only by the simple conventional magnetic flux leakage method.
【0024】[0024]
【実施例】以下、本発明の1実施例を図を用いて説明す
る。図1は、本発明にかかる装置の例を示す図である。
図1において、11は鋼板、12、13はE型磁気セン
サ、14はコイル、15は直流磁化装置、16、17は
バンドパスフィルタ、18は乗算器、19は判定回路で
ある。An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an example of an apparatus according to the present invention.
In FIG. 1, 11 is a steel plate, 12 and 13 are E-type magnetic sensors, 14 is a coil, 15 is a DC magnetizing device, 16 and 17 are bandpass filters, 18 is a multiplier, and 19 is a judgment circuit.
【0025】鋼板11を挟んで、一方の側にE型センサ
12を、もう一方の側に直流磁化装置15ともう一つの
E型センサ13を配置する。この直流磁化装置15によ
り、鋼板11の被検査部位は飽和域まで磁化される。鋼
板11は、E型センサ12、磁化器15とE型センサ1
3の間を移動するが、その移動方向に沿ってセンサコア
の3本の足(磁極)12a,12b,12cが並んでい
る。その3本のうち、E型センサの中心の足12bに巻
いてあるコイル14は、磁気検出部として使用されてお
り、そのコイルに鎖交する磁束の時間微分値が計測され
る。An E-type sensor 12 is arranged on one side of the steel plate 11 and a DC magnetizing device 15 and another E-type sensor 13 are arranged on the other side. The DC magnetizing device 15 magnetizes the portion of the steel sheet 11 to be inspected to the saturation region. The steel plate 11 includes an E-type sensor 12, a magnetizer 15 and an E-type sensor 1.
The three legs (magnetic poles) 12a, 12b, 12c of the sensor core are arranged along the movement direction. Of these three coils, the coil 14 wound around the center leg 12b of the E-type sensor is used as a magnetic detection unit, and the time differential value of the magnetic flux interlinking with the coil is measured.
【0026】コアがE型であるという構造上の特徴か
ら、そのコイルに鎖交する磁束は、一方の端部の足12
aと真中の足12bを含む磁気的なループを通る磁束
と、もう一方の端部の足12cと真中の足12bを含む
磁気的なループを通る磁束との差分となる。そのため、
両ループに共通のノイズ成分などはキャンセルされ、両
ループで共通でない欠陥信号成分が選択的に検出される
ことになる。E型センサ13の作用も上記E型センサ1
2の作用と同様である。Due to the structural characteristic that the core is E-shaped, the magnetic flux interlinking the coil is the foot 12 at one end.
It is the difference between the magnetic flux passing through the magnetic loop including a and the middle leg 12b and the magnetic flux passing through the magnetic loop including the leg 12c at the other end and the middle leg 12b. for that reason,
Noise components common to both loops are canceled and defective signal components not common to both loops are selectively detected. The function of the E-type sensor 13 is also the same as that of the E-type sensor 1 described above.
It is similar to the action of 2.
【0027】センサ出力を、適当なバンドパスフィルタ
16、17に通すことで、漏洩磁束探傷信号(微分値)
を得ることができる。By passing the sensor output through appropriate band pass filters 16 and 17, a leakage magnetic flux flaw detection signal (differential value)
Can be obtained.
【0028】ここでは演算として、鋼板の場所を挟むよ
うに両側に配置した2つのセンサにより得られた2つの
漏洩磁束探傷信号の同じ検査位置からの信号同士の乗算
を使用した例について述べる。鋼板中深さ方向の感度
は、センサのある表面側近くでは相対的に高く、センサ
のない裏面側近くでは相対的に低くなる。そのため、セ
ンサ12とセンサ13では、信号やノイズ源の深さ方向
の位置によって、信号の出方が異なることになる。Here, as an arithmetic operation, an example will be described in which two leakage magnetic flux flaw detection signals obtained by two sensors arranged on both sides of a steel sheet are sandwiched between the signals from the same inspection position. The sensitivity in the depth direction of the steel sheet is relatively high near the front surface side where the sensor is present and relatively low near the back surface side where the sensor is not present. Therefore, the sensor 12 and the sensor 13 output signals differently depending on the positions of the signal and the noise source in the depth direction.
