JP2009250822A - Inspection method for seawater piping - Google Patents
Inspection method for seawater piping Download PDFInfo
- Publication number
- JP2009250822A JP2009250822A JP2008100136A JP2008100136A JP2009250822A JP 2009250822 A JP2009250822 A JP 2009250822A JP 2008100136 A JP2008100136 A JP 2008100136A JP 2008100136 A JP2008100136 A JP 2008100136A JP 2009250822 A JP2009250822 A JP 2009250822A
- Authority
- JP
- Japan
- Prior art keywords
- inspection
- piping
- seawater
- seawater piping
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
本発明は、海水配管検査方法に関する。さらに詳しくは、海水配管の内面を外面から検査する海水配管検査方法に関する。 The present invention relates to a seawater piping inspection method. More specifically, the present invention relates to a seawater piping inspection method for inspecting the inner surface of seawater piping from the outer surface.
海水配管に限らず、配管の内面を外面から検査するのに利用できる方法としては、次の特許文献1,2に記載のものが知られている。特許文献1はガイド波を用いる方式であり、特許文献2はマルチチャンネル式超音波探傷装置を用いるものである。しかし、両方式共、海水配管等について、好適に用いられる検査部位については示唆がみられない。 The methods described in the following Patent Documents 1 and 2 are known as methods that can be used to inspect the inner surface of the piping from the outer surface as well as the seawater piping. Patent Document 1 is a system using a guide wave, and Patent Document 2 is a system using a multi-channel ultrasonic flaw detector. However, in both types, there is no suggestion about the inspection site that is suitably used for seawater piping or the like.
ところで、海水配管は配管内部を流れる海水により配管内面の腐食が激しく、運転中に漏洩を生じてはならない。また、海水配管の内面には貝等が付着し、その除去作業に伴い内面保護ライニングの剥離が不測に発生する。そして、ライニング剥離部が特定困難であることから、腐食部を特定することも困難であり、このため配管外部から配管内面の腐食等による減肉状況を配管全長にわたって迅速に把握できる検査法が求められている。 By the way, the seawater piping should not cause leakage during operation because the seawater flowing inside the piping causes severe corrosion of the inner surface of the piping. In addition, shells and the like adhere to the inner surface of the seawater piping, and the inner surface protection lining is peeled off unexpectedly with the removal work. And, since it is difficult to specify the lining peeling part, it is also difficult to specify the corroded part. Therefore, an inspection method that can quickly grasp the thickness reduction due to corrosion of the inner surface of the pipe from the outside of the pipe is required. It has been.
配管の検査に当たり、最も困難な部位は、探触子を設置困難であるという点から、フランジ、貫通又はサポートバンド等による隠蔽部であり、そのような部位の合理的な検査方法が求められている。また、配管内面の腐食等による減肉状況を配管全長にわたって把握する必要があることから、各部位を迅速に検査することのできる検査方法が求められている。
かかる従来の実情に鑑みて、本発明の第一の目的は、配管における隠蔽部を合理的に検査することの可能な海水配管検査方法を提供することにある。 In view of this conventional situation, a first object of the present invention is to provide a seawater piping inspection method capable of rationally inspecting a concealing portion in piping.
また、本発明の第二の目的は、各部位を迅速に検査することのできる検査方法を提供することにある。 The second object of the present invention is to provide an inspection method capable of quickly inspecting each part.
上記第一の目的を達成するため、本発明に係る海水配管検査方法の特徴は、海水配管の内面を外面から検査する方法において、フランジ、貫通又はサポートバンド等による隠蔽部の外部で前記配管のうち直管部(以下、「露出直管部」)の外面に探触子を接触させ、当該探触子から前記隠蔽部にガイド波を送信し、このガイド波を受信することにより、当該隠蔽部における配管内面を検査することにある。 In order to achieve the first object, the seawater piping inspection method according to the present invention is characterized in that in the method of inspecting the inner surface of the seawater piping from the outer surface, the piping is outside the concealing portion by a flange, a penetration or a support band. A probe is brought into contact with the outer surface of the straight pipe part (hereinafter referred to as “exposed straight pipe part”), a guide wave is transmitted from the probe to the concealment part, and the guide wave is received, thereby the concealment. This is to inspect the inner surface of the pipe in the section.
同方法によれば、直管部は探触子を設置しやすく、検査効率がよい。しかも、発明者らの実験によれば、ガイド波を利用すれば、隠蔽部を確実に検査できることが判明した。 According to this method, the straight pipe portion is easy to install a probe, and the inspection efficiency is good. Moreover, according to the experiments by the inventors, it has been found that the concealing portion can be reliably inspected by using the guide wave.
特に、貝等の除去の必要性を考慮すれば、前記配管の内面に腐食防止用のライニングが施されている構成に特に好適に実施することができる。 In particular, considering the necessity of removing shells and the like, the present invention can be particularly suitably applied to a configuration in which the inner surface of the pipe is provided with a lining for preventing corrosion.
また、上記第二の目的を達成するため、上記両構成に加え、前記露出直管部の外面に磁気飽和型過流探傷装置を配置し、当該磁気飽和型過流探傷装置で前記露出直管部を走査することにより、前記露出直管部の内面を検査することが望ましい。発明者らの実験によれば、ライニング等の剥離部に生じるきずは、きず体積と検査値とがほぼ比例することが判明し、当該部位に好適に、且つ、効率的に実施できることが判明した。さらに、直管部は探触子を設置しやすく、検査のための配管側準備がガイド波検査と共通で済み、省力化がより一層推進できる。 Further, in order to achieve the second object, in addition to both the above-described configurations, a magnetic saturation type overflow flaw detector is disposed on the outer surface of the exposed straight pipe portion, and the exposed straight pipe is used in the magnetic saturation type overcurrent flaw detector. It is desirable to inspect the inner surface of the exposed straight pipe portion by scanning the portion. According to the experiments by the inventors, it has been found that flaws generated in the peeling portion such as the lining are substantially proportional to the flaw volume and the inspection value, and can be suitably and efficiently performed on the part. . In addition, the straight pipe portion is easy to install a probe, and the pipe side preparation for inspection is common to the guide wave inspection, and labor saving can be further promoted.
