JP2005083907A - Defect inspection method - Google Patents

Defect inspection method Download PDF

Info

Publication number
JP2005083907A
JP2005083907A JP2003316564A JP2003316564A JP2005083907A JP 2005083907 A JP2005083907 A JP 2005083907A JP 2003316564 A JP2003316564 A JP 2003316564A JP 2003316564 A JP2003316564 A JP 2003316564A JP 2005083907 A JP2005083907 A JP 2005083907A
Authority
JP
Japan
Prior art keywords
wave
corrosion
special
probe
inspection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003316564A
Other languages
Japanese (ja)
Inventor
Yasuhiro Otani
靖弘 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Koken Co Ltd
Original Assignee
JFE Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Koken Co Ltd filed Critical JFE Koken Co Ltd
Priority to JP2003316564A priority Critical patent/JP2005083907A/en
Publication of JP2005083907A publication Critical patent/JP2005083907A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely detect corrosion and marks that may occur at a part, where a visual inspection, or the like is not possible, by allowing a tube to penetrate a pier, abutment, or the like, and to improve the evaluation precision of the depth of corrosion and marks. <P>SOLUTION: Piping 1 erected at the lower portion of a bridge girder of a bridge allows local torsional waves to be propagated from a special SH wave probe 5 for vibrating an entire plate thickness for a measurement part 1a that is hidden by a filler 3 through a bridge abutment 2 and, for example, cannot be viewed. Reflection waves that are reflected from the measurement part 1a that are hidden, for example cannot be viewed, are received by the special SH wave probe 5, and the corrosion, or the like of the measurement part 1a is detected according to a change in the reception signal of the received reflection waves. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、板上金属材料からなる金属構造体の一部が他の構造体により隠された部位、例えば橋梁等に架設された配管の管体の一部が橋脚や橋台等を貫通して目視等の検査が困難な部位に発生することがある腐食や傷を検査する欠陥検査方法、特に腐食等の程度の評価精度の向上に関するものである。   In the present invention, a part of a metal structure made of a metal material on a plate is hidden by another structure, for example, a part of a pipe body constructed on a bridge or the like passes through a bridge pier or an abutment. The present invention relates to a defect inspection method for inspecting corrosion and scratches that may occur at sites where inspection such as visual inspection is difficult, and in particular to improving the evaluation accuracy of the degree of corrosion and the like.

例えば橋梁に架設された配管の橋脚貫通部は雨水が溜まり易いため、外面の腐食が発生し易い。この配管の橋脚貫通部は、管体と橋脚の間には充填材等が充填されているため、目視による検査や超音波板厚計等による検査をして腐食や傷等の欠陥を検出することはできない。また、管体の露出部に一般的な超音波探触子を設けて橋脚を貫通している管体の測定部位に対して一般的な超音波探傷法を適用しても、必要となる超音波の伝搬距離が長くなり、満足な検査はできない。また、一般的な超音波探傷法を適用する場合は、管体周辺の橋脚や充填材を除去する必要があり、その除去に多大な時間や費用を要する。   For example, a pier penetration part of a pipe erected on a bridge tends to collect rainwater, and therefore, corrosion of the outer surface is likely to occur. This pipe pier penetration part is filled with filler etc. between the pipe body and pier, so detect defects such as corrosion and scratches by visual inspection and ultrasonic thickness gauge etc. It is not possible. In addition, even if a general ultrasonic flaw detection method is applied to the measurement site of a tubular body that is provided with a general ultrasonic probe in the exposed portion of the tubular body and penetrates the pier, the necessary supersonic inspection method is applied. The propagation distance of the sound wave becomes long and satisfactory inspection cannot be performed. In addition, when a general ultrasonic flaw detection method is applied, it is necessary to remove the piers and fillers around the pipe body, which requires a lot of time and cost.

これに対して必要な距離を伝搬できる超音波として薄肉構造の面に沿って伝播して長距離伝播が可能なガイド波を用いて橋脚を貫通している管体の測定部位に発生する腐食を検査する方法が非特許文献1や特許文献1及び特許文献2等に開示されている。   On the other hand, the ultrasonic wave that can propagate the required distance propagates along the surface of the thin structure and uses the guide wave that can be propagated for a long distance, and the corrosion that occurs at the measurement site of the pipe that penetrates the bridge pier. Non-Patent Document 1, Patent Document 1, Patent Document 2, and the like are disclosed as inspection methods.