【0029】図2(a)は、検査体上の位置xを横軸と
し、縦軸にバンドパスフィルタ等の処理後のセンサ12
aよる漏洩磁束探傷信号Ma(x) を示したものである。
欠陥部で信号が大きくなっているだけでなく、検査体に
起因する地合ノイズが大きく出ているため、S/N比で
は1.8 程度である。図2(b) は、同様にバンドパスフィ
ルタ等の処理後のセンサ13による漏洩磁束探傷信号M
b(x) である。この場合もMa(x) と同じ位置に欠陥信
号が出ているが、検査体に起因する地合ノイズがあるた
め、S/N比はやはり1.9 程度である。ここで同じ位置
からの信号値毎に、乗算を行う。演算結果A(x) を式で
表すと、 A(x) =Ma(x) ×Mb(x) …… (3) という演算を行うことになる。In FIG. 2A, the position x on the inspection body is taken as the horizontal axis, and the vertical axis is taken as the sensor 12 after processing such as a band pass filter.
9 shows the leakage magnetic flux flaw detection signal Ma (x) due to a.
Not only the signal is large at the defective part, but also the background noise due to the inspection object is large, so the S / N ratio is about 1.8. Similarly, FIG. 2B shows the leakage magnetic flux flaw detection signal M by the sensor 13 after processing such as a band pass filter.
b (x). In this case as well, the defect signal is output at the same position as Ma (x), but the S / N ratio is still about 1.9 because of background noise caused by the inspection object. Here, multiplication is performed for each signal value from the same position. When the calculation result A (x) is expressed by an equation, the calculation of A (x) = Ma (x) × Mb (x) (3) is performed.
【0030】この場合欠陥の大きさがある程度あるた
め、欠陥信号は、両信号で現れ、その位置がほぼ同じで
あるため、乗算をすることで、演算後の信号A(x) の欠
陥対応部は大きくなる。一方、地合ノイズの出方は、両
センサでの深さ方向の感度分布の違いに起因して、両者
の信号が、必ずしも同じ位置で大きくなるとは限らな
い。たとえば、表面近傍のノイズ源によるノイズは、一
方のセンサでは検出されるが、もう一方のセンサではあ
まり検出されないと言うことが起こる。その場合、両者
の乗算をすると、演算後の信号A(x) のノイズ対応部
は、欠陥信号部同士の場合に比べると、一般に大きくな
らない。つまり、欠陥信号部は、地合ノイズ部に比べ強
調されるので、演算結果A(x) を使うことで欠陥の有無
を判定することが容易になり、欠陥検出能が上がるので
ある。この例では、S/N比は5.2 に向上している。In this case, since the size of the defect is to some extent, the defect signal appears in both signals and their positions are almost the same. Therefore, by performing multiplication, the defect corresponding portion of the signal A (x) after the operation is calculated. Grows. On the other hand, due to the difference in the sensitivity distribution in the depth direction between the two sensors, the formation noise of the formation noise does not always increase at the same position in both signals. For example, it may happen that noise from a noise source near the surface is detected by one sensor but is not detected by the other sensor. In that case, when both are multiplied, the noise corresponding part of the signal A (x) after calculation is generally not larger than that between the defective signal parts. That is, since the defect signal portion is emphasized as compared with the background noise portion, it becomes easy to determine the presence or absence of a defect by using the calculation result A (x), and the defect detectability is improved. In this example, the S / N ratio has improved to 5.2.
【0031】判定回路19は、このようにして得られた
S/N比の良い信号を用いて、欠陥信号値とあらかじめ
決められた閾値を比べることで、欠陥の有無の判定、欠
陥等級の判定を行う。The determination circuit 19 compares the defect signal value with a predetermined threshold value by using the signal having a good S / N ratio obtained in this way to determine the presence / absence of a defect and the defect grade. I do.
【0032】[0032]
【発明の効果】本発明においては、測定条件の相互に異
なる複数の渦流探傷信号の実質的に同一の検査部位から
得られた信号波形同士を演算して得られる複合探傷信号
を用いて、欠陥の有無や有害度を判定することで、従来
の方法ではS/N比が十分取れず、検出しにくかった欠
陥を検出することができる。According to the present invention, a defect is detected by using a composite flaw detection signal obtained by computing signal waveforms obtained from substantially the same inspection portion of a plurality of eddy current flaw detection signals whose measurement conditions are different from each other. By determining the presence or absence and the degree of harmfulness, it is possible to detect a defect that is difficult to detect because the S / N ratio cannot be sufficiently obtained by the conventional method.