さらに、上記構成に加え、マルチチャンネル式超音波探傷装置を前記海水配管の曲管部又は分岐部(以下、「曲管部等」)に配置し、当該マルチチャンネル式超音波探傷装置で当該曲管部等の外面を走査することにより、当該曲管部等の内面を検査するとよい。同方法によれば、曲管部等の検査時間の短縮が図れ、変形部の検査が行えるようになった。そして、これにより全面検査が可能となった。 Further, in addition to the above configuration, a multi-channel ultrasonic flaw detector is disposed in the curved pipe section or branch section (hereinafter, “curved pipe section”) of the seawater piping, and the multi-channel ultrasonic flaw detector uses the curved pipe section. It is preferable to inspect the inner surface of the bent tube portion or the like by scanning the outer surface of the tube portion or the like. According to this method, it is possible to shorten the inspection time of the bent pipe portion and the like, and to inspect the deformed portion. This allowed full inspection.
このように、上記本発明の特徴によれば、配管における隠蔽部を合理的に検査することの可能な海水配管検査方法を提供することが可能となった。 Thus, according to the characteristics of the present invention, it is possible to provide a seawater piping inspection method capable of rationally inspecting the concealing portion in the piping.
また、各部位を迅速に検査することのできる検査方法を提供することも可能となった。そして、これらを組み合わせ、海水配管外部から配管内面の腐食等による減肉状況を配管全長にわたって迅速に把握可能となった。 In addition, it is possible to provide an inspection method that can inspect each part quickly. And combining these, it became possible to quickly grasp the thickness reduction due to corrosion of the inner surface of the pipe from the outside of the seawater pipe over the entire length of the pipe.
本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。 Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.
次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。
本発明に係る海水配管検査装置1の検査対象は、発電設備等に設置される海水配管100である。図1に示すように、この海水配管100は、直管101とエルボー102を適宜連結して構成され、貫通孔103aにより壁体103を貫通させてある。また、海水配管100には、適宜フランジ104やサポートバンド105を設けてある。
Next, the present invention will be described in more detail with reference to the accompanying drawings as appropriate.
The inspection object of the seawater piping inspection device 1 according to the present invention is the seawater piping 100 installed in a power generation facility or the like. As shown in FIG. 1, the seawater pipe 100 is configured by appropriately connecting a straight pipe 101 and an elbow 102, and the wall body 103 is penetrated by a through hole 103a. Further, the seawater piping 100 is provided with a flange 104 and a support band 105 as appropriate.
この海水配管検査装置1は、大略、超音波探傷装置10、磁気飽和式渦流探傷装置20及びマルチチャンネル式超音波探傷装置30よりなる。超音波探傷装置10は、ガイド波を用いて海水配管100の外面が露出していない隠蔽部A1の検査に用いられる。本実施形態において、隠蔽部A1は、海水配管100が貫通する壁体103の貫通孔103a近傍の壁貫通部A1a、フランジ104に覆われるフランジ部A1b及びサポートバンド105に覆われるサポートバンド部A1cである。磁気飽和式渦流探傷装置20は、上述の隠蔽部A1の外部で海水配管100の直管部(以下、露出直管部A2)である直管101の検査に用いられる。また、マルチチャンネル式超音波探傷装置30は、海水配管100の曲管部等A3であるエルボー102の検査に用いられる。 The seawater piping inspection device 1 is generally composed of an ultrasonic flaw detector 10, a magnetic saturation eddy current flaw detector 20 and a multi-channel ultrasonic flaw detector 30. The ultrasonic flaw detector 10 is used for inspection of the concealment part A1 where the outer surface of the seawater pipe 100 is not exposed using a guide wave. In the present embodiment, the concealing portion A1 is a wall penetration portion A1a in the vicinity of the through hole 103a of the wall body 103 through which the seawater pipe 100 penetrates, a flange portion A1b covered by the flange 104, and a support band portion A1c covered by the support band 105. is there. The magnetic saturation type eddy current flaw detector 20 is used for the inspection of the straight pipe 101 which is a straight pipe part of the seawater pipe 100 (hereinafter, exposed straight pipe part A2) outside the concealment part A1. Further, the multi-channel ultrasonic flaw detector 30 is used for inspecting the elbow 102 which is the bent pipe portion A3 of the seawater piping 100 or the like.
図2、3に示すように、この海水配管100の内面には、防食のためにライニング110が施されている。ライニング110の種類としては、例えばゴムライニング、エポキシライニングが用いられ、その厚さは通常2〜4mm程度である。 As shown in FIGS. 2 and 3, a lining 110 is provided on the inner surface of the seawater piping 100 for corrosion prevention. As the type of the lining 110, for example, a rubber lining or an epoxy lining is used, and its thickness is usually about 2 to 4 mm.
ところで、ライニングを施していない配管の場合、内部流体の流速変化部やスケール堆積部などが腐食減肉する傾向にあり、ある程度減肉される位置が推定可能である。そのため、腐食減肉傾向の強い位置を検査部位としておくことで、配管の内容物の漏洩を抑制することができる。 By the way, in the case of piping that has not been subjected to lining, the flow velocity changing portion of the internal fluid, the scale depositing portion, and the like tend to undergo corrosion thinning, and it is possible to estimate the position where the thinning is performed to some extent. Therefore, the leak of the contents of piping can be suppressed by setting the position where corrosion thinning tendency is strong as an inspection part.
しかし、本発明の検査対象となる海水配管100では、ライニング110内面に貝等が付着するため、プラントの運転を安定させるために定期的に貝等を除去する必要がある。貝等の除去は金属ヘラ等を使用して人的に除去するため、除去作業時にライニング110を破損させてしまう場合がある。その破損部分から海水が浸透し海水配管100内面に腐食が生じることとなる。そのため、腐食が発生する部位を予測して管理することは困難であり、海水配管100の内面全面について検査する必要がある。ライニング加工の性質上、図3に示す如き屈曲部分等においても破損しやすい。 However, in the seawater piping 100 to be inspected according to the present invention, shells and the like adhere to the inner surface of the lining 110, and therefore shells and the like need to be periodically removed to stabilize the operation of the plant. Since removal of shells and the like is performed manually using a metal spatula or the like, the lining 110 may be damaged during the removal operation. Seawater permeates from the damaged portion and corrosion occurs on the inner surface of the seawater piping 100. Therefore, it is difficult to predict and manage the site where corrosion occurs, and it is necessary to inspect the entire inner surface of the seawater piping 100. Due to the nature of the lining process, the bent part as shown in FIG.
また、貝等の除去はプラントの運転を停止し海水配管100を分解して行うので、プラントの効率運転のために停止時間を出来るだけ短くする必要がある。そのため、最低限の配管補修や取替えのみとして、検査を運転中に実施しておき補修等の必要が認められた部分について材料などを手配し、次回の停止期間の補修を行うとよい。このように、プラント運転中に海水配管100外面から効率よく且つ迅速に海水配管100内面の腐食減肉が把握できる検査手法が求められている。 Moreover, since the removal of shells and the like is performed by stopping the operation of the plant and disassembling the seawater piping 100, it is necessary to shorten the stop time as much as possible for efficient operation of the plant. Therefore, it is recommended to perform inspection during operation and arrange materials etc. for the parts that need to be repaired, and perform repairs during the next stop period, with only minimum pipe repair and replacement. Thus, there is a need for an inspection method that can efficiently and quickly grasp the corrosion thinning of the inner surface of the seawater piping 100 from the outer surface of the seawater piping 100 during plant operation.
次に、超音波探傷装置10で用いるガイド波について説明する。
ガイド波とは、縦波や横波等の超音波とは異なり、海水配管100等の板状の対象物の肉厚全体が振動して伝播する波をいう。このガイド波は、海水配管100の管軸方向Sに伝播する。
Next, a guide wave used in the ultrasonic flaw detector 10 will be described.
Unlike ultrasonic waves such as longitudinal waves and transverse waves, a guide wave refers to a wave that vibrates and propagates through the entire thickness of a plate-like object such as the seawater pipe 100. This guide wave propagates in the pipe axis direction S of the seawater pipe 100.
図2に示す如き壁体103の貫通孔103a近傍の検査では、壁体103と検査対象の海水配管100の外表面との隙間が小さく直接探触子を設置することができず、従来の縦波等を使った超音波検査は不可能であった。また、図3に示す如きフランジ104の隠れ部104aの検査は、従来、横波や縦波等を使った斜角探傷により行われていた。しかし、この手法では、海水配管100の内表面や外表面での反射を繰り返して超音波を検査箇所に到達させるため、超音波が減衰して十分な検査が困難であった。サポートバンド105の内側の海水配管100の検査についても、サポートバンド105を外さないと検査対象の海水配管100外表面に探触子を設置することができない。サポートバンド105を外すためには、時間と費用がかかり、従来の縦波等を使った超音波検査は不可能であった。 In the inspection in the vicinity of the through-hole 103a of the wall body 103 as shown in FIG. 2, the gap between the wall body 103 and the outer surface of the seawater piping 100 to be inspected is small, and a probe cannot be directly installed. Ultrasonic inspection using waves etc. was impossible. Further, the inspection of the hidden portion 104a of the flange 104 as shown in FIG. 3 has been conventionally performed by oblique flaw detection using a transverse wave or a longitudinal wave. However, in this method, since reflection on the inner surface and outer surface of the seawater pipe 100 is repeated and the ultrasonic wave reaches the inspection location, the ultrasonic wave is attenuated, and sufficient inspection is difficult. Regarding the inspection of the seawater piping 100 inside the support band 105, the probe cannot be installed on the outer surface of the seawater piping 100 to be inspected unless the support band 105 is removed. It takes time and money to remove the support band 105, and conventional ultrasonic inspection using a longitudinal wave or the like is impossible.
そのため、上述のガイド波を用いることで、従来海水配管100外面から検査が十分に行えなかった壁貫通部A1a、フランジ部A1b、サポートバンド部A1c等による隠蔽部A1の海水配管100内面の減肉等の検査が可能となった。しかも、ガイド波は管軸方向Sに伝播するので、探触子の設置が容易な海水配管100の露出直管部A2外面に設置することができ、隠蔽部A1を効率よく確実に検査することができる。 Therefore, by using the above-described guide wave, the thickness of the inner surface of the seawater piping 100 of the concealed portion A1 due to the wall penetration portion A1a, the flange portion A1b, the support band portion A1c, etc., which could not be sufficiently inspected from the outer surface of the conventional seawater piping 100 is reduced. Etc. became possible. Moreover, since the guide wave propagates in the tube axis direction S, the guide wave can be installed on the outer surface of the exposed straight pipe portion A2 of the seawater piping 100 where the probe can be easily installed, and the concealing portion A1 is inspected efficiently and reliably. Can do.
このガイド波を用いた超音波探傷装置10は、図3に示すように、大略、超音波を送受信する探触子11及び検出ユニット12よりなる。探触子11は、海水配管100に超音波を送信して海水配管100にガイド波を発生させると共に、ガイド波が伝播し海水配管100内面のきず120で反射した反射波を受信する。この探触子11は露出直管部A1となる直管101上に設置され、超音波を送受信する。ガイド波の周波数は300Hz〜800Hzである。なお、伝播したガイド波がきず120で反射した反射波を受信する例を示すが、きず120を透過した透過波を用いても構わない。 As shown in FIG. 3, the ultrasonic flaw detector 10 using this guide wave is generally composed of a probe 11 and a detection unit 12 that transmit and receive ultrasonic waves. The probe 11 transmits an ultrasonic wave to the seawater piping 100 to generate a guide wave in the seawater piping 100 and receives a reflected wave that is propagated by the guide wave and reflected by the flaw 120 on the inner surface of the seawater piping 100. This probe 11 is installed on the straight pipe 101 which becomes the exposed straight pipe portion A1, and transmits and receives ultrasonic waves. The frequency of the guide wave is 300 Hz to 800 Hz. In addition, although the example which receives the reflected wave which the propagated guide wave reflected with the flaw 120 is shown, the transmitted wave which permeate | transmitted the flaw 120 may be used.
検出ユニット12は、パルサーレシーバー13、検出器14、モニター15よりなる。パルサーレシーバー13は上述の探触子11を介して超音波を送受信し、検出器14で受信された信号を検出し、その結果はモニター15に表示される。 The detection unit 12 includes a pulsar receiver 13, a detector 14, and a monitor 15. The pulsar receiver 13 transmits and receives ultrasonic waves via the probe 11 described above, detects the signal received by the detector 14, and the result is displayed on the monitor 15.
ここで、上述の超音波探傷装置10を用いた検査結果の例を図7に示す。図7aはテストピースを用いた結果であり、図7bは実機の検査結果である。縦軸は探触子からの距離を示す。図7aに示すように、φ5mm深さ1mm以上の模擬欠陥を明瞭に検出できることが判明した。また、図7bに示すように、実機の検査においても、φ8mm深さ2.1mmの孔食を検出可能であることが判明した。このように、ガイド波を用いた検査により、露出直管部A2から隠蔽部A1を確実に検査できることが分かった。 Here, the example of the test result using the above-mentioned ultrasonic flaw detector 10 is shown in FIG. FIG. 7a shows the result using the test piece, and FIG. 7b shows the test result of the actual machine. The vertical axis shows the distance from the probe. As shown in FIG. 7a, it has been found that a simulated defect having a diameter of φ5 mm and a depth of 1 mm or more can be clearly detected. Further, as shown in FIG. 7b, it has been found that pitting corrosion having a depth of φ8 mm and a depth of 2.1 mm can be detected even in an actual machine inspection. Thus, it turned out that the concealment part A1 can be reliably test | inspected from the exposure straight pipe part A2 by the test | inspection using a guide wave.
次に、磁気飽和式渦流探傷の原理について説明する。
図4(a)に示すように、直管101等の鋼材等の強磁性体材料を直流磁化させると、磁化された直管101内には均一な磁束が発生する。このとき、同図(a)に示す如き、きずのない健全部に対して飽和磁束密度以下になるように磁界を与えると、図4(b)に示すように、減肉等のきず120が存在し磁路が狭く(断面積が小さく)なった薄肉部101xでは局部的に磁束密度が増加する。すなわち、材料の磁気特性が変化することになる。この磁気特性の変化を渦流探傷で検出することで、材料の減肉を検出して磁気特性の変化量から減肉の大きさを評価するのが本実施形態に用いる磁気飽和式渦流探傷の原理である。加える磁界の強さは、断面積の変化に起因する磁束密度の変化によって、磁気特性ができる限り大きく影響する条件を選定することが望ましい。例えば、磁気特性として透磁率を考えた場合、その磁気ヒステリシス曲線から、飽和磁束密度の70〜80%程度が適している。
Next, the principle of magnetic saturation type eddy current flaw detection will be described.
As shown in FIG. 4A, when a ferromagnetic material such as a steel material such as the straight pipe 101 is DC magnetized, a uniform magnetic flux is generated in the magnetized straight pipe 101. At this time, as shown in FIG. 4A, when a magnetic field is applied to the healthy part having no flaws so as to be equal to or lower than the saturation magnetic flux density, flaws 120 such as thinning are generated as shown in FIG. In the thin portion 101x that exists and has a narrow magnetic path (small cross-sectional area), the magnetic flux density increases locally. That is, the magnetic properties of the material will change. The principle of magnetic saturation type eddy current flaw detection used in this embodiment is to detect the thinning of the material and evaluate the size of the thinning from the amount of change in the magnetic characteristic by detecting the change of the magnetic characteristic by eddy current flaw detection. It is. As for the strength of the magnetic field to be applied, it is desirable to select a condition in which the magnetic characteristics are affected as much as possible by the change in magnetic flux density caused by the change in the cross-sectional area. For example, when magnetic permeability is considered as the magnetic characteristic, about 70 to 80% of the saturation magnetic flux density is suitable from the magnetic hysteresis curve.
従来、海水配管100の外面が露出した部分の検査は、放射線検査や超音波探傷で内面の腐食減肉を検出し測定していた。しかし、上述の磁気飽和式渦流探傷の原理を利用した検査手法を用いることで、海水配管100内面の腐食減肉を効率よく行うことが可能となる。 Conventionally, the inspection of the portion where the outer surface of the seawater piping 100 is exposed has been to detect and measure corrosion thinning of the inner surface by radiation inspection or ultrasonic flaw detection. However, it is possible to efficiently perform corrosion thinning of the inner surface of the seawater piping 100 by using an inspection method that uses the principle of the above-described magnetic saturation type eddy current flaw detection.
上記原理を利用する磁気飽和式渦流探傷装置20は、図4,5に示すように、大略、検査ヘッド21と検出ユニット27とよりなる。検査ヘッド21は、励磁コイル23と検出コイル24からなる。励磁コイル23の端部23aを介して露出直管部A2である直管101内に磁束を発生させ、検出コイル24により磁気特性の変化を検出する。この検査ヘッド21は、ハンドル22aを設けたフレーム22に取り付けられている。フレーム22には車輪25が設けてあり、検査ヘッド21を管軸方向Sに走査可能としてある。本実施形態において、検査ヘッド21は検出コイル24を複数個並列に配置し、1回の探傷で幅150〜200mm程度が検査範囲となるように、第一〜第四チャンネルCH1〜4を備えている。 The magnetic saturation type eddy current flaw detector 20 utilizing the above principle is roughly composed of an inspection head 21 and a detection unit 27 as shown in FIGS. The inspection head 21 includes an excitation coil 23 and a detection coil 24. A magnetic flux is generated in the straight pipe 101 which is the exposed straight pipe portion A <b> 2 via the end 23 a of the exciting coil 23, and a change in magnetic characteristics is detected by the detection coil 24. The inspection head 21 is attached to a frame 22 provided with a handle 22a. The frame 22 is provided with wheels 25 so that the inspection head 21 can be scanned in the tube axis direction S. In the present embodiment, the inspection head 21 includes a plurality of detection coils 24 arranged in parallel, and includes first to fourth channels CH1 to CH4 so that a width of about 150 to 200 mm is an inspection range by one flaw detection. Yes.
検出ユニット27は、励磁コイル23を励磁するための励磁電源27aと、検出コイルで受信した受信信号を検出する検出器27bとを備え、その検出結果はモニター27cに表示される。 The detection unit 27 includes an excitation power source 27a for exciting the excitation coil 23 and a detector 27b for detecting a reception signal received by the detection coil, and the detection result is displayed on the monitor 27c.
ここで、図8,9を参照しながら、磁気飽和式渦流探傷の検出能力について説明する。
図8aにテストピースの概略図を示す。同図において、着色部分は図8b,8cの画像範囲を示す。図8bは、比較例としての超音波垂直探傷結果のCスコープ画像である。同図に示すように、超音波垂直探傷法では、図中符号aで示す5mmφ20%t平底穴の模擬欠陥のみ検出された。また、2mmφのピッチング部の波形は、底面エコーの低下等が認められる程度であり、検出は困難であった。
Here, the detection capability of the magnetic saturation type eddy current flaw detection will be described with reference to FIGS.
FIG. 8a shows a schematic view of the test piece. In the figure, the colored portion indicates the image range of FIGS. 8b and 8c. FIG. 8B is a C scope image of the ultrasonic vertical flaw detection result as a comparative example. As shown in the figure, in the ultrasonic vertical flaw detection method, only a simulated defect of a 5 mmφ 20% t flat bottom hole indicated by symbol a in the figure was detected. Further, the waveform of the pitching portion of 2 mmφ was such that a decrease in bottom echo was recognized, and it was difficult to detect.
他方、図8cに磁気飽和式渦流探傷の結果を示す。同図に示すように、磁気飽和式渦流探傷では、図中符号b〜fに対応する2mmφ80%t〜100%tの模擬欠陥を検出している。また、符号aに対応する模擬欠陥でも各欠陥の区別は明瞭に検出されなかったものの欠陥の存在は認識可能であった。なお、2mmφ30%t以上のきずであれば検出可能であることが判明した。このように、磁気飽和式渦流探傷の特徴は、検査効率が良いことであり、きずの検出能に関しても、超音波探傷で見落としやすいピッチング状のきずに対し検出感度が優れている。 On the other hand, FIG. 8c shows the result of magnetic saturation type eddy current flaw detection. As shown in the figure, in the magnetic saturation type eddy current flaw detection, simulated defects of 2 mmφ 80% t to 100% t corresponding to symbols b to f in the figure are detected. Further, even though the simulated defect corresponding to the code a was not clearly distinguished from each other, the existence of the defect was recognizable. It was found that a flaw of 2 mmφ30% t or more can be detected. As described above, the magnetic saturation type eddy current flaw detection is characterized by good inspection efficiency, and the flaw detection ability is excellent with respect to pitching flaws that are easily overlooked by ultrasonic flaw detection.
また、図9に磁気飽和式渦流探傷振幅ときずの欠損体積との関係を示す。検査条件は、板厚6mm、リフトオフ2mm、周波数100kHzである。同図に示すように、きずの欠損体積が大きいほど大きな振幅が得られた。きず径が5mmφ以下であれば、概ね比例関係にあり、きず径が大きくなる程振幅は小さくなった。上述したように、配管内部のライニング110の破損により、その破損箇所に腐食等のきず120が生じ、きず120が拡大していく。よって、きず体積と検査値(磁気飽和式渦流探傷振幅)との比例関係から、きず120が小さいものであっても、確実に検出することができる。 FIG. 9 shows the relationship between the magnetic saturation type eddy current flaw detection amplitude and the missing volume. The inspection conditions are a plate thickness of 6 mm, a lift-off of 2 mm, and a frequency of 100 kHz. As shown in the figure, a larger amplitude was obtained as the defect volume of the flaw was larger. When the flaw diameter was 5 mmφ or less, the relationship was generally proportional, and the amplitude decreased as the flaw diameter increased. As described above, damage to the lining 110 inside the pipe causes a flaw 120 such as corrosion at the damaged portion, and the flaw 120 expands. Therefore, even if the flaw 120 is small, it can be reliably detected from the proportional relationship between the flaw volume and the inspection value (magnetic saturation eddy current flaw detection amplitude).
このように、上述の磁気飽和式渦流探傷装置20により、直管部A2を効率よく且つ迅速に検査することができる。しかも、ガイド波検査と同じ直管部A2において検査を行うので、検査のための配管側準備が共通で済み、省力化がより一層推進できる。 In this manner, the straight pipe portion A2 can be inspected efficiently and quickly by the above-described magnetic saturation type eddy current flaw detector 20. In addition, since the inspection is performed in the same straight pipe portion A2 as the guide wave inspection, the piping side preparation for the inspection is common, and labor saving can be further promoted.
次に、マルチチャンネル式超音波探傷装置30について説明する。
マルチチャンネル式超音波探傷装置30は、上述の磁気飽和式渦流探傷装置20で検査が困難なエルボー102や、フランジ104近傍あるいは狭隘な場所等の曲管部等A3における検査に用いられる。従来、このような箇所は、放射線検査や、超音波探傷(一探触子垂直法)にて行っていた。しかし、放射線検査では放射線の透過力に限界があるため、検査可能な配管サイズに限度があり、超音波探傷に比べ精度が低下していた。また、通常の一探触子垂直法による超音波探傷法では、検査範囲が狭く検査効率が低くなっていた。そこで、本装置においては、探触子を複数個(例えば5個)並列に接続することで、検査範囲を拡大させ検査効率を高めている。
Next, the multichannel ultrasonic flaw detector 30 will be described.
The multi-channel ultrasonic flaw detector 30 is used for inspection in the elbow 102, which is difficult to inspect with the magnetic saturation eddy current flaw detector 20 described above, and in the curved pipe portion A3 in the vicinity of the flange 104 or in a narrow place. Conventionally, such a part has been performed by radiation inspection or ultrasonic flaw detection (one probe vertical method). However, since there is a limit to the radiation transmission power in the radiological inspection, there is a limit to the pipe size that can be inspected, and the accuracy is lower than that of ultrasonic flaw detection. Also, in the normal ultrasonic flaw detection method based on the single probe vertical method, the inspection range is narrow and the inspection efficiency is low. Therefore, in this apparatus, a plurality of probes (for example, five) are connected in parallel to expand the inspection range and increase the inspection efficiency.
同図に示すように、マルチチャンネル式超音波探傷装置30は、大略、検査ヘッド31と検出ユニット35よりなる。検査ヘッド31は一対の送信子32及び受信子33より複数チャンネルを構成してある。また、検出ユニット35は、各チャンネルの送信子32及び受信子33で超音波を送受信させるパルサー35a及びレシーバー35bと、受信した受信信号を検出する検出器35cと、その結果を表示するモニター35dよりなる。 As shown in the figure, the multi-channel ultrasonic flaw detector 30 generally comprises an inspection head 31 and a detection unit 35. The inspection head 31 includes a plurality of channels including a pair of transmitters 32 and receivers 33. The detection unit 35 includes a pulser 35a and a receiver 35b that transmit and receive ultrasonic waves using the transmitter 32 and receiver 33 of each channel, a detector 35c that detects a received signal received, and a monitor 35d that displays the result. Become.
各チャンネルの送信子32及び受信子33はパルサー35a及びレシーバー35bに対し並列接続してある。これにより、同時に送信子を励起することによって曲管部等A3に超音波を同時に送信させ、腐食等からの受信信号をモニター35dに重畳表示させた表示波形で探傷を行なう。これにより、探傷速度は設置したチャンネル数分だけ早くなる。 The transmitter 32 and the receiver 33 of each channel are connected in parallel to the pulser 35a and the receiver 35b. Thus, the transmitter is simultaneously excited to simultaneously transmit ultrasonic waves to the curved pipe portion A3 and the like, and the flaw detection is performed with the display waveform in which the reception signal from the corrosion or the like is superimposed on the monitor 35d. As a result, the flaw detection speed is increased by the number of installed channels.
図10,11を参照しながら、マルチチャンネル式超音波探傷装置30の検出波形例について説明する。図10に示すように、テストピースには、模擬欠陥としてφ3mm残厚2.5mmの第一縦穴gと、φ3mm残厚3.5mmの第二縦穴hを設けてある。板厚は15mmとしてある。 An example of a detection waveform of the multichannel ultrasonic flaw detector 30 will be described with reference to FIGS. As shown in FIG. 10, the test piece is provided with a first vertical hole g having a remaining φ3 mm thickness of 2.5 mm and a second vertical hole h having a remaining φ3 mm thickness of 3.5 mm as simulated defects. The plate thickness is 15 mm.
図11aは、第一検査ヘッド31a’における第一縦穴gの検出波形を示し、図11bは、第二検査ヘッド31b’における第二縦穴hの検出波形を示す。これらの図に示すように、残厚の差異により波形にも差異が生じており、図中符号g、hにより残厚が推定可能である。 FIG. 11 a shows a detection waveform of the first vertical hole g in the first inspection head 31 a ′, and FIG. 11 b shows a detection waveform of the second vertical hole h in the second inspection head 31 b ′. As shown in these figures, a difference is also caused in the waveform due to the difference in the remaining thickness, and the remaining thickness can be estimated by reference symbols g and h in the drawings.
一方、第一、第二検査ヘッド31a’,b’の各送信子32及び受信子33を並列接続して第一、第二チャンネルCH1,2とした検査ヘッド31’により検査した場合の検出波形を図11cに示す。同図に示すように、第一、第二チャンネルCH1,2で受信した信号を重畳表示させた波形においては、図11aと同様の信号(符号g部分)が確認できた。この符号gに対応する第一縦穴gは、第二縦穴hより深刻なきずであり、そのようなきずが検出できればよい。よって、送信子32及び受信子33をパルサー35a及びレシーバー35bに対し並列接続することで、検査速度を向上させると共にきずを確実に検出することが可能となる。 On the other hand, a detection waveform when the transmitter 32 and the receiver 33 of the first and second inspection heads 31a ′ and b ′ are connected in parallel and inspected by the inspection head 31 ′ as the first and second channels CH1 and CH2. Is shown in FIG. As shown in the figure, in the waveform in which the signals received on the first and second channels CH1 and CH2 are displayed in a superimposed manner, the same signal (the reference numeral g portion) as in FIG. The first vertical hole g corresponding to the symbol g is a flaw that is more serious than the second vertical hole h, and it is sufficient that such a flaw can be detected. Therefore, by connecting the transmitter 32 and the receiver 33 in parallel to the pulsar 35a and the receiver 35b, it is possible to improve the inspection speed and reliably detect flaws.
上述のガイド波を用いた超音波探傷、磁気飽和式渦流探傷、マルチチャンネル式超音波探傷における検査効率について説明する。
ガイド波を用いた超音波探傷検査においては、検査員2名にて一日10カ所を検査することが可能である。従来は、海水配管100を分解して検査していたので、大幅な作業時間の短縮が達成される。また、磁気飽和式渦流探傷では、3名で一日25m2〜30m2の検査が可能となった。マルチチャンネル式超音波探傷では、2名で一日8m2の面探傷が可能となる。1チャンネルの超音波探傷では、一日3m2の面探傷が可能であるので、大幅な高速化が図られた。このように、上述の検査手法により各部位を迅速に検査することが可能となり、海水配管100全長における減肉を迅速且つ確実に把握することができる。
The inspection efficiency in ultrasonic flaw detection, magnetic saturation eddy current flaw detection, and multichannel ultrasonic flaw detection using the above-described guide wave will be described.
In ultrasonic flaw inspection using a guide wave, two inspectors can inspect 10 places a day. Conventionally, since the seawater piping 100 has been disassembled and inspected, a significant reduction in work time is achieved. Further, in the magnetic saturation eddy current testing, it became possible to test day 25 m 2 30 m 2 with 3 people. With multi-channel ultrasonic testing, two people can perform surface testing of 8 m 2 per day. With 1-channel ultrasonic flaw detection, surface flaw detection of 3 m 2 per day is possible, so a significant increase in speed was achieved. Thus, each part can be quickly inspected by the above-described inspection method, and the thinning of the seawater piping 100 can be grasped quickly and reliably.
最後に、本発明のさらに別の実施形態の可能性を列挙する。なお、上記実施形態と同様の部材には同一の符号を付してある。
上記実施形態において、隠蔽部A1は、海水配管100が貫通する壁体103の貫通孔103a近傍の壁貫通部A1a、フランジ104に覆われるフランジ部A1b及びサポートバンド105に覆われるサポートバンド部A1cであった。しかし、これらに限られるものではなく、例えば海水配管100に取り付けるハンガーや当て板等の部位であってもよい。すなわち、隠蔽部A1には配管外面が露出していない部位が含まれる。
Finally, the possibilities of yet another embodiment of the present invention are listed. In addition, the same code | symbol is attached | subjected to the member similar to the said embodiment.
In the said embodiment, concealment part A1 is wall part A1a near the through-hole 103a of the wall body 103 which the seawater piping 100 penetrates, flange part A1b covered with the flange 104, and support band part A1c covered with the support band 105. there were. However, it is not restricted to these, For example, parts, such as a hanger and a patch plate attached to the seawater piping 100, may be sufficient. That is, the concealing portion A1 includes a portion where the outer surface of the pipe is not exposed.
また、曲管部等A3としてエルボー102やフランジ104近傍を例示した。これらの他、例えば配管の分岐部分も曲管部等A3に含まれる。 Further, the vicinity of the elbow 102 and the flange 104 is illustrated as the curved pipe portion A3. In addition to these, for example, a bent portion of the pipe is also included in the bent pipe portion A3.
上記実施形態において、磁気飽和式渦流探傷装置20の検査ヘッド21を車輪25により管軸方向Sに走査した。しかし、管周方向Tに走査させるように構成しても構わない。 In the above embodiment, the inspection head 21 of the magnetic saturation type eddy current flaw detector 20 is scanned in the tube axis direction S by the wheel 25. However, it may be configured to scan in the tube circumferential direction T.
また、上記実施形態において、磁気飽和式渦流探傷装置20及びマルチチャンネル式超音波探傷装置30の各検査ヘッド21,31のチャンネル数は検査対象に合わせて適宜増減させるとよい。 Moreover, in the said embodiment, it is good to increase / decrease the number of channels of each inspection head 21 and 31 of the magnetic saturation type eddy current flaw detector 20 and the multi-channel ultrasonic flaw detector 30 appropriately according to the inspection object.
本発明は、例えば、海水配管の内面を外面から検査する海水配管検査方法や、配管の全面検査システムとして利用することができる。また、海水配管に限られず、内面にライニングが施された各種管状体の検査にも利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used, for example, as a seawater piping inspection method for inspecting the inner surface of a seawater piping from the outer surface or a whole surface inspection system for piping. Moreover, it is not restricted to seawater piping, It can utilize also for the test | inspection of the various tubular bodies by which inner surface was lined.
1:海水配管検査装置、10:超音波探傷装置、11:探触子、12:検出ユニット、13:パルサーレシーバー、14:検出器、15:モニター、20:磁気飽和式渦流探傷装置、21:検査ヘッド、22:フレーム、22a:ハンドル、23:励磁コイル、23a:端部、24:検出コイル、25:車輪、27:検出ユニット、27a:励磁電源、27b:検出器、27c:モニター、30:マルチチャンネル式超音波探傷装置、31:検査ヘッド、32:送信子、33:受信子、35:検出ユニット、35a:パルサー、35b:レシーバー、35c:検出器、35d:モニター、100:海水配管(被検査体)、101:直管、101x:薄肉部、102:エルボー、103:壁体、103a:貫通孔、、104:フランジ、104a:隠れ部、104b:ボルト孔、104c,d:溶着部、105:サポートバンド、110:ライニング、120:きず、A1:隠蔽部、A1a:壁貫通部、A1b:フランジ部、A1c:サポートバンド部、A2:直管部(露出直管部)、A3:曲管部等、CH1〜4:チャンネル、S:管軸方向、T:管周方向、 1: Seawater piping inspection device, 10: Ultrasonic flaw detector, 11: Probe, 12: Detection unit, 13: Pulsar receiver, 14: Detector, 15: Monitor, 20: Magnetic saturation type eddy current flaw detector, 21: Inspection head, 22: frame, 22a: handle, 23: excitation coil, 23a: end, 24: detection coil, 25: wheel, 27: detection unit, 27a: excitation power supply, 27b: detector, 27c: monitor, 30 : Multi-channel ultrasonic flaw detector, 31: Inspection head, 32: Transmitter, 33: Receiver, 35: Detection unit, 35a: Pulser, 35b: Receiver, 35c: Detector, 35d: Monitor, 100: Seawater piping (Inspection object), 101: straight pipe, 101x: thin part, 102: elbow, 103: wall, 103a: through hole, 104: flange, 104 : Hidden part, 104b: bolt hole, 104c, d: welded part, 105: support band, 110: lining, 120: scratch, A1: concealed part, A1a: wall penetration part, A1b: flange part, A1c: support band part A2: Straight pipe part (exposed straight pipe part), A3: Curved pipe part, etc. CH1-4: Channel, S: Pipe axis direction, T: Pipe circumferential direction,
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008100136A JP2009250822A (en) | 2008-04-08 | 2008-04-08 | Inspection method for seawater piping |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008100136A JP2009250822A (en) | 2008-04-08 | 2008-04-08 | Inspection method for seawater piping |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009250822A true JP2009250822A (en) | 2009-10-29 |
Family
ID=41311691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008100136A Pending JP2009250822A (en) | 2008-04-08 | 2008-04-08 | Inspection method for seawater piping |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009250822A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015025729A (en) * | 2013-07-26 | 2015-02-05 | 旭化成エンジニアリング株式会社 | Wastage evaluation method of pipeline using wall thickness measurement device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61149860A (en) * | 1984-12-24 | 1986-07-08 | Kawasaki Steel Corp | Hot eddy current flaw detecting device |
JPH0376162U (en) * | 1989-11-27 | 1991-07-30 | ||
JP2000329751A (en) * | 1999-05-18 | 2000-11-30 | Toshiba Corp | Method and apparatus for inspection of piping |
JP2004301613A (en) * | 2003-03-31 | 2004-10-28 | Idemitsu Eng Co Ltd | Method for inspecting tube by using sh wave |
JP2005083907A (en) * | 2003-09-09 | 2005-03-31 | Jfe Koken Corp | Defect inspection method |
-
2008
- 2008-04-08 JP JP2008100136A patent/JP2009250822A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61149860A (en) * | 1984-12-24 | 1986-07-08 | Kawasaki Steel Corp | Hot eddy current flaw detecting device |
JPH0376162U (en) * | 1989-11-27 | 1991-07-30 | ||
JP2000329751A (en) * | 1999-05-18 | 2000-11-30 | Toshiba Corp | Method and apparatus for inspection of piping |
JP2004301613A (en) * | 2003-03-31 | 2004-10-28 | Idemitsu Eng Co Ltd | Method for inspecting tube by using sh wave |
JP2005083907A (en) * | 2003-09-09 | 2005-03-31 | Jfe Koken Corp | Defect inspection method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015025729A (en) * | 2013-07-26 | 2015-02-05 | 旭化成エンジニアリング株式会社 | Wastage evaluation method of pipeline using wall thickness measurement device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6424150B2 (en) | Magnetostrictive sensor rail inspection system | |
US6624628B1 (en) | Method and apparatus generating and detecting torsional waves for long range inspection of pipes and tubes | |
US8215174B2 (en) | Inspection apparatus for tubular members | |
US10921286B2 (en) | In-line inspection tool | |
US7565252B2 (en) | Method for automatic differentiation of weld signals from defect signals in long-range guided-wave inspection using phase comparison | |
US6373245B1 (en) | Method for inspecting electric resistance welds using magnetostrictive sensors | |
JP2006284578A (en) | Method and system for inspecting object using ultrasonic scan data | |
JP2004301540A (en) | Non-destructive inspection method and non-destructive inspection device | |
Brockhaus et al. | In-line inspection (ILI) methods for detecting corrosion in underground pipelines | |
JPH04230846A (en) | Method and apparatus for inspecting metal tube using eddy current | |
Volkova et al. | Device and methods for measuring of acoustic anisotropy and the residual stress in the main gas pipelines’ metal | |
JP2012149980A (en) | Method and device for inspecting guide wave | |
JP2007322350A (en) | Ultrasonic flaw detector and method | |
JP2010151490A (en) | Nondestructive inspection device and nondestructive inspection method | |
JP2009293981A (en) | Inspection method using guide wave | |
JP4926628B2 (en) | Ultrasonic flaw detector and ultrasonic flaw detection method using Lorentz force | |
JP2009250822A (en) | Inspection method for seawater piping | |
EP1882923A3 (en) | Method and apparatus for ultrasonic inspection of steel pipes | |
Willems et al. | Advanced possibilities for corrosion inspection of gas pipelines using EMAT-technology | |
JP4363699B2 (en) | Method for detecting carburized layer and measuring thickness thereof | |
JP2008151588A (en) | Flaw evaluation method of two-layered bellows and eddy current flaw detector used therein | |
US20200393416A1 (en) | Method For Detecting Faults In Plates | |
JP2010048817A (en) | Nondestructive inspection device and method using guide wave | |
Camerini et al. | Feeler pig: a simple way to detect and size internal corrosion | |
Kania et al. | Investigation and Assessment of Low-Frequency ERW Seam Imperfections by EMAT and CMFL ILI |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110405 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130402 |