非特許文献1に示された腐食検査方法は、管体の露出部に探傷リングをセットし、この探傷リングから、管体全体が一連の変位をしながら伝搬するガイド波を測定部位に送信し、腐食部から反射してくる反射波を探傷リングで受信し、受信したガイド波の強さに基づいて腐食部の状態を検査するようにして、配管の腐食を長距離にわたって検査するようにしている。   In the corrosion inspection method disclosed in Non-Patent Document 1, a flaw detection ring is set on an exposed portion of a pipe body, and a guide wave propagating through a series of displacements from the flaw detection ring is transmitted to a measurement site. The reflected wave reflected from the corroded part is received by the flaw detection ring, and the state of the corroded part is inspected based on the intensity of the received guide wave, so that the corrosion of the pipe is inspected over a long distance. Yes.

特許文献1に示された腐食検査方法は、薄肉鋼管の露出外表面から、SH波探触子により、橋脚貫通部のように管体の外表面が隠蔽された測定部位にSH波を伝播させ、測定部位から反射してくる反射波をSH波探触子により受信し、反射信号に基づいて腐食を検査するようにしている。この腐食検査方法で用いるSH波は、その特性から外表面に沿った波として伝播することができることにより、通常の超音波と比較して伝播距離は長くなる。また、この腐食検査方法ではSH波を送受信する第1のSH波探触子とともに隠蔽された測定部位をまたいだ第1のSH波探触子の反対側の位置に第2のSH波探触子を配置し、第2のSH波探触子で測定部位を通過してきたSH波を受信して得られた信号を用いて第1のSH波探触子で受信した反射信号を正規化して腐食の程度を判定するようにしている。   In the corrosion inspection method disclosed in Patent Document 1, an SH wave is propagated from an exposed outer surface of a thin-walled steel pipe to a measurement site where the outer surface of the tubular body is concealed by a SH wave probe, such as a pier penetration part. The reflected wave reflected from the measurement site is received by the SH wave probe, and the corrosion is inspected based on the reflected signal. Since the SH wave used in this corrosion inspection method can propagate as a wave along the outer surface due to its characteristics, the propagation distance becomes longer than that of a normal ultrasonic wave. Further, in this corrosion inspection method, the second SH wave probe is positioned at the opposite side of the first SH wave probe across the concealed measurement site together with the first SH wave probe that transmits and receives SH waves. The reflected signal received by the first SH wave probe is normalized using the signal obtained by arranging the child and receiving the SH wave that has passed through the measurement site by the second SH wave probe. The degree of corrosion is judged.

また、特許文献2に示された検査方法は、鉄骨構造物の溶接部から所定距離だけ隔てた位置に探触子を押し当て、溶接部に向かって表面SH波を送信し、溶接部からの反射波を探触子で受信して、受信した反射波とあらかじめ実験により得た典型的な波形と比較して溶接部の形状を判定するようにしている。   In addition, the inspection method disclosed in Patent Document 2 presses the probe at a position separated from the welded portion of the steel structure by a predetermined distance, transmits a surface SH wave toward the welded portion, The reflected wave is received by the probe, and the shape of the weld is determined by comparing the received reflected wave with a typical waveform obtained in advance by experiments.

前記非特許文献1に示された腐食検査方法で用いるガイド波は、管体全体に対して一連の変位をしながら伝搬する円筒波であるため、検出対象とする腐食から生じる反射波は、円周方向に関しては、1つに集約された信号として得られることから、管体の円周方向断面積に対する円周方向全体に分布する腐食の断面積の割合に応じて発生する。したがって同一円周上に複数の腐食が存在する場合にも、それらを分離して評価することができず、単独で発生した微小な腐食に対しては検出精度が低下してしまう。   Since the guide wave used in the corrosion inspection method shown in Non-Patent Document 1 is a cylindrical wave that propagates with a series of displacements with respect to the entire tube, the reflected wave generated from the corrosion to be detected is a circle. Regarding the circumferential direction, since it is obtained as a single signal, it is generated in accordance with the ratio of the cross-sectional area of corrosion distributed throughout the circumferential direction to the circumferential cross-sectional area of the pipe body. Therefore, even when there are a plurality of corrosions on the same circumference, they cannot be separated and evaluated, and the detection accuracy is reduced for minute corrosion that occurs independently.

また、特許文献1や特許文献2の検査方法で使用する超音波は、外表面に沿って伝播するSH波であるため、腐食の深さがある程度深くなると、受信信号の変化がその深さに追随し難くなる。また、外表面に施される塗覆装の影響を受けて超音波が減衰する。したがって腐食の定量評価、特に配管の維持管理上で重要な腐食深さの評価においては精度が低下することがある。さらに、SH波を伝播させる際に、外表面に沿った波以外にも板厚方向にある程度角度を有した波が同時に発生する場合が多い。これにより反射信号に複数の波の信号が含まれることがあり、受信信号の評価に使用すべき信号の識別が難しくなる場合がある。
「検査技術」日本工業出版株式会社 2003.1 50〜53頁 特開2000−243704号公報 特開平10−221309号公報
Further, since the ultrasonic wave used in the inspection methods of Patent Document 1 and Patent Document 2 is an SH wave that propagates along the outer surface, when the depth of corrosion increases to some extent, the change in the received signal becomes that depth. It becomes difficult to follow. Further, the ultrasonic wave is attenuated under the influence of the coating applied to the outer surface. Therefore, the accuracy may be lowered in the quantitative evaluation of corrosion, particularly in the evaluation of the corrosion depth which is important for the maintenance of the pipe. Furthermore, when the SH wave is propagated, in addition to the wave along the outer surface, a wave having an angle to some extent in the thickness direction often occurs at the same time. As a result, a plurality of wave signals may be included in the reflected signal, and it may be difficult to identify a signal to be used for evaluation of the received signal.
"Inspection Technology" Nippon Kogyo Publishing Co., Ltd. 2003.1 50-53 pages JP 2000-243704 A JP-A-10-221309

この発明は、このような短所を改善し、例えば、管体が橋脚や橋台等を貫通することにより、目視等の検査が不可能な部位に発生することがある腐食や傷を高精度に検出するとともに、腐食や傷の深さの評価精度を向上することができる欠陥検査方法を提供することを目的とするものである。   The present invention improves such disadvantages. For example, when a pipe penetrates a pier or an abutment, corrosion and scratches that may occur in parts that cannot be visually inspected are detected with high accuracy. It is another object of the present invention to provide a defect inspection method capable of improving the evaluation accuracy of the depth of corrosion and scratches.

この発明の欠陥検査方法は、板状金属材料からなり、その一部が他の構造体により隠されている金属構造体の部位に発生する腐食や傷等を検査する欠陥検査方法であって、前記金属構造体の外表面であって、他の構造体により隠された部位に接近する露出外表面部から他の構造体により隠された部位に向けて局部ねじり波を伝播させ、他の構造体により隠された部位から反射してくる反射波を受信し、受信した反射波の受信信号の変化により他の構造体により隠された部位の腐食等を検出することを特徴とする。   The defect inspection method of the present invention is a defect inspection method for inspecting corrosion, scratches, etc. occurring in a portion of a metal structure made of a plate-like metal material, a part of which is hidden by another structure. Propagating a local torsional wave from an exposed outer surface portion that is an outer surface of the metal structure, which is close to a portion hidden by another structure, toward a portion hidden by the other structure. A reflected wave reflected from a portion hidden by the body is received, and corrosion or the like of the portion hidden by another structure is detected by a change in the received signal of the received reflected wave.

前記金属構造体に伝播する局部ねじり波は、複数のモードのうち振動媒質となる板状金属材料の板厚と固有音速に応じた周波数を選択して位相速度と群速度が変化しない単一モードの振動形態とすることが望ましい。   The local torsional wave propagating to the metal structure is a single mode in which the phase velocity and group velocity do not change by selecting the frequency according to the plate thickness and natural sound velocity of the plate-like metal material that will be the vibration medium among the multiple modes It is desirable to adopt the vibration form.

金属構造体の外表面で他の構造体により隠された部位に露出外表面部から隠された部位に向けて局部ねじり波を伝播させて板厚全てを振動させることにより、腐食等が内外面いずれにあっても検出することができ、腐食等が発生している位置を高精度で検出することができる。   Corrosion etc. is caused by the internal to external surface of the metal structure by vibrating the entire plate thickness by propagating local torsional waves from the exposed outer surface part to the part hidden by the other structure on the outer surface of the metal structure. Any of these can be detected, and the position where corrosion or the like is occurring can be detected with high accuracy.

また、金属構造体に伝播する局部ねじり波の複数のモードのうち振動媒質となる板状金属材料の板厚と固有音速に応じた周波数を選択して位相速度と群速度が変化しない単一モードの振動形態とすることにより、板厚全てに均一な変位分布で振動させて腐食等の深さに応じた反射信号を得ることができ、腐食等の程度を高精度に検出することができる。さらに、送信する局部ねじり波は単一モードであり、複数のモードが混在しないから、明瞭な探傷図形を表示することができ、腐食等の位置や程度を精度良く検出することができる。   In addition, a single mode in which the phase velocity and group velocity do not change by selecting the frequency according to the plate thickness and natural sound velocity of the plate-like metal material that will be the vibration medium from the multiple modes of local torsional waves propagating to the metal structure By virtue of this vibration mode, it is possible to obtain a reflected signal corresponding to the depth of corrosion or the like by vibrating with a uniform displacement distribution over the entire plate thickness, and the degree of corrosion or the like can be detected with high accuracy. Furthermore, since the local torsional wave to be transmitted is a single mode and a plurality of modes are not mixed, a clear flaw detection figure can be displayed, and the position and degree of corrosion or the like can be detected with high accuracy.

図1はこの発明の欠陥検査方法に使用する検査装置の配置図である。この欠陥検査方法は、橋梁の橋桁下部に架設された配管1が橋台2を貫通して充填材3によって隠されて目視等できない測定部位1aに生じる腐食等を検査する方法であり、検査装置として走査駆動部4に搭載された特殊SH波探触子5と、超音波送受信装置6及び制御・診断装置7を有する。走査駆動部4は、橋台2に近接した配管1の外周面に固定されたガイドレール8と、ガイドレール8に対して移動自在に取付けられた保持機構部9を有する。特殊SH波探触子5は、超音波の1種である局部ねじり波を配管1の測定部位1aに送信し、測定部位1aの腐食等の欠陥部からの反射波を受信するものであり、走査駆動部4の保持機構部9に搭載され、配管1の露出した管体表面に接触媒体を介して保持機構部9により一定圧力で押し付けられている。   FIG. 1 is a layout view of an inspection apparatus used in the defect inspection method of the present invention. This defect inspection method is a method for inspecting corrosion or the like that occurs in the measurement site 1a that cannot be visually observed because the pipe 1 installed under the bridge girder of the bridge passes through the abutment 2 and is hidden by the filler 3. It has a special SH wave probe 5 mounted on the scanning drive unit 4, an ultrasonic transmission / reception device 6, and a control / diagnosis device 7. The scanning drive unit 4 includes a guide rail 8 fixed to the outer peripheral surface of the pipe 1 close to the abutment 2, and a holding mechanism unit 9 that is movably attached to the guide rail 8. The special SH wave probe 5 transmits a local torsional wave, which is a kind of ultrasonic wave, to the measurement site 1a of the pipe 1 and receives a reflected wave from a defective portion such as corrosion of the measurement site 1a. It is mounted on the holding mechanism unit 9 of the scanning drive unit 4 and is pressed against the exposed tube surface of the pipe 1 with a constant pressure by the holding mechanism unit 9 via a contact medium.

この特殊SH波探触子5から送信する局部ねじり波は、ガイド波における円筒波のなかでねじり波(Torsionsl mode)と同様な振動形態を有し、ねじり波は円周方向全てが振動するのに対して、局部ねじり波はねじり波を円周方向において局部的に発生させたものをゆう。すなわち、図2の模式図に示すように、局部ねじり波は、円周全面が振動する円筒波と異なり円周方向において局部的に振動させる波である。この局部ねじり波は、板状金属材料の板厚や固有音速等に応じた周波数や入射角等の条件によって、位相速度や群速度が変化し、振動形態として複数のモードを有する。この振動形態をT(n,m)と表す。ここでn,mはモード次数であり、nは円周方向の波の変位分布の変化を示し、mは板厚方向の波の変位分布を示す。局部ねじり波において、円周方向は局部的に発振することから、円周方向の変位分布の変化による分散曲線等の特性は変化しないから、板厚方向の変位分布mに着目すると、図3の局部ねじり波の板厚方向の変位分布特性図に示すように、局部ねじり波の変位分布は、m=1で板厚方向に一様であるが、m=2,3では複雑に変化する。   The local torsion wave transmitted from the special SH wave probe 5 has the same vibration form as the torsion wave (Torsionsl mode) in the cylindrical wave in the guide wave, and the torsion wave vibrates all in the circumferential direction. On the other hand, local torsional waves are those that are generated locally in the circumferential direction. That is, as shown in the schematic diagram of FIG. 2, the local torsional wave is a wave that vibrates locally in the circumferential direction, unlike a cylindrical wave that vibrates the entire circumference. This local torsional wave has a plurality of modes as a vibration form with a phase velocity and a group velocity changing depending on conditions such as a frequency and an incident angle according to a plate thickness of the plate-like metal material, a natural sound velocity, and the like. This vibration form is represented as T (n, m). Here, n and m are mode orders, n represents a change in the circumferential wave displacement distribution, and m represents a thickness displacement wave displacement distribution. In the local torsional wave, since the circumferential direction oscillates locally, the characteristics such as the dispersion curve due to the change in the circumferential direction displacement distribution do not change. As shown in the displacement distribution characteristic diagram of the local torsional wave in the plate thickness direction, the displacement distribution of the local torsional wave is uniform in the plate thickness direction when m = 1, but changes complicatedly when m = 2 and 3.

また、局部ねじり波も変位分布により速度分散が生じる。例えば呼び径400Aで板厚7.9mmの管における局部ねじり波の位相速度分散曲線と群速度分散曲線を図4に示す。図4に示すように、T(0,1)モードは位相速度と群速度が変化せず、周波数を0.2MHz以下にすると、T(0,1)モードだけを発生させることができる。   The local torsional wave also has velocity dispersion due to the displacement distribution. For example, FIG. 4 shows a phase velocity dispersion curve and a group velocity dispersion curve of a local torsion wave in a tube having a nominal diameter of 400 A and a plate thickness of 7.9 mm. As shown in FIG. 4, in the T (0,1) mode, the phase velocity and the group velocity do not change. If the frequency is 0.2 MHz or less, only the T (0,1) mode can be generated.

そこで特殊SH波探触子5は、例えば配管1の管径や板厚から求められる位相速度と特殊SH波探触子5に用いられるくさびの横波音速から算出される適当な入射角を設定する。また、周波数も配管の管径と板厚に応じて周波数を選択してT(0,1)モードだけを発生させるようにする。   Therefore, the special SH wave probe 5 sets an appropriate incident angle calculated from, for example, the phase velocity obtained from the pipe diameter or plate thickness of the pipe 1 and the transverse wave sound velocity of the wedge used for the special SH wave probe 5. . Also, the frequency is selected according to the pipe diameter and thickness of the pipe so that only the T (0, 1) mode is generated.

超音波送受信装置6は、一般的に超音波探触子に高電圧のパルスを送り出す機能を有しているが、超音波探触子として局部ねじり波を発生する特殊SH波探触子5を使用する場合、局部ねじり波は、図4に示すように、周波数によって振動モードや音速が変化するため、狭帯域で高エネルギの超音波を発生させることが必要となる。そこで特殊SH波探触子5により適切な局部ねじり波を発生させるため、超音波送受信装置6は、例えばバーストパルスを特殊SH波探触子5に送出す。ここで超音波送受信装置6から送出すバーストパルスとは、計測に使用する局部ねじり波の周波数と同じ周波数の正弦波を送信パルスとして使用する方法である。   The ultrasonic transmission / reception apparatus 6 generally has a function of sending a high-voltage pulse to the ultrasonic probe, but the special SH wave probe 5 that generates a local torsional wave is used as the ultrasonic probe. When the local torsional wave is used, as shown in FIG. 4, the vibration mode and the speed of sound change depending on the frequency. Therefore, it is necessary to generate high-energy ultrasonic waves in a narrow band. Therefore, in order to generate an appropriate local torsional wave by the special SH wave probe 5, the ultrasonic transmission / reception apparatus 6 transmits, for example, a burst pulse to the special SH wave probe 5. Here, the burst pulse transmitted from the ultrasonic transmission / reception apparatus 6 is a method of using a sine wave having the same frequency as the frequency of the local torsion wave used for measurement as the transmission pulse.

制御・診断装置7は、例えばパーソナルコンピュータからなり、特殊SH波探触子5で受信した局部ねじり波の反射波により超音波送受信装置6で受信した受信信号と走査駆動部4から送られる特殊SH探触子5の配管1の円周方向位置情報を保存し、保存した受信信号を、管径と板厚及び周波数等から決まる局部ねじり波の群速度を使用し、探傷図形として特殊SH探触子5の配管1の円周方向位置情報毎に表示する。   The control / diagnosis device 7 is composed of, for example, a personal computer, and receives the received signal received by the ultrasonic transmission / reception device 6 by the reflected wave of the local torsion wave received by the special SH wave probe 5 and the special SH sent from the scanning drive unit 4 The circumferential position information of the pipe 1 of the probe 5 is stored, and the stored signal is used as a special SH probe as a flaw detection figure using the group velocity of local torsional waves determined from the pipe diameter, plate thickness, frequency, etc. Displayed for each circumferential position information of the pipe 1 of the child 5.

この検査装置で配管1の測定部位1aに生じた腐食や傷等の欠陥を検出する方法を図5のフローチャートを参照して説明する。   A method of detecting defects such as corrosion and scratches generated in the measurement site 1a of the pipe 1 with this inspection apparatus will be described with reference to the flowchart of FIG.

まず、橋台2に近接した配管1の外周面にガイドレール8を固定し、特殊SH波探触子5を保持した保持機構部9をガイドレール8に取付けて、特殊SH波探触子5を円周方向の初期位置に位置決めする(ステップS1)。この状態で超音波送受信装置6を駆動して特殊SH波探触子5にバーストパルスを送り、特殊SH波探触子5から配管1の測定部位1a側に局部ねじり波を送信する(ステップS2)。このバーストパルスは、特殊SH波探触子5から送信する局部ねじり波のモードが、複数のモードのうち、位相速度と群速度が周波数の変化に伴わないT(0,1)モード単独になるように、配管1の金属材料の板厚等に応じて周波数を選択する。このようにバーストパルスの周波数を選択することにより、特殊SH波探触子5から板厚方向の変位分布が均一なT(0,1)モードの局部ねじり波を送信することができる。   First, the guide rail 8 is fixed to the outer peripheral surface of the pipe 1 close to the abutment 2, the holding mechanism portion 9 holding the special SH wave probe 5 is attached to the guide rail 8, and the special SH wave probe 5 is attached. Positioning is performed at the initial position in the circumferential direction (step S1). In this state, the ultrasonic transmission / reception device 6 is driven to send a burst pulse to the special SH wave probe 5, and a local torsion wave is transmitted from the special SH wave probe 5 to the measurement site 1a side of the pipe 1 (step S2). ). In this burst pulse, the mode of the local torsion wave transmitted from the special SH wave probe 5 is the T (0, 1) mode alone in which the phase velocity and the group velocity are not accompanied by a change in frequency among the plurality of modes. As described above, the frequency is selected according to the thickness of the metal material of the pipe 1. By selecting the frequency of the burst pulse in this way, a local torsional wave of T (0,1) mode having a uniform displacement distribution in the thickness direction can be transmitted from the special SH wave probe 5.

この送信した局部ねじり波の測定部位1a側からの反射波を特殊SH波探触子5で受信し、超音波送受信装置6で反射波による信号を受信する。この配管1に送信するT(0,1)モードの局部ねじり波は、配管1の管体板厚全てに均一な変位分布で振動するため、腐食等が内外面いずれにあっても検出することができる。また、腐食等の深さに応じて反射信号の強度変化が追従しやすくなり、腐食等を高精度に検出することができる。   The reflected wave from the measurement site 1 a side of the transmitted local torsion wave is received by the special SH wave probe 5, and the signal by the reflected wave is received by the ultrasonic transmission / reception device 6. The local torsional wave of T (0, 1) mode transmitted to the pipe 1 vibrates with a uniform displacement distribution over the entire thickness of the pipe body of the pipe 1, so that it can be detected whether corrosion or the like is present on the inner or outer surface. Can do. Further, the intensity change of the reflected signal easily follows in accordance with the depth of corrosion and the like, and corrosion and the like can be detected with high accuracy.

超音波送受信装置6で反射波の受信信号を受信すると、制御・診断装置7は、超音波送受信装置6で受信した受信信号と走査駆動部4から送られる特殊SH探触子5の配管1の円周方向位置情報を保存する(ステップS4)。その後、特殊SH波探触子5の円周方向の位置を1ピッチ移動して局部ねじり波の送受信を繰り返す(ステップS5,S6,S7〜S4)。そして配管1の円周方向に対して全ての位置を検査したら(ステップS5)、検査者は制御・診断装置7を操作して、保存した受信信号から、局部ねじり波の群速度を使用して配管1の円周方向位置情報毎に探傷図形を表示する(ステップS7)。この探傷図形を表示するとき、特殊SH探触子5から送信する局部ねじり波は単一のT(0,1)モードであり、複数のモードが混在しないから、明瞭な探傷図形を表示することができる。検査者は表示された探傷図形から腐食等が発生している位置とその大きさ等を評価する(ステップS8)。   When the received signal of the reflected wave is received by the ultrasonic transmission / reception device 6, the control / diagnosis device 7 receives the received signal received by the ultrasonic transmission / reception device 6 and the pipe 1 of the special SH probe 5 sent from the scanning drive unit 4. Circumferential position information is stored (step S4). Thereafter, the position of the special SH wave probe 5 in the circumferential direction is moved by one pitch, and local torsional wave transmission / reception is repeated (steps S5, S6, S7 to S4). When all positions are inspected with respect to the circumferential direction of the pipe 1 (step S5), the inspector operates the control / diagnosis device 7 and uses the group velocity of the local torsional wave from the stored received signal. A flaw detection figure is displayed for each circumferential position information of the pipe 1 (step S7). When displaying this flaw detection figure, the local torsional wave transmitted from the special SH probe 5 is a single T (0,1) mode, and a plurality of modes are not mixed, so that a clear flaw detection figure is displayed. Can do. The inspector evaluates the position where the corrosion or the like is generated from the displayed flaw detection figure and the size thereof (step S8).

前記説明では1個の特殊SH波探触子5を配管1の円周方向に移動して円周方向の全体を走査した場合について説明したが、図6に示すように、特殊SH波探触子5を複数円周方向に配置して結合したアレイプローブ10を使用し、個々の特殊SH波探触子5を電気的に順次切り替えて局部ねじり波の送受信を行うようにしても良い。このように複数の特殊SH波探触子5を有するアレイプローブ10を使用することにより、測定時間を短縮することができる。すなわち、特殊SH波探触子5と配管1の間に介在する接触媒質は比較的粘性が高いため、特殊SH波探触子5を管体外表面に押し付けた後、信号が安定するまでには時間を要するが、複数の特殊SH波探触子5を有するアレイプローブ10を使用して、個々の特殊SH波探触子5を電気的に順次切り替えることにより、特殊SH波探触子5を移動するたびに必要であった信号が安定するまでの時間を短縮することができる。また、個々の特殊SH探触子5を励起するタイミングを制御することにより、意図的に音圧を集中させることができ、検査精度を向上させることもできる。   In the above description, the case where one special SH wave probe 5 is moved in the circumferential direction of the pipe 1 and the entire circumferential direction is scanned has been described. However, as shown in FIG. It is also possible to use an array probe 10 in which a plurality of elements 5 are arranged and coupled in the circumferential direction, and to electrically transmit / receive local torsional waves by sequentially switching the individual special SH wave probes 5. By using the array probe 10 having a plurality of special SH wave probes 5 in this way, the measurement time can be shortened. That is, since the contact medium interposed between the special SH wave probe 5 and the pipe 1 has a relatively high viscosity, after the special SH wave probe 5 is pressed against the outer surface of the tube, the signal becomes stable. Although it takes time, the array probe 10 having a plurality of special SH wave probes 5 is used to electrically switch the special SH wave probes 5 one after another, whereby the special SH wave probe 5 is It is possible to shorten the time required for the signal required every time it moves to stabilize. Further, by controlling the timing of exciting the individual special SH probes 5, the sound pressure can be intentionally concentrated and the inspection accuracy can be improved.

前記説明では橋梁の橋桁下部に架設された配管1の橋台2を貫通して目視等できない測定部位1aに生じる腐食等を検査する場合について説明したが、鉄骨構造物において被膜等により隠された部分の腐食や破断等も同様に検出することができる。   In the above description, the case of inspecting corrosion or the like generated in the measurement site 1a that cannot be visually observed through the abutment 2 of the pipe 1 installed under the bridge girder of the bridge has been explained. Corrosion, breakage, etc. can be detected in the same manner.

この発明の欠陥検査方法に使用する検査装置の配置図である。It is a layout view of an inspection apparatus used in the defect inspection method of the present invention. 局部ねじり波の振動形態を示す模式図である。It is a schematic diagram which shows the vibration form of a local torsion wave. 局部ねじり波の板厚方向の変位分布特性図である。It is a displacement distribution characteristic view of the thickness direction of a local torsion wave. 局部ねじり波の位相速度分散曲線と群速度分散曲線の変化特性図である。It is a change characteristic figure of the phase velocity dispersion curve and group velocity dispersion curve of a local torsion wave. 欠陥検査方法を示すフローチャートである。It is a flowchart which shows a defect inspection method. この発明の欠陥検査方法に使用する他の検査装置の配置図である。It is a layout view of another inspection apparatus used in the defect inspection method of the present invention.

符号の説明Explanation of symbols

1;配管、1a;測定部位、2;橋台、3;充填材、4;走査駆動部、
5;特殊SH波探触子、6;超音波送受信装置、7;制御・診断装置、
8;ガイドレール、9;保持機構部、10;アレイプローブ。


1; piping, 1a; measurement site, 2; abutment, 3; filler, 4; scanning drive unit,
5; Special SH wave probe, 6; Ultrasonic transceiver, 7; Control / diagnostic device,
8; guide rail, 9; holding mechanism, 10; array probe.


Claims (2)

板状金属材料からなり、その一部が他の構造体により隠されている金属構造体の部位に発生する腐食や傷等を検査する欠陥検査方法であって、
前記金属構造体の外表面であって、他の構造体により隠された部位に接近する露出外表面部から他の構造体により隠された部位に向けて局部ねじり波を伝播させ、他の構造体により隠された部位から反射してくる反射波を受信し、受信した反射波の受信信号の変化により他の構造体により隠された部位の腐食等を検出することを特徴とする欠陥検査方法。
It is a defect inspection method for inspecting corrosion, scratches, etc. occurring in a part of a metal structure made of a plate-shaped metal material, a part of which is hidden by another structure.
Propagating a local torsional wave from an exposed outer surface portion that is an outer surface of the metal structure, which is close to a portion hidden by another structure, toward a portion hidden by the other structure. A defect inspection method characterized by receiving a reflected wave reflected from a part concealed by a body and detecting corrosion of the part concealed by another structure by a change in a received signal of the received reflected wave .
前記金属構造体に伝播する局部ねじり波は、複数のモードのうち振動媒質となる板状金属材料の板厚と固有音速に応じた周波数を選択して位相速度と群速度が変化しない単一モードの振動形態とする請求項1記載の欠陥検査方法。



The local torsional wave propagating to the metal structure is a single mode in which the phase velocity and group velocity do not change by selecting the frequency according to the plate thickness and natural sound velocity of the plate-like metal material that will be the vibration medium among the multiple modes The defect inspection method according to claim 1, wherein the vibration mode is as follows.



JP2003316564A 2003-09-09 2003-09-09 Defect inspection method Pending JP2005083907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003316564A JP2005083907A (en) 2003-09-09 2003-09-09 Defect inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003316564A JP2005083907A (en) 2003-09-09 2003-09-09 Defect inspection method

Publications (1)

Publication Number Publication Date
JP2005083907A true JP2005083907A (en) 2005-03-31

Family

ID=34416428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316564A Pending JP2005083907A (en) 2003-09-09 2003-09-09 Defect inspection method

Country Status (1)

Country Link
JP (1) JP2005083907A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070283A (en) * 2006-09-15 2008-03-27 Univ Of Tokushima Ultrasonic guide wave non-destructive inspection method and apparatus
JP2009109390A (en) * 2007-10-31 2009-05-21 Hitachi Engineering & Services Co Ltd Nondestructive inspection apparatus and nondestructive inspection method
JP2009250822A (en) * 2008-04-08 2009-10-29 Tokyo Energy & Systems Inc Inspection method for seawater piping
JP2010175340A (en) * 2009-01-28 2010-08-12 Nagoya Institute Of Technology Plate thickness measuring method and plate thickness measuring apparatus
CN111537609A (en) * 2020-05-13 2020-08-14 中国计量大学 Ultrasonic phased array micro-space micro-fluidic detection system
CN112313510A (en) * 2018-07-04 2021-02-02 株式会社岛津制作所 Defect detecting device
JP2021032610A (en) * 2019-08-20 2021-03-01 首都高速道路株式会社 Corrosion inspection method and corrosion inspection device for distant non-exposed part of inspection object
US20220170888A1 (en) * 2019-02-28 2022-06-02 Nippon Telegraph And Telephone Corporation Evaluation Method for Reflected Wave

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070283A (en) * 2006-09-15 2008-03-27 Univ Of Tokushima Ultrasonic guide wave non-destructive inspection method and apparatus
JP2009109390A (en) * 2007-10-31 2009-05-21 Hitachi Engineering & Services Co Ltd Nondestructive inspection apparatus and nondestructive inspection method
JP2009250822A (en) * 2008-04-08 2009-10-29 Tokyo Energy & Systems Inc Inspection method for seawater piping
JP2010175340A (en) * 2009-01-28 2010-08-12 Nagoya Institute Of Technology Plate thickness measuring method and plate thickness measuring apparatus
CN112313510A (en) * 2018-07-04 2021-02-02 株式会社岛津制作所 Defect detecting device
US20220170888A1 (en) * 2019-02-28 2022-06-02 Nippon Telegraph And Telephone Corporation Evaluation Method for Reflected Wave
US12038411B2 (en) * 2019-02-28 2024-07-16 Nippon Telegraph And Telephone Corporation Evaluation method for reflected wave
JP2021032610A (en) * 2019-08-20 2021-03-01 首都高速道路株式会社 Corrosion inspection method and corrosion inspection device for distant non-exposed part of inspection object
JP7252093B2 (en) 2019-08-20 2023-04-04 首都高速道路株式会社 Corrosion inspection method and corrosion inspection device for remote non-exposed part of inspection object
CN111537609A (en) * 2020-05-13 2020-08-14 中国计量大学 Ultrasonic phased array micro-space micro-fluidic detection system
CN111537609B (en) * 2020-05-13 2023-09-29 中国计量大学 Ultrasonic phased array micro-cavitation micro-fluidic detection system

Similar Documents

Publication Publication Date Title
KR890000607B1 (en) Ultrasone method and device for detecting and measuring defects in metal media
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JP4544240B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
AU2003254189B2 (en) Configurations and methods for ultrasonic time of flight diffraction analysis
JP4630992B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus used therefor
US20160025684A1 (en) Device and method for nondestructive inspection of tubular products, especially on site
KR20090045151A (en) Ultrasonic scanning device and method
JP2008286640A (en) Device and method for ultrasonic flaw detection of pipe
Cawley Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects
JP5531376B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
US7762137B2 (en) Method for checking a weld between two metal pipelines
JP2005083907A (en) Defect inspection method
JP3198840U (en) Prop road boundary inspection system
JP4952489B2 (en) Flaw detection method and apparatus
JP2011163814A (en) Ultrasonic flaw detection testing method
JP2010025676A (en) Ultrasonic flaw detecting method and device
US20110126628A1 (en) Non-destructive ultrasound inspection with coupling check
JP4144703B2 (en) Tube inspection method using SH waves
JP4241529B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP4682921B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2008286639A (en) Coupling check method of ultrasonic oblique angle flaw detector
JP2006138672A (en) Method of and device for ultrasonic inspection
JP2008151588A (en) Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP2008111742A (en) Method and apparatus for non-destructive inspection of wheel welded part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225