【図1】 本発明にかかる装置の1実施例を示す図であ
る。FIG. 1 shows an embodiment of the device according to the invention.
【図2】 漏洩磁束探傷信号と、その演算結果の信号を
示す図である。FIG. 2 is a diagram showing a leakage magnetic flux flaw detection signal and a signal of a calculation result thereof.
【図3】 欠陥とノイズの周波数と、バンドパスフィル
タの帯域の関係を示す図である。FIG. 3 is a diagram showing the relationship between the frequencies of defects and noise and the band of a bandpass filter.
【図4】 センサのリフトオフと検出範囲、ノイズ源の
範囲を示す図である。FIG. 4 is a diagram showing lift-off of a sensor, a detection range, and a range of a noise source.
【図5】 従来技術の例を示す図である。FIG. 5 is a diagram showing an example of a conventional technique.
11 鋼板 12、13 E型センサ 12a、12b、12c E型センサの足 14 コイル 15 直流磁化装置 16、17 バンドパスフィルタ 18 乗算器 19 判定回路 11 steel plate 12, 13 E-type sensor 12a, 12b, 12c E-type sensor leg 14 coil 15 DC magnetizing device 16, 17 band-pass filter 18 multiplier 19 determination circuit
Claims (8)
部を磁化し、磁性金属体の欠陥から発生する漏洩磁束
を、少なくとも測定条件の1項目が相互に異なる複数の
磁気センサにより検出して複数の漏洩磁束探傷信号を
得、これらの複数の漏洩磁束探傷信号の実質的に同一の
検査部位から得られた信号同士に対し、当該複数の信号
の内少なくとも二つの信号中に共通して存在する欠陥信
号をノイズ信号に対して相対的に強調するような演算を
含む信号処理を行って得られる複合探傷信号を用いて、
磁性金属体の欠陥を検出することを特徴とする磁性金属
体の探傷方法。1. A magnetic flux is applied to a magnetic metal body to be inspected to magnetize an inspection portion, and a leakage magnetic flux generated from a defect of the magnetic metal body is detected by a plurality of magnetic sensors having at least one measurement condition different from each other. To obtain a plurality of leakage flux flaw detection signals, and the signals obtained from substantially the same inspection portion of the plurality of leakage flux flaw detection signals are common to at least two of the plurality of signals. Using a complex flaw detection signal obtained by performing signal processing including a calculation that relatively emphasizes the existing defect signal with respect to the noise signal,
A flaw detection method for a magnetic metal body, which comprises detecting defects in the magnetic metal body.
性金属体の実質的に同一場所の表裏面から得られた信号
の対を含むことを特徴とする請求項1に記載の磁性金属
体の探傷方法。2. The magnetic metal body of claim 1, wherein the at least two signals include a pair of signals obtained from front and back surfaces of a non-test magnetic metal body at substantially the same location. Method of flaw detection.
定数が相互に異なる複数のフィルタによりそれぞれ信号
処理された信号を含むことを特徴とする請求項1又は請
求項2に記載の磁性金属体の探傷方法。3. The flaw detection of the magnetic metal body according to claim 1, wherein the at least two signals include signals processed by a plurality of filters having different filter constants. Method.
被検査金属体探傷面との距離が相互に異なる複数の磁気
センサより得られた信号を含むことを特徴とする請求項
1ないし請求項3のいずれか1項に記載の磁性金属体の
探傷方法。4. The at least two signals include signals obtained from a plurality of magnetic sensors having different distances between the sensor and the flaw detection surface of the metal body to be inspected. The flaw detection method for a magnetic metal body according to any one of 1.
なる複数の磁気センサから得られた信号を含むことを特
徴とする請求項1ないし請求項4の内いずれか1項に記
載の磁性金属体の探傷方法。5. The magnetic metal body according to claim 1, wherein the at least two signals include signals obtained from a plurality of magnetic sensors of different types. Flaw detection method.
イズ信号に対して相対的に強調するような演算が乗算で
あることを特徴とする請求項1ないし請求項5の内いず
れか1項に記載の磁性金属体の探傷方法。6. The operation according to claim 1, wherein the operation for emphasizing a defective signal commonly present in the signals relative to the noise signal is multiplication. Item 6. A flaw detection method for a magnetic metal body according to the item.
と、(2) E型形状の強磁性体で作られ3個の磁極の列が
磁性金属体の走行方向に沿うように配置したE型コアお
よびE型コアの中央磁極に巻いたコイルとからなり、被
検査磁性金属体の同一個所を挟むように両側に対となっ
て配置されたE型磁気センサと、(3) これらの対となっ
ているE型磁気センサにより検出された2つの漏洩磁束
探傷信号中に共通して存在する欠陥信号をノイズ信号に
対して相対的に強調するような演算を含む信号処理を行
って得られる複合探傷信号を得る演算器と、(4) その複
合探傷信号から磁性金属体の欠陥の有無または欠陥の等
級を判断するための判定回路とを有してなる磁性金属体
探傷装置。7. A magnetizer for magnetizing a magnetic metal body, and (2) an array of three magnetic poles made of an E-shaped ferromagnetic body so that a row of three magnetic poles runs along the traveling direction of the magnetic metal body. An E-type magnetic sensor, which is composed of an E-type core arranged and a coil wound around the central magnetic pole of the E-type core, and is arranged in pairs on both sides so as to sandwich the same portion of the magnetic metal body to be inspected, (3) Performs signal processing including an operation for relatively emphasizing a defect signal commonly present in two leakage magnetic flux flaw detection signals detected by the paired E-type magnetic sensors with respect to a noise signal A magnetic metal flaw detector, comprising: an arithmetic unit for obtaining a composite flaw detection signal obtained by the above; and (4) a determination circuit for determining the presence or absence of a defect of the magnetic metal body or the grade of the defect from the composite flaw detection signal.
在する欠陥信号をノイズ信号に対して相対的に強調する
ような演算を行って得られる複合探傷信号を得る演算器
が乗算器である請求項7に記載の磁性金属体探傷装置。8. A multiplier is an arithmetic unit for obtaining a composite flaw detection signal obtained by performing an operation for relatively emphasizing a defect signal commonly present in two leakage flux flaw detection signals with respect to a noise signal. The magnetic metal flaw detector according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08350796A JP3266899B2 (en) | 1996-04-05 | 1996-04-05 | Method and apparatus for flaw detection of magnetic metal body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08350796A JP3266899B2 (en) | 1996-04-05 | 1996-04-05 | Method and apparatus for flaw detection of magnetic metal body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09274016A true JPH09274016A (en) | 1997-10-21 |
JP3266899B2 JP3266899B2 (en) | 2002-03-18 |
Family
ID=13804406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08350796A Expired - Fee Related JP3266899B2 (en) | 1996-04-05 | 1996-04-05 | Method and apparatus for flaw detection of magnetic metal body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3266899B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001296277A (en) * | 2000-04-13 | 2001-10-26 | Nkk Corp | Magnetic flaw detection method |
US6479992B2 (en) | 2000-07-12 | 2002-11-12 | Nkk Corporation | Leakage flux flaw detecting method and method for manufacturing hot rolled steel sheet using the same |
JP2002540419A (en) * | 1999-03-29 | 2002-11-26 | オーチス エレベータ カンパニー | Method and apparatus for detecting elevator rope degradation using electrical or magnetic energy |
JP2012159437A (en) * | 2011-02-01 | 2012-08-23 | Jfe Steel Corp | Method for detecting periodic defect and periodic defect detecting device |
DE102010055220A1 (en) | 2009-12-18 | 2014-05-08 | Posco | Method and system for detecting standard deviations in quality during cold rolling |
JP2015500498A (en) * | 2011-12-15 | 2015-01-05 | ポスコ | Steel sheet flaw detector |
KR101482346B1 (en) * | 2012-12-27 | 2015-01-13 | 주식회사 포스코 | Apparatus and method of detecting surface defect of steel plate |
CN104316594A (en) * | 2014-11-16 | 2015-01-28 | 吉林大学 | Electromagnetic nondestructive testing device for defects of steel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2239733B1 (en) | 2001-03-28 | 2019-08-21 | Mitsubishi Denki Kabushiki Kaisha | Noise suppression method |
-
1996
- 1996-04-05 JP JP08350796A patent/JP3266899B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002540419A (en) * | 1999-03-29 | 2002-11-26 | オーチス エレベータ カンパニー | Method and apparatus for detecting elevator rope degradation using electrical or magnetic energy |
JP4741734B2 (en) * | 1999-03-29 | 2011-08-10 | オーチス エレベータ カンパニー | Method and apparatus for detecting degradation of an elevator rope using magnetic energy |
JP2001296277A (en) * | 2000-04-13 | 2001-10-26 | Nkk Corp | Magnetic flaw detection method |
US6479992B2 (en) | 2000-07-12 | 2002-11-12 | Nkk Corporation | Leakage flux flaw detecting method and method for manufacturing hot rolled steel sheet using the same |
DE102010055220A1 (en) | 2009-12-18 | 2014-05-08 | Posco | Method and system for detecting standard deviations in quality during cold rolling |
JP2012159437A (en) * | 2011-02-01 | 2012-08-23 | Jfe Steel Corp | Method for detecting periodic defect and periodic defect detecting device |
JP2015500498A (en) * | 2011-12-15 | 2015-01-05 | ポスコ | Steel sheet flaw detector |
US9417212B2 (en) | 2011-12-15 | 2016-08-16 | Posco | Defect inspection device of steel plate |
CN103998924B (en) * | 2011-12-15 | 2017-05-24 | Posco公司 | Defect inspection device of steel plate |
EP3851846A1 (en) * | 2011-12-15 | 2021-07-21 | Posco | Defect inspection device for steel plate |
KR101482346B1 (en) * | 2012-12-27 | 2015-01-13 | 주식회사 포스코 | Apparatus and method of detecting surface defect of steel plate |
CN104316594A (en) * | 2014-11-16 | 2015-01-28 | 吉林大学 | Electromagnetic nondestructive testing device for defects of steel |
Also Published As
Publication number | Publication date |
---|---|
JP3266899B2 (en) | 2002-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110308200B (en) | Differential magnetic leakage and eddy current composite high-speed rail flaw detection method | |
CN102759567B (en) | The EDDY CURRENT identification of steel pipe inside and outside wall defect and evaluation method under DC magnetization | |
JP4756409B1 (en) | Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field | |
JPS62500683A (en) | Method and device for detecting surface defects using eddy currents | |
WO2002004937A1 (en) | Magnetic leakage flux flaw detection method and manufacturing method of hot rolled steel plate using the same | |
JP3266899B2 (en) | Method and apparatus for flaw detection of magnetic metal body | |
JP2003240761A (en) | Method and apparatus for detecting surface layer defect or surface defect in magnetic metal specimen | |
JP3266128B2 (en) | Leakage magnetic flux inspection method and magnetic flux leakage inspection equipment | |
Dobmann et al. | Magnetic leakage flux testing with probes: physical principles and restrictions for application | |
JP3309702B2 (en) | Metal body flaw detection method and apparatus | |
CN112083059B (en) | Method for filtering lifting interference of top surface of steel rail | |
JP3307220B2 (en) | Method and apparatus for flaw detection of magnetic metal body | |
JPS63221239A (en) | Leak magnetic flux flaw detecting method | |
JPH1183808A (en) | Leakage flux flaw detecting method | |
JP3743191B2 (en) | Eddy current testing | |
JP2000227422A (en) | Eddy current examination | |
JP3606439B2 (en) | Magnetic flux leakage inspection method | |
JP2003025017A (en) | Hot-rolled steel sheet to which information of flaw detection result is appended and its manufacturing method | |
JP3271246B2 (en) | Magnetic flux leakage inspection method, magnetic flux leakage inspection apparatus, and steelmaking plant | |
JP2013068465A (en) | Eddy current detector and phase control circuit | |
JPH09269316A (en) | Eddy current flaw detection method and eddy current flaw detector | |
JP2000275219A (en) | Leakage flux flaw detecting method | |
JPH09166582A (en) | Electromagnetic flaw detection method | |
JP3584462B2 (en) | Leakage magnetic flux detection method | |
JPH06242076A (en) | Electromagnetic flaw detecting equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080111 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090111 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090111 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100111 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120111 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130111 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130111 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140111 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |