JP4363699B2 - Method for detecting carburized layer and measuring thickness thereof - Google Patents

Method for detecting carburized layer and measuring thickness thereof Download PDF

Info

Publication number
JP4363699B2
JP4363699B2 JP12682099A JP12682099A JP4363699B2 JP 4363699 B2 JP4363699 B2 JP 4363699B2 JP 12682099 A JP12682099 A JP 12682099A JP 12682099 A JP12682099 A JP 12682099A JP 4363699 B2 JP4363699 B2 JP 4363699B2
Authority
JP
Japan
Prior art keywords
carburized layer
metal tube
reflected
pulse
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12682099A
Other languages
Japanese (ja)
Other versions
JP2000321041A (en
Inventor
政廣 中林
正 林
美年 四辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP12682099A priority Critical patent/JP4363699B2/en
Publication of JP2000321041A publication Critical patent/JP2000321041A/en
Application granted granted Critical
Publication of JP4363699B2 publication Critical patent/JP4363699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石油化学プラントの炉内配管等の金属管の内,外面の浸炭層の検出及びその厚さの測定を非破壊試験で行う方法に関する。
【0002】
【従来の技術】
従来、石油化学プラントの代表例であるエチレン製造装置,重油脱硫装置,BTX装置等の加熱炉や反応塔の配管(加熱炉管等)は、外側からの加熱や内側の高温流体の通流等によって高温加熱されるため、低合金鋼9Cr−1MO,2(1/2)Cr−1MO,インコロイ800,SUS321HTF等の金属管で形成される。
【0003】
そして、これらの高温加熱される金属管にあっては、使用によって管の内,外面に浸炭層が発生し、次第にその層が厚くなって劣化するため、定期的な検査等で浸炭層の発生(有無)及びその厚さを監視し、その結果に応じて管の取換え等の措置をとる必要がある。
【0004】
ところで、この種の金属管は長く、しかも、プラント内等に多数配設されるため、それらの浸炭状況を、1本ずつ切断,研削等して破壊検査することは、検査効率や費用の面から極めて不経済である。
【0005】
そこで、従来はこの種の金属管の浸炭状況を、とりあえず電磁誘導式の浸炭計で計測して非破壊検査し、その結果に基づき、疑わしい場合に切断,研削等して浸炭層の発生の検出及びその厚さの測定を行っている。
【0006】
【発明が解決しようとする課題】
前記従来の電磁誘導式の浸炭計は、浸炭層が磁性層であることに着目して浸炭状況を計測するものであり、計測可能な金属管がインコロイやSUS等の非磁性体の金属管に限られ、いわゆる鋼管等の磁性体の金属管については計測することができない。
【0007】
しかも、浸炭計の計測では磁性層の厚さを知ることは困難であり、内側にフィンを付けた押出管のような内径の不均一な金属管や溶接部分を有する金属管の計測も困難である。
【0008】
すなわち、従来は磁性管や内径が不均一な管等の浸炭層の発生を、非破壊試験で知ることができず、しかも、浸炭層の厚さについては、磁性管,非磁性管を問わず、非破壊検査で知ることができない問題点がある。
【0009】
本発明は、石油化学プラント等のこの種の金属管につき、磁性管,非磁性管を問わず、その内,外面の浸炭層の発生の検出及び厚さの測定が、非破壊試験で行えるようにすることを課題とする。
【0010】
【課題を解決するための手段】
前記の課題を解決するために、本発明のベースになる浸炭層の検出方法においては、金属管の外面に間隔をとって超音波斜角探傷試験用の送信側探触子と受信側探触子とを設け、
超音波V透過法の試験により、送信側探触子から出射されて金属管の管面等で反射し、受信側探触子に反射パルスとして受信された超音波の受信レベル及び路程長を測定し、
受信側探触子が受信する反射パルスのうちの金属管の内面で反射した最も大きい内面反射パルスの受信レベルが最大になるように、両探触子の間隔を初期間隔に設定した後、
両探触子の間隔を初期間隔より狭くし、
金属管の内面側の浸炭層と,この浸炭層より金属管の外面側の非浸炭層との界面で反射した内面反射パルスの短路程側の隣接反射パルスの受信の有無を検出し、
短路程側の隣接反射パルスの受信により、金属管の内面側の浸炭層の発生を検出する。
【0011】
この場合、超音波V透過法の試験により、金属管の外面の送信側探触子から内面側に斜めに出射された超音波は、金属管の内面で反射するだけでなく、内面側に浸炭層が発生していると、この浸炭層とその外面側の非浸炭層との界面でも反射する。
【0012】
そして、これらの超音波の反射パルスにおいては、内面反射パルスが他の反射パルスより著しく大きく、また、内面側の浸炭層と非浸炭層との界面での反射パルスの管内の路程長(伝播距離)は内面反射パルスの路程長より短くなる。
【0013】
そのため、最初に受信側又は送信側の探触子を、最も大きい内面反射パルスの受信レベルが最大になる位置に移動し、両探触子の間隔を初期間隔に設定すると、受信側探触子が内面反射パルスの受信点(到達点)に位置する。
【0014】
そして、受信側又は送信側の探触子をその間隔が狭くなるように移動すると、内面側に浸炭層が発生し、この層とその外面側の非浸炭層との界面での反射パルスがあるときに、この反射パルスが内面反射パルスの短路程側の隣接反射パルスとして受信側探触子に受信される。
【0015】
したがって、この短路程側の隣接反射パルスの受信により、金属管の内面側に浸炭層が発生していることを、切断,研削等することなく、現場の非破壊試験で検出することができ、この場合金属管が磁性管や内径が不均一な管等であっても、確実に内面側の浸炭層の発生を検出することができる。
【0016】
つぎに、本発明のベースになる浸炭層の厚さの測定方法においては、送信側探触子と受信側探触子との間隔を初期間隔にして内面反射パルスの路程長を求めた後、
両探触子の間隔を初期間隔より狭くし、
金属管の内面側の浸炭層と,この浸炭層より金属管の外面側の非浸炭層との界面で反射した内面反射パルスの短路程側の隣接反射パルスを受信したときに、短路程側の隣接反射パルスの受信レベルが最も大きくなる路程長を内側浸炭層反射パルスの路程長として求め、
内面反射パルスの路程長と内側浸炭層反射パルスの路程長との差の1/2に超音波の屈折角の余弦関数値の係数を乗算して金属管の内面側に発生した浸炭層の厚さを測定する。
【0017】
この場合、内面反射パルスの路程長及びその短路程側の隣接反射パルスの路程長の1/2に超音波の屈折角の余弦関数値の係数を乗算すると、それぞれ反射面から金属管の外面までの距離(長さ)になる。
【0018】
そして、内面反射パルスの路程長の1/2に前記の余弦関数値の係数を乗算した長さは金属管の内面から外面までの厚さになり、短路程側の隣接反射パルスの路程長の1/2に前記の余弦関数値の係数を乗算した長さは金属管の浸炭層より外面側の非浸炭層の厚さになる。
【0019】
したがって、両反射パルスの路程長の差の1/2に前記の余弦関数値の係数を乗算した長さから、金属管の内面側の浸炭層の厚さを求めて測定することができ、このとき、金属管が非磁性管等であっても正確に内面側の浸炭層の厚さを測定することができる。
【0020】
つぎに、請求項の本発明の浸炭層の検出方法においては、両探触子の間隔を初期間隔に設定した後、
両探触子の間隔を初期間隔より広くし、
金属管の内面で反射して外面で再反射し、金属管の外面側の浸炭層と,該浸炭層より内面側の非浸炭層との界面で再々反射した内面反射パルスの長路程側の隣接反射パルスの受信の有無を検出し、
長路程側の隣接反射パルスの受信により、金属管の外面側の浸炭層の発生を検出する。
【0021】
この場合、金属管の外面側に浸炭層が発生すると、金属管の内面反射パルスは金属管の外面で再反射し、その再反射パルスが前記界面で外面側に再々反射し、この再々反射の反射パルスが内面反射パルスの長路程側の隣接反射パルスとして受信側探触子で受信される。
【0022】
そのため、両探触子の間隔を初期間隔に設定した後、受信側探触子又は送信側探触子をその間隔が広くなるように移動すると、外面側に浸炭層が発生しているときに、金属管の内面で一旦反射し、外面で再反射した後、浸炭層とその内面側の非浸炭層との界面で再々反射した超音波の反射パルスが内面反射パルスの長路程側の隣接反射パルスとして受信側探触子に受信される。
【0023】
したがって、この長路程側の隣接反射パルスの受信により、金属管の外面側に浸炭層が発生していることを非破壊試験で検出することができ、この場合、金属管が磁性管や内径が不均一な管であっても、確実に外面側の浸炭層の発生を検出することができる。
【0024】
つぎに、請求項の本発明の浸炭層の厚さの測定方法においては、両探触子の間隔を初期間隔にして内面反射パルスの路程長を求めた後、
両探触子の間隔を初期間隔より広くし、
金属管の内面で反射して外面で再反射し、金属管の外面側の浸炭層と,該浸炭層より金属管の内面側の非浸炭層との界面で再々反射した内面反射パルスの長路程側の隣接反射パルスを受信したときに、長路程側の隣接反射パルスの受信レベルが最も大きくなる路程長を外面側浸炭層反射パルスの路程長として求め、
この外面側浸炭層反射パルスの路程長と内面反射パルスの路程長との差の1/2に超音波の屈折角の余弦関数値の係数を乗算して金属管の外面側に発生した浸炭層の厚さを測定する。
【0025】
この場合、両探触子が初期間隔のときの内面反射パルスの路程長及びその長路程側の隣接反射パルスの路程長の1/2に超音波の屈折角の余弦関数値の係数を乗算すると、内面から金属管の外面までの距離(長さ),この距離に外面側の浸炭層の厚さを加えた距離になる。
【0026】
したがって、長路程側の隣接反射パルスと内面反射パルスとの路程長の差の1/2に前記の余弦の係数を乗算した長さから、金属管の外面側の浸炭層の厚さを求めて測定することができ、このとき、金属管が非磁性管等であっても正確に内面側の浸炭層の厚さを測定することができる。
【0027】
つぎに、請求項の本発明の浸炭層の検出方法においては、両探触子の間隔を初期間隔に設定した後、
金属管の内面側の浸炭層の発生の検出により、両探触子の間隔を初期間隔より狭くし、
金属管の内面側の浸炭層と,該浸炭層より前記金属管の外面側の非浸炭層との界面で反射した内面反射パルスの短路程側の隣接反射パルスの受信の有無を検出し、
短路程側の隣接反射パルスの受信により、金属管の内面側の浸炭層の発生を検出し、
金属管の外面側の浸炭層の発生の検出により、両探触子の間隔を初期間隔より広くし、
金属管の内面で反射して外面で再反射し、金属管の外面側の浸炭層と,該浸炭層より金属管の内面側の非浸炭層との界面で再々反射した内面反射パルスの長路程側の隣接反射パルスの受信の有無を検出し、
長路程側の隣接反射パルスの受信により、金属管の外面側の浸炭層の発生を検出する。
【0028】
したがって、この場合はベースになる検出方法と請求項の検出方法とを組合わせた検出方法により、金属管の内面側及び外面側の浸炭層の発生を非破壊試験で正確に検出することができる。
【0029】
つぎに、請求項の浸炭層の厚さの測定方法においては、両探触子の間隔を初期間隔にして内面反射パルスの路程長を求めた後、
金属管の内面側に発生した浸炭層の厚さの測定により、両探触子の間隔を初期間隔より狭くし、
金属管の内面側の浸炭層と,該浸炭層より金属管の外面側の非浸炭層との界面で反射した内面反射パルスの短路程側の隣接反射パルスを受信したときに、短路程側の隣接反射パルスの受信レベルが最も大きくなる路程長を内面側浸炭層反射パルスの路程長として求め、
内面反射パルスの路程長と内面側浸炭層反射パルスの路程長との差の1/2に超音波の屈折角の余弦関数値の係数を乗算して金属管の内面側に発生した浸炭層の厚さを測定し、
金属管の外面側に発生した浸炭層の厚さの測定により、両探触子の間隔を初期間隔より広くし、
金属管の内面で反射して外面で再反射し、金属管の外面側の浸炭層と,該浸炭層より金属管の内面側の非浸炭層との界面で再々反射した内面反射パルスの長路程側の隣接反射パルスを受信したときに、長路程側の隣接反射パルスの受信レベルが最も大きくなる路程長を外面側浸炭層反射パルスの路程長として求め、
外面側浸炭層反射パルスの路程長と内面反射パルスの路程長との差の1/2に超音波の屈折角の余弦関数値の係数を乗算して金属管の外面側に発生した浸炭層の厚さを測定する。
【0030】
したがって、この場合はベースになる測定方法と請求項の測定方法とを組合わせた測定方法により、金属管の内面側及び外面側に発生した浸炭層の厚さを非破壊検査で正確に測定することができる。
【0031】
【発明の実施の形態】
本発明の実施の形態につき、図1ないし図10を参照して説明する。
図1は例えばBTX装置の加熱炉の鋼管等の金属管1の管軸方向(長手方向)の断面図であり、図中の2は金属管1の内面側に発生した浸炭層(内面側浸炭層)、3は金属管1の外面側に発生した浸炭層(外面側浸炭層)、4は浸炭層2,3間の金属管1の非浸炭層である。
【0032】
5,6は金属管1の外面1′に管軸方向に間隔をとって設けられた超音波斜角探傷試験用の送信側探触子,受信側探触子である。
【0033】
そして、金属管1の浸炭状況の検査(保守点検)はBTX装置の運転が停止等されて金属管1に熱が加わらないときに現地で実施される。
【0034】
このとき、金属管1は加熱炉等に縦向き又は横向きに配設され、探触子5,6が1組の場合、図1に実線及び破線で示したように、探触子5,6の設置位置を金属管1の各検査部位の外面1′に順に移動して検査が行われる。
【0035】
つぎに、具体的な検査について説明する。
まず、探触子5,6を用いた超音波V透過法の試験により、反射パルスと呼ばれる超音波の反射エコーの計測から、金属管1の内面側浸炭層2の検出及び厚さの測定を行う。
【0036】
この場合、図1の一部の拡大図である図2に示すように、探触子5,6の間隔を、最初に、金属管1の内面1″で反射した超音波の反射パルス(内面反射パルスV0)の受信レベルが最大になる初期間隔Y0に調整して設定する。
ところで、送信側探触子5は超音波を図2の屈折角θで出射する。
【0037】
そして、この屈折角θは30°,45°,60°,70°等に適当に設定してよいが、いわゆるU字管等の場合も考慮して種々実験したところ、45°にすることが汎用性等の面から最も好ましいことが判明した。
【0038】
なお、検出及び測定を精度よく行うため、屈折角θはいわゆる公称屈折角でなく、予め実験等で測定した実測角である。
【0039】
また、探触子5,6は図示省略された本体装置の制御,監視により、超音波の送受信が制御,監視される。
【0040】
そして、その送受信結果に基づく本体装置のマイクロコンピュータ等の演算処理により、斜角探傷法のうちのタンデム法を変形した周知のV透過法で反射パルスを測定し、金属管1の音速及びその超音波の出射(送信)から受信までの時間計測等に基づき、例えば図2の矢印線に示す送信側探触子5から受信側探触子6に至るまでの超音波の伝播路の長さを、反射パルスの路程長として求める。
【0041】
さらに、この路程長と受信レベルとの関係を示す図3のような波形のグラフを、モニタ表示器等に画面表示する。
【0042】
図3は内面反射パルスV0の場合の画面表示を示し、路程長L0の1/2の往路又は復路の路程長をビーム路程長W0 とし、ビーム路程長を横軸,受信レベルを表わす任意単位のエコー高さ(%)を縦軸にして内面反射パルスV0 を画面表示したものである。
【0043】
そして、送信側探触子5から出射された超音波は、実際には、内面1″だけでなく、浸炭層2,3と非浸炭層4との界面F1,F2でも反射するが、内面1″で反射した内面反射パルスV0 のレベルが他のパルスより著しく大きくなる。
【0044】
そこで、初期間隔Y0 に調整する場合、モニタ表示器の画面表示をみながら、受信ゲインを調整しつつ送信側探触子5,受信側探触子6のいずれか一方又は両方を、表示された最も大きい反射パルスが最大レベルになるように、すなわち図3のように内面反射パルスV0 が最も大きく表示されるように、近づく方向又は離れる方向に少しずつ移動して超音波の送受信をくり返し、位置決めする。
【0045】
なお、図3においては内面反射パルスV0 の受信レベルが最大であることが分り易いように、最大レベルのときに100%でなく、80%になるように表示したものであり、この場合、他の反射パルスについてはレベルが小さく、画面には現れない。
【0046】
つぎに、内面側浸炭層2が発生している場合、この浸炭層2とその外面側の非浸炭層4との界面F1 でも超音波が反射し、その反射パルス(短路程側の隣接反射パルスV1)の路程長L1は、図4からも明らかなように内面反射パルスV0 の路程長L0 より浸炭層2の厚さに相当する数ミリメートル程度の微小な長さだけ短くなる。
【0047】
そこで、モニタ表示器の表示画面をみながら、受信ゲインを調整しつつ探触子5,6のいずれか一方又は両方を近づく方向に移動して両探触子5,6の間隔を初期間隔Y0 から少しずつ狭くし、図5に示すように、表示画面の内面反射パルスV0の短路程側近傍に隣接反射パルスV1が明瞭に分離して出現し、反射パルスV1 が検出されるか否かを観察する。
【0048】
なお、本発明の反射パルスV0,V1等は横波のパルスであるが、実際には横波のパルスの他に、縦波のパルス等の疑似エコーと呼ばれる反射パルスも発生し、これらの反射パルスもモニタ表示等に画面表示される場合がある。
【0049】
しかし、横波の反射パルスV0,V1等と疑似エコーの反射パルスとは探触子5,6の間隔を変えたときの表示変化等から区別することができ、しかも、疑似エコーの反射パルスは反射パルスV1 より短路程側に群パルス状に発生する。
【0050】
そこで、図5等にあっては、本発明を分り易くするため、疑似エコーの反射パルスは省略して表している。
【0051】
そして、隣接反射パルスV1 が明瞭に分離して検出されると、この検出によって内面側浸炭層2の発生が検出される。
【0052】
つぎに、本形態ではその厚さを検出するため、隣接反射パルスV1 が最大レベルになるように探触子5,6の間隔を初期間隔Y0から狭くして間隔Y1にする。
【0053】
このとき、図2からも明らかなように、内面反射パルスV0の路程長L0の1/2をW0とすると、その余弦関数値W0・cosθが金属管1の内面1″から外面1′までの厚さt0になる。
【0054】
さらに、図4からも明らかなように、隣接反射パルスV1の路程長L1の1/2をW1とすると、その余弦関数値W1・cosθが界面F1から外面までの厚さ(t0−t1)になる。
【0055】
したがって、内面側浸炭層2の厚さt1 は、路程長L0,L1の差の1/2に屈折角θの余弦関数値cosθの係数Kを乗算するつぎの数1の式から求められて測定される。
【0056】
【数1】
1=((L0−L1)/2)・K=(W0−W1)・cosθ
【0057】
そして、金属管1の端面を示した図6の内面側浸炭層2の厚さt1 につき、数1の式から求めた測定値の精度を確かめたところ、実際に切断して確認した値(検証厚)と、数1の式から求めた値(測定厚)とにつき、図7の各○印の結果が得られた。
【0058】
この図7によると、例えば実測の検証厚0.5mmに対して数1の式から求めた測定厚はその+0.3mm〜−0.2mmの範囲になり、誤差が少なく、数1の式から金属管1の内面側浸炭層2の厚さt1 を非破壊試験で精度よく求めて測定できることが確かめられた。
【0059】
つぎに、探触子5,6を用いた金属管1の外面側浸炭層3の検出及び厚さの測定について説明する。
【0060】
ところで、金属管1等にあっては、管内の高温流体の通流によって浸炭層が内面側に発生し、加熱炉管等の管外から熱が加わるものについては、内面側だけでなく、外面側にも浸炭層(外面側浸炭層3)が発生する。
【0061】
そして、この外面側浸炭層3の有無を検出する場合も、最初に内面反射パルスV0の受信に基づき、探触子5,6の設置間隔を初期間隔Y0に設定する。
【0062】
つぎに、外面側浸炭層3が発生している場合、探触子5から出射された超音波は、図8に示すように一部は外面側浸炭層3と非浸炭層4との界面F2 ,非浸炭層4と内面側浸炭層2との界面F1 で反射するが、大部分は金属管1の内面1″で反射する。
【0063】
そして、界面Fで反射した超音波は金属管1の外面1で再反射し、その後、界面Fでの反射と外面1での反射とをくり返し、探触子6に到達するまでに著しく減衰する。
【0064】
また、界面F1で反射した超音波(内面側浸炭層反射パルスV1)は外面1′の内面反射パルスV0の到達点より探触子5に近い地点で受信される。
【0065】
一方、内面1″で反射した超音波は内面反射パルスVであることから他の反射パルスより著しく大きく、この内面反射パルスVが外面1′で再反射して界面Fで再々反射すると、面1″の内面反射パルスVの到達点より外面側浸炭層3の厚さに応じた路程(距離)離れた地点で十分な大きさの反射パルスとして受信することができる。
【0066】
そして、この反射パルスが内面反射パルスV0 の長路程側の隣接反射パルスV2であり、探触子5,6を初期間隔Y0 に設置した後、モニタ表示器の表示画面をみながら、受信ゲインを調整しつつ探触子5,6のいずれか一方又は両方を離れる方向に移動して両探触子5,6の間隔を初期間隔から少しずつ広くし、図9に示すように、モニタ表示器の表示画面の内面反射パルスV0 の長路程側近傍に隣接反射パルスV2が明瞭に分離して出現し、反射パルスV2が検出されるか否かを観察する。
【0067】
そして、隣接反射パルスV2 が明瞭に分離して検出されることにより、外面側浸炭層3の発生が検出される。
【0068】
つぎに、外面側浸炭層3の厚さを検出するため、隣接反射パルスV2 が最も大きく受信されるように、探触子5,6の間隔を初期間隔Y0から広くして間隔Y2にする。
【0069】
このとき、隣接反射パルスVの出射から受信までの全路程長Lは、図8からも明らかなように、内面反射パルスVの路程長L(=2・W=2・W2a)に、外面1で再反射して界面Fで再々反射する路程長2・W2bを加算した長さL+2・W2b(=2(W2a+W2b))になる。
【0070】
そして、金属管1の厚さt0は(L0/2)・cosθ(=W0・cosθ=W2a・cosθ)であり、外面側浸炭層3の厚さt2は(2・W2b/2)・cosθ(=W2b・cosθ)である。,
【0071】
そのため、外面側浸炭層3の厚さt2 は、路程長L2,L1の差の1/2に係数K(=cosθ)を乗算するつぎの数2の式から求められて測定される。
【0072】
【数2】
2=((L2−L0)/2)・K=(W2−W0)・cosθ=W2b・cosθ
【0073】
そして、図6の外面側浸炭層3の厚さt2 につき、数2の式から求めた測定値の精度を確かめたところ、図7と同様の図10の結果が得られ、この図10から明らかなように、数2の式から外面側浸炭層3の厚さt2 を精度よく求めて測定できる。
【0074】
したがって、探触子5,6を用いた超音波V透過法の試験により、金属管1の内面側浸炭層2,外面側浸炭層3の発生の検出及びその厚さの測定が、金属管1を切断,研削等することなく確実に精度よく行える。
【0075】
そして、従来の電磁誘導式の浸炭計を用いた場合のような金属管1の材質や内面形状等による制限がなく、磁性管,非磁性管を問わず、どのような金属管であっても、現場での非破壊試験で精度よく、しかも、経済的に効率よく浸炭層2,4の発生を検出し、その厚さを測定することができる。
【0076】
なお、浸炭層の有無が表示画面から容易に分かり、しかも、その厚さが数1,数2の式から簡単に求められるため、浸炭層2,3の検出や厚さの測定に超音波の反射エコーについての高度の熟練等を要しない利点もある。
【0077】
ところで、金属管によっては内面側浸炭層2又は外面側浸炭層3についてのみ、浸炭層の発生の検出又はこの検出とその厚さの測定を行うようにしてもよい。また、探触子5,6を複数組用いて複数の金属管の検出,測定又は1本の金属管の複数個所の検出,測定を一度に行うようにしてもよい。
【0078】
さらに、探触子5,6が送受する超音波の屈折角θは45°に限られるものでなく、30°,45°,60°,70°等の種々の角度であっても、同様に適用できるのは勿論である。
【0079】
そして、本発明は熱が加わる種々の金属管の浸炭層の発生の検出及びその厚さの測定に適用できる。
【0080】
【発明の効果】
本発明は、以下に記載する効果を奏する。
まず、ベースになる検出方法の場合は、最初に受信側又は送信側の探触子6,5を、金属管1の面1″の内面反射パルスVの受信レベルが最大になる位置に移動し、両探触子5,6の間隔を初期間隔Yに設定すると、受信側探触子6が内面反射パルスVの受信点(到達点)に位置し、つぎに受信側又は送信側の探触子6,5をその間隔が狭くなるように移動すると、内面側に浸炭層2が発生し、この層2とその外面側の非浸炭層4との界面Fでの反射パルスがあるときに、この反射パルスを内面反射パルスVの短路程側の隣接反射パルスVとして受信側探触子6で受信することができる。
【0081】
そして、この短路程側の隣接反射パルスV1 の受信により、金属管1の内面側に浸炭層2が発生していることを、切断,研削等することなく、現場の非破壊試験で検出することができ、この場合、金属管1が磁性管や内径が不均一な管等であっても、確実に内面側の浸炭層2の発生を検出して浸炭状況を把握することができる。
【0082】
また、ベースになる測定方法の場合は、内面側の浸炭層2の検出時、反射パルスV,Vの路程長L,Lの差の1/2(W−W)に屈折角θの余弦関数値の係数を乗算した長さ(W−W)cosθから金属管1の浸炭層2の厚さt を求めて測定することができ、このとき、金属管1が非磁性管等であっても正確に内面側の浸炭層2の厚さを測定して浸炭状況を一層正確に把握することができ、その結果に基づいて管の取換え等の必要な補修等を適切に行うことができる。
【0083】
そして、請求項の検出方法の場合は、探触子5,6の間隔を初期間隔Yに設定した後、受信側又は送信側の探触子6,5をその間隔が広くなるように移動すると、外面側に浸炭層3が発生しているときに、金属管1の内面1で一旦反射し、外面1で再反射した後、浸炭層3とその内面側の非浸炭層4との界面Fで再々反射した超音波の反射パルスが内面反射パルスVの長路程側の隣接反射パルスVとして受信側探触子6で受信することができる。
【0084】
したがって、この長路程側の隣接反射パルスV2 の受信により、金属管1の外面側に浸炭層3が発生していることを切断,研削等することなく、現場の非破壊試験で検出することができ、この場合、金属管1が磁性管や内径が不均一な管であっても、確実に外面側の浸炭層3の発生を検出して浸炭状況を把握することができる。
【0085】
また、請求項の測定方法の場合は、外面側の浸炭層3の検出時、長路程側の隣接反射パルスVと内面反射パルスVとの路程長L,Lの差の1/2((W−W)に屈折角θの余弦関数値の係数を乗算した長さ(W−W)cosθから金属管1の外面側の浸炭層3の厚さtを求めて測定することができ、このとき、金属管1が非磁性管等であっても正確に外面側の浸炭層3の厚さを測定して浸炭状況を一層正確に把握することができる。
【0086】
つぎに、請求項の検出方法の場合は、ベースになる検出方法と請求項の検出方法とを組合わせた検出方法により、金属管1の内面側及び外面側の浸炭層2,3の発生を現場の非破壊試験で確実に検出して浸炭状況を把握することができる。
【0087】
また、請求項の測定方法の場合は、ベースになる測定方法と請求項の測定方法とを組合わせた測定方法により、金属管1の内面側及び外面側に発生した浸炭層2,3の厚さt,tを非破壊試験で正確に測定して内面側及び外面側の浸炭状況を一層正確に把握することができる。
【図面の簡単な説明】
【図1】本発明の実施の1形態の金属管の管軸方向の切断面図である。
【図2】図1の金属管の内面反射パルスの反射の説明図である。
【図3】図2の内面反射パルスの受信波形の説明図である。
【図4】図1の金属管の内面側浸炭層反射パルスの反射の説明図である。
【図5】図4の内面側浸炭層反射パルスの受信波形図である。
【図6】図1の金属管の端面図である。
【図7】図1の金属管の内面側浸炭層の厚さの測定結果の1例の説明図である。
【図8】図1の金属管の外面側浸炭層反射パルスの反射の説明図である。
【図9】図8の外面側浸炭層反射パルスの受信波形図である。
【図10】図1の金属管の外面側浸炭層の厚さの測定結果の1例の説明図である。
【符号の説明】
1 金属管
1′ 外面
1″ 内面
2 内面側浸炭層
3 外面側浸炭層
5 送信側探触子
6 受信側探触子
1,F2 界面
0,L1,L2 路程長
0 内面反射パルス
1 内面側浸炭層反射パルス
2 外面側浸炭層反射パルス
0 初期間隔
0,t1,t2 厚さ
θ 屈折角
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting a carburized layer on the outer surface of a metal pipe such as a pipe in a furnace of a petrochemical plant and measuring its thickness by a nondestructive test.
[0002]
[Prior art]
Conventionally, heating furnaces such as ethylene production equipment, heavy oil desulfurization equipment, BTX equipment, etc., which are representative examples of petrochemical plants, pipes (heating furnace tubes, etc.) are heated from the outside and flow of high-temperature fluid inside. Therefore, it is made of a metal tube such as low alloy steel 9Cr-1MO, 2 (1/2) Cr-1MO, Incoloy 800, SUS321HTF.
[0003]
In these high-temperature heated metal tubes, carburized layers are formed on the inner and outer surfaces of the tube by use, and the layers gradually become thicker and deteriorate. It is necessary to monitor the presence / absence and its thickness, and take measures such as replacing the pipe according to the result.
[0004]
By the way, since this kind of metal pipe is long and many are arranged in the plant etc., it is inspected in terms of inspection efficiency and cost to perform destructive inspection by cutting, grinding, etc. one by one. Is extremely uneconomical.
[0005]
Therefore, in the past, the carburization status of this type of metal tube was measured with a non-destructive inspection for the time being with an electromagnetic induction type carburizing meter, and based on the results, the occurrence of carburized layers was detected by cutting, grinding, etc. when in doubt. And the thickness is measured.
[0006]
[Problems to be solved by the invention]
The conventional electromagnetic induction type carburization meter measures the carburization state by paying attention to the fact that the carburized layer is a magnetic layer, and the measurable metal tube is a non-magnetic metal tube such as Incoloy or SUS. However, measurement is not possible for magnetic metal pipes such as steel pipes.
[0007]
Moreover, it is difficult to know the thickness of the magnetic layer by carburization meter measurement, and it is also difficult to measure metal pipes with non-uniform inner diameters such as extruded pipes with fins inside and welded parts. is there.
[0008]
That is, conventionally, the occurrence of a carburized layer such as a magnetic tube or a tube having a non-uniform inner diameter cannot be known by a nondestructive test, and the thickness of the carburized layer is not limited to a magnetic tube or a nonmagnetic tube. There is a problem that cannot be known by non-destructive inspection.
[0009]
The present invention is capable of detecting the occurrence of carburized layers on the outer surface and measuring the thickness of these types of metal tubes, such as petrochemical plants, regardless of whether they are magnetic tubes or non-magnetic tubes, by nondestructive testing. The challenge is to make it.
[0010]
[Means for Solving the Problems]
To solve the above problems ,Book Invention Become a base In the method for detecting the carburized layer, a transmitting probe and a receiving probe for an ultrasonic oblique flaw detection test are provided at intervals on the outer surface of the metal tube,
The ultrasonic wave transmission method is used to measure the reception level and path length of ultrasonic waves that are emitted from the transmitter probe, reflected from the tube surface of a metal tube, etc., and received as reflected pulses by the receiver probe. And
After setting the interval between both probes to the initial interval so that the reception level of the largest internal reflection pulse reflected by the inner surface of the metal tube among the reflected pulses received by the receiving probe is maximized,
The distance between the two probes is narrower than the initial distance,
Detecting the presence or absence of reception of adjacent reflected pulses on the short path side of the internal reflection pulse reflected at the interface between the carburized layer on the inner surface side of the metal tube and the non-carburized layer on the outer surface side of the metal tube from this carburized layer;
The occurrence of a carburized layer on the inner surface side of the metal tube is detected by receiving the adjacent reflected pulse on the short path side.
[0011]
In this case, the ultrasonic wave obliquely emitted from the transmitting probe on the outer surface of the metal tube to the inner surface side by the ultrasonic V transmission method test is not only reflected on the inner surface of the metal tube but also carburized on the inner surface side. When a layer is generated, it is also reflected at the interface between the carburized layer and the non-carburized layer on the outer surface side.
[0012]
In these ultrasonic reflected pulses, the internal reflection pulse is significantly larger than the other reflection pulses, and the path length (propagation distance) of the reflection pulse at the interface between the carburized layer and the non-carburized layer on the inner surface side is increased. ) Is shorter than the path length of the internal reflection pulse.
[0013]
Therefore, when the probe on the reception side or the transmission side is first moved to a position where the reception level of the largest internal reflection pulse is maximized, and the interval between the two probes is set to the initial interval, the reception side probe Is located at the reception point (arrival point) of the internal reflection pulse.
[0014]
When the probe on the reception side or the transmission side is moved so that the interval is narrowed, a carburized layer is generated on the inner surface side, and there is a reflected pulse at the interface between this layer and the non-carburized layer on the outer surface side. Sometimes, this reflection pulse is received by the receiving probe as an adjacent reflection pulse on the short path side of the internal reflection pulse.
[0015]
Therefore, by receiving this adjacent reflection pulse on the short path side, it is possible to detect that a carburized layer is generated on the inner surface side of the metal tube by a nondestructive test in the field without cutting, grinding, In this case, even if the metal tube is a magnetic tube or a tube having a non-uniform inner diameter, it is possible to reliably detect the occurrence of the carburized layer on the inner surface side.
[0016]
Next ,Book Invention Become a base In the method of measuring the thickness of the carburized layer, after obtaining the path length of the internal reflection pulse with the interval between the transmitter probe and the receiver probe as the initial interval,
The distance between the two probes is narrower than the initial distance,
When the adjacent reflected pulse on the short path side of the internal reflection pulse reflected at the interface between the carburized layer on the inner surface side of the metal tube and the non-carburized layer on the outer surface side of the metal tube from the carburized layer is received, Obtain the path length at which the reception level of the adjacent reflected pulse is the largest as the path length of the inner carburized layer reflected pulse,
The thickness of the carburized layer generated on the inner surface side of the metal tube by multiplying 1/2 of the difference between the path length of the inner reflection pulse and the inner carburized layer reflection pulse by the coefficient of the cosine function value of the ultrasonic refraction angle. Measure.
[0017]
In this case, when the path length of the internal reflection pulse and the path length of the adjacent reflection pulse on the short path side are multiplied by the coefficient of the cosine function value of the refraction angle of the ultrasonic wave, each from the reflection surface to the outer surface of the metal tube Distance (length).
[0018]
The length obtained by multiplying 1/2 of the path length of the inner reflection pulse by the coefficient of the cosine function value is the thickness from the inner surface to the outer surface of the metal tube, and is the length of the adjacent reflection pulse on the short path side. The length obtained by multiplying 1/2 by the coefficient of the cosine function value is the thickness of the non-carburized layer on the outer surface side of the carburized layer of the metal pipe.
[0019]
Therefore, the thickness of the carburized layer on the inner surface side of the metal tube can be obtained from the length obtained by multiplying the difference between the path lengths of both reflected pulses by the coefficient of the cosine function value, and this can be measured. When the metal tube is a non-magnetic tube or the like, the thickness of the carburized layer on the inner surface side can be accurately measured.
[0020]
Next, the claim 1 In the method for detecting a carburized layer according to the present invention, after setting the interval between the probes to the initial interval,
The distance between the two probes is wider than the initial distance,
Adjacent on the long path side of the internal reflection pulse reflected on the inner surface of the metal tube, re-reflected on the outer surface, and re-reflected at the interface between the carburized layer on the outer surface side of the metal tube and the non-carburized layer on the inner surface side of the carburized layer Detects the presence or absence of reflection pulse reception,
The occurrence of a carburized layer on the outer surface side of the metal tube is detected by receiving the adjacent reflected pulse on the long path side.
[0021]
In this case, when a carburized layer is generated on the outer surface side of the metal tube, the inner-surface reflection pulse of the metal tube is re-reflected on the outer surface of the metal tube, and the re-reflection pulse is re-reflected on the outer surface side at the interface. The reflected pulse is received by the receiving probe as an adjacent reflected pulse on the long path side of the internal reflection pulse.
[0022]
Therefore, after setting the interval between both probes to the initial interval, when the receiving side probe or the transmitting side probe is moved so that the interval becomes wide, when the carburized layer is generated on the outer surface side After reflection on the inner surface of the metal tube and re-reflection on the outer surface, the reflected pulse of the ultrasonic wave reflected again at the interface between the carburized layer and the non-carburized layer on the inner surface side is adjacently reflected on the long path side of the inner surface reflection pulse. The pulse is received by the receiving probe as a pulse.
[0023]
Therefore, it is possible to detect in a nondestructive test that a carburized layer is generated on the outer surface side of the metal tube by receiving the adjacent reflected pulse on the long path side. In this case, the metal tube has a magnetic tube or an inner diameter. Even if it is a non-uniform pipe | tube, generation | occurrence | production of the carburized layer of an outer surface side can be detected reliably.
[0024]
Next, the claim 2 In the method for measuring the thickness of the carburized layer of the present invention, after obtaining the path length of the internal reflection pulse with the interval between the probes as the initial interval,
The distance between the two probes is wider than the initial distance,
The long path of the internal reflection pulse reflected at the inner surface of the metal tube and re-reflected at the outer surface, and re-reflected at the interface between the carburized layer on the outer surface side of the metal tube and the non-carburized layer on the inner surface side of the metal tube from the carburized layer. When the adjacent reflection pulse on the side is received, the path length at which the reception level of the adjacent reflection pulse on the long path side is the largest is obtained as the path length of the outer surface side carburized layer reflection pulse,
Carburized layer generated on the outer surface side of the metal tube by multiplying 1/2 of the difference between the path length of the outer surface side carburized layer reflection pulse and the inner surface reflection pulse by the coefficient of the cosine function value of the ultrasonic refraction angle. Measure the thickness.
[0025]
In this case, when the path length of the internal reflection pulse when the two probes are at the initial interval and the path length of the adjacent reflection pulse on the long path side are multiplied by the coefficient of the cosine function value of the ultrasonic refraction angle, The distance (length) from the inner surface to the outer surface of the metal tube is the distance obtained by adding the thickness of the carburized layer on the outer surface side to this distance.
[0026]
Therefore, the thickness of the carburized layer on the outer surface side of the metal tube is obtained from the length obtained by multiplying the difference of the path length between the adjacent reflected pulse on the long path side and the inner surface reflected pulse by the cosine coefficient. At this time, even if the metal tube is a non-magnetic tube or the like, the thickness of the carburized layer on the inner surface side can be accurately measured.
[0027]
Next, the claim 3 In the method for detecting a carburized layer according to the present invention, after setting the interval between the probes to the initial interval,
By detecting the occurrence of a carburized layer on the inner surface side of the metal tube, the distance between the two probes is made smaller than the initial distance,
Detecting the presence or absence of reception of adjacent reflected pulses on the short path side of the inner surface reflected pulse reflected at the interface between the carburized layer on the inner surface side of the metal tube and the non-carburized layer on the outer surface side of the metal tube from the carburized layer;
By receiving adjacent reflected pulses on the short path side, the occurrence of a carburized layer on the inner surface side of the metal tube is detected,
By detecting the occurrence of a carburized layer on the outer surface of the metal tube, the distance between both probes is made wider than the initial distance,
The long path of the internal reflection pulse reflected at the inner surface of the metal tube and re-reflected at the outer surface, and re-reflected at the interface between the carburized layer on the outer surface side of the metal tube and the non-carburized layer on the inner surface side of the metal tube from the carburized layer. Detect the presence or absence of reception of the adjacent reflection pulse on the side,
The occurrence of a carburized layer on the outer surface side of the metal tube is detected by receiving the adjacent reflected pulse on the long path side.
[0028]
So in this case Become a base Detection method and claims 1 By the detection method combined with this detection method, it is possible to accurately detect the occurrence of carburized layers on the inner surface side and the outer surface side of the metal tube by a non-destructive test.
[0029]
Next, the claim 4 In the method of measuring the thickness of the carburized layer, after obtaining the path length of the internal reflection pulse with the interval between the probes as the initial interval,
By measuring the thickness of the carburized layer generated on the inner surface side of the metal tube, the distance between the two probes is made smaller than the initial distance,
When the adjacent reflected pulse on the short path side of the inner surface reflected pulse reflected at the interface between the carburized layer on the inner surface side of the metal tube and the non-carburized layer on the outer surface side of the metal tube from the carburized layer is received, Obtain the path length at which the reception level of the adjacent reflection pulse is the largest as the path length of the inner side carburized layer reflection pulse,
The half of the difference between the path length of the inner reflection pulse and the inner carburized layer reflection pulse is multiplied by the coefficient of the cosine function value of the refraction angle of the ultrasonic wave, and the carburized layer generated on the inner surface side of the metal tube Measure the thickness,
By measuring the thickness of the carburized layer generated on the outer surface side of the metal tube, the distance between both probes is wider than the initial distance,
The long path of the internal reflection pulse reflected at the inner surface of the metal tube and re-reflected at the outer surface, and re-reflected at the interface between the carburized layer on the outer surface side of the metal tube and the non-carburized layer on the inner surface side of the metal tube from the carburized layer. When the adjacent reflection pulse on the side is received, the path length at which the reception level of the adjacent reflection pulse on the long path side is the largest is obtained as the path length of the outer surface side carburized layer reflection pulse,
The carburized layer generated on the outer surface side of the metal tube is multiplied by a factor of the cosine function value of the refraction angle of the ultrasonic wave by 1/2 of the difference between the path length of the outer surface side carburized layer reflected pulse and the inner surface reflected pulse. Measure the thickness.
[0030]
So in this case Become a base Measurement method and claims 2 By the measurement method combined with this measurement method, the thickness of the carburized layer generated on the inner surface side and the outer surface side of the metal tube can be accurately measured by nondestructive inspection.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view in the tube axis direction (longitudinal direction) of a metal tube 1 such as a steel tube of a heating furnace of a BTX apparatus, and 2 in the figure is a carburized layer (inner surface side carburization generated on the inner surface side of the metal tube 1. Layer) 3 is a carburized layer (outer surface side carburized layer) generated on the outer surface side of the metal tube 1, and 4 is a non-carburized layer of the metal tube 1 between the carburized layers 2 and 3.
[0032]
Reference numerals 5 and 6 denote a transmission side probe and a reception side probe for an ultrasonic oblique angle flaw detection test provided on the outer surface 1 'of the metal tube 1 at intervals in the tube axis direction.
[0033]
Then, the inspection (maintenance inspection) of the carburization state of the metal pipe 1 is performed on site when the operation of the BTX apparatus is stopped and the metal pipe 1 is not heated.
[0034]
At this time, when the metal tube 1 is disposed vertically or horizontally in a heating furnace or the like and the probes 5 and 6 are one set, the probes 5 and 6 are indicated by solid lines and broken lines in FIG. The inspection is performed by sequentially moving the installation position of the metal tube 1 to the outer surface 1 ′ of each inspection portion of the metal tube 1.
[0035]
Next, specific inspection will be described.
First, by the ultrasonic V transmission method test using the probes 5 and 6, the detection of the inner side carburized layer 2 of the metal tube 1 and the measurement of the thickness are performed from the measurement of the reflection echo of the ultrasonic wave called the reflection pulse. Do.
[0036]
In this case, as shown in FIG. 2 which is an enlarged view of a part of FIG. 1, the interval between the probes 5 and 6 is first reflected by an ultrasonic reflected pulse (inner surface) reflected by the inner surface 1 ″ of the metal tube 1. Reflected pulse V 0 ) Initial interval Y that maximizes the reception level 0 Adjust and set to.
By the way, the transmitting probe 5 emits ultrasonic waves at a refraction angle θ in FIG.
[0037]
The refraction angle θ may be appropriately set to 30 °, 45 °, 60 °, 70 °, etc., but when various experiments are performed in consideration of a so-called U-tube or the like, it can be set to 45 °. It turned out to be most preferable in terms of versatility.
[0038]
In order to perform detection and measurement with high accuracy, the refraction angle θ is not a so-called nominal refraction angle, but an actual measurement angle measured in advance through experiments or the like.
[0039]
Further, the probes 5 and 6 are controlled and monitored for transmission / reception of ultrasonic waves by control and monitoring of the main unit (not shown).
[0040]
Then, the reflected pulse is measured by a known V transmission method, which is a modification of the tandem method of the oblique flaw detection method, by the arithmetic processing of the microcomputer of the main unit based on the transmission / reception result, and the sound velocity of the metal tube 1 and its super Based on the time measurement from emission (transmission) to reception of the sound wave, for example, the length of the propagation path of the ultrasonic wave from the transmission side probe 5 to the reception side probe 6 shown by the arrow line in FIG. The path length of the reflected pulse is obtained.
[0041]
Further, a waveform graph as shown in FIG. 3 showing the relationship between the path length and the reception level is displayed on a monitor display or the like.
[0042]
3 shows the internal reflection pulse V 0 Shows the screen display in the case of 0 1/2 of the forward or return path length is the beam path length W 0 The internal reflection pulse V with the beam path length as the horizontal axis and the echo height (%) in arbitrary units representing the reception level as the vertical axis 0 Is displayed on the screen.
[0043]
The ultrasonic wave emitted from the transmitting probe 5 is actually not only the inner surface 1 ″ but also the interface F between the carburized layers 2 and 3 and the non-carburized layer 4. 1 , F 2 Even though it is reflected, the internal reflection pulse V reflected from the internal surface 1 ″ 0 Is significantly higher than other pulses.
[0044]
Therefore, the initial interval Y 0 In the case of adjusting to, the largest reflected pulse displayed on either or both of the transmitting side probe 5 and the receiving side probe 6 is adjusted while adjusting the reception gain while observing the screen display of the monitor display. In order to reach the maximum level, that is, as shown in FIG. 0 Is moved little by little in the direction of approaching or moving away so as to repeat the transmission / reception of ultrasonic waves, and positioning is performed.
[0045]
In FIG. 3, the internal reflection pulse V 0 In order to make it easy to understand that the reception level of the signal is the maximum, the display is made so that it becomes 80% instead of 100% at the maximum level. Does not appear.
[0046]
Next, when the inner surface side carburized layer 2 is generated, the interface F between the carburized layer 2 and the non-carburized layer 4 on the outer surface side thereof. 1 However, the ultrasonic wave is reflected and the reflected pulse (adjacent reflected pulse V on the short path side) 1 ) Path length L 1 As shown in FIG. 4, the internal reflection pulse V 0 No way length L 0 Further, the length becomes shorter by a minute length of about several millimeters corresponding to the thickness of the carburized layer 2.
[0047]
Therefore, while looking at the display screen of the monitor display, adjusting one or both of the probes 5 and 6 while adjusting the reception gain, the distance between the probes 5 and 6 is set to the initial interval Y. 0 As shown in FIG. 5, the internal reflection pulse V of the display screen is gradually reduced. 0 Near the short path side of the adjacent reflected pulse V 1 Appear clearly separated and the reflected pulse V 1 Observe whether or not is detected.
[0048]
The reflected pulse V of the present invention 0 , V 1 Is a transverse wave pulse, but in fact, in addition to the transverse wave pulse, a reflected pulse called a pseudo echo such as a longitudinal wave pulse is also generated, and these reflected pulses may be displayed on the monitor display. is there.
[0049]
However, the reflected pulse V of the transverse wave 0 , V 1 And the reflected pulse of the pseudo echo can be distinguished from the display change when the interval between the probes 5 and 6 is changed, and the reflected pulse of the pseudo echo is the reflected pulse V 1 It occurs in the form of group pulses on the shorter path side.
[0050]
Therefore, in FIG. 5 and the like, the reflection pulse of the pseudo echo is omitted for easy understanding of the present invention.
[0051]
And the adjacent reflection pulse V 1 Is clearly separated and detected, the generation of the inner side carburized layer 2 is detected by this detection.
[0052]
Next, in this embodiment, in order to detect the thickness, the adjacent reflection pulse V 1 Set the interval between the probes 5 and 6 to the initial interval Y so that the 0 Narrower from Y 1 To.
[0053]
At this time, as is apparent from FIG. 0 No way length L 0 1/2 of W 0 Then, the cosine function value W 0 Cos θ is the thickness t from the inner surface 1 ″ to the outer surface 1 ′ of the metal tube 1 0 become.
[0054]
Further, as is apparent from FIG. 4, the adjacent reflected pulse V 1 No way length L 1 1/2 of W 1 Then, the cosine function value W 1 ・ Cosθ is interface F 1 To the outer surface (t 0 -T 1 )become.
[0055]
Therefore, the thickness t of the inner surface side carburized layer 2 1 Is the path length L 0 , L 1 ½ of the difference between the two and the coefficient K of the cosine function value cos θ of the refraction angle θ is obtained from the following equation 1 and measured.
[0056]
[Expression 1]
t 1 = ((L 0 -L 1 ) / 2) ・ K = (W 0 -W 1 ) ・ Cosθ
[0057]
And the thickness t of the inner surface side carburized layer 2 in FIG. 6 showing the end face of the metal tube 1 1 When the accuracy of the measured value obtained from the equation (1) was confirmed, the value actually verified by cutting (validation thickness) and the value (measured thickness) obtained from the equation (1) were as shown in FIG. The result of each ◯ mark was obtained.
[0058]
According to FIG. 7, for example, the measured thickness obtained from the equation (1) with respect to the actual verification thickness of 0.5 mm is in the range of +0.3 mm to -0.2 mm, and there is little error. Thickness t of inner side carburized layer 2 of metal tube 1 1 It was confirmed that it can be measured with high accuracy by nondestructive testing.
[0059]
Next, detection of the outer side carburized layer 3 of the metal tube 1 using the probes 5 and 6 and measurement of the thickness will be described.
[0060]
By the way, in the case of the metal pipe 1 or the like, the carburized layer is generated on the inner surface side due to the flow of the high-temperature fluid in the pipe, and heat is applied from the outside of the tube such as the heating furnace tube as well as the inner surface side. A carburized layer (outer surface side carburized layer 3) is also generated on the side.
[0061]
And also when detecting the presence or absence of this outer surface side carburized layer 3, first, the inner surface reflection pulse V 0 , The installation interval of the probes 5 and 6 is set to the initial interval Y. 0 Set to.
[0062]
Next, when the outer surface side carburized layer 3 is generated, a part of the ultrasonic wave emitted from the probe 5 is an interface F between the outer surface side carburized layer 3 and the non-carburized layer 4 as shown in FIG. 2 , Interface F between the non-carburized layer 4 and the inner side carburized layer 2 1 However, most of the light is reflected by the inner surface 1 ″ of the metal tube 1.
[0063]
And interface F 2 The ultrasonic waves reflected by the outer surface 1 of the metal tube 1 At the interface F 2 Reflection and exterior 1 Is repeatedly attenuated until the probe 6 is reached.
[0064]
Also, interface F 1 Reflected by the ultrasonic wave (carburized layer reflection pulse V on the inner surface side) 1 ) Is the inner surface reflection pulse V of the outer surface 1 '. 0 Is received at a point closer to the probe 5 than the arrival point.
[0065]
On the other hand, the ultrasonic wave reflected by the inner surface 1 ″ is reflected by the inner surface reflection pulse V. 0 Therefore, the internal reflection pulse V is significantly larger than the other reflection pulses. 0 Is re-reflected by the outer surface 1 'and the interface F 2 And re-reflect Inside Internal reflection pulse V of surface 1 ″ 0 Can be received as a sufficiently large reflected pulse at a point distant from the point reached by the path length (distance) corresponding to the thickness of the outer surface side carburized layer 3.
[0066]
And this reflection pulse is the internal reflection pulse V 0 Adjacent reflection pulse V on the long path side of 2 The probes 5 and 6 are set at the initial interval Y. 0 And then moving the probe 5 or 6 away from the probe 5 or 6 while adjusting the reception gain while viewing the display screen of the monitor display. As shown in FIG. 9, the internal reflection pulse V of the display screen of the monitor display is gradually increased from the initial interval. 0 Adjacent reflected pulse V near the long path side of 2 Appear clearly separated and the reflected pulse V 2 Observe whether or not is detected.
[0067]
And the adjacent reflection pulse V 2 Is clearly separated and detected, the occurrence of the outer surface side carburized layer 3 is detected.
[0068]
Next, in order to detect the thickness of the outer side carburized layer 3, the adjacent reflected pulse V 2 So that the distance between the probes 5 and 6 is the initial distance Y. 0 Wide from Y 2 To.
[0069]
At this time, the adjacent reflection pulse V 2 Total path length L from emission to reception 2 As is clear from FIG. 8, the internal reflection pulse V 0 No way length L 0 (= 2 · W 0 = 2W 2a ), Outer surface 1 Re-reflects at interface F 2 The length of the road that reflects again at 2W 2b L added to 0 + 2 · W 2b (= 2 (W 2a + W 2b ))become.
[0070]
And the thickness t of the metal tube 1 0 Is (L 0 / 2) ・ cosθ (= W 0 ・ Cosθ = W 2a Cos θ) and the thickness t of the outer surface side carburized layer 3 2 Is (2.W 2b / 2) ・ cosθ (= W 2b Cos θ). ,
[0071]
Therefore, the thickness t of the outer surface side carburized layer 3 2 Is the path length L 2 , L 1 Is obtained by the following equation (2) and multiplied by a coefficient K (= cos θ).
[0072]
[Expression 2]
t 2 = ((L 2 -L 0 ) / 2) ・ K = (W 2 -W 0 ) ・ Cosθ = W 2b ・ Cosθ
[0073]
And thickness t of the outer surface side carburized layer 3 in FIG. 2 When the accuracy of the measured value obtained from the equation 2 is confirmed, the result of FIG. 10 similar to FIG. 7 is obtained. As is apparent from FIG. 10, the outer side carburized layer 3 is obtained from the equation 2. Thickness t 2 Can be obtained and measured accurately.
[0074]
Therefore, the detection of the occurrence of the inner surface side carburized layer 2 and the outer surface side carburized layer 3 of the metal tube 1 and the measurement of the thickness thereof by the ultrasonic V transmission method test using the probes 5 and 6 are performed. Can be reliably and accurately performed without cutting or grinding.
[0075]
And there is no restriction | limiting by the material, inner surface shape, etc. of the metal pipe 1 like the case where the conventional electromagnetic induction type carburization meter is used, regardless of a magnetic pipe or a non-magnetic pipe, any metal pipe can be used. In addition, the occurrence of the carburized layers 2 and 4 can be detected accurately and economically efficiently in a nondestructive test in the field, and the thickness thereof can be measured.
[0076]
In addition, since the presence or absence of the carburized layer can be easily determined from the display screen, and the thickness can be easily obtained from the equations (1) and (2), ultrasonic waves can be used for detecting the carburized layers 2 and 3 and measuring the thickness. There is also an advantage that a high degree of skill in reflection echo is not required.
[0077]
By the way, depending on the metal pipe, only the inner surface side carburized layer 2 or the outer surface side carburized layer 3 may be detected to detect the occurrence of the carburized layer or to measure the thickness thereof. Alternatively, a plurality of sets of probes 5 and 6 may be used to detect and measure a plurality of metal tubes or to detect and measure a plurality of locations of one metal tube at a time.
[0078]
Furthermore, the refraction angle θ of the ultrasonic waves transmitted and received by the probes 5 and 6 is not limited to 45 °, and similarly, even at various angles such as 30 °, 45 °, 60 °, and 70 °. Of course, it can be applied.
[0079]
The present invention can be applied to the detection of the occurrence of carburized layers of various metal tubes to which heat is applied and the measurement of the thickness thereof.
[0080]
【The invention's effect】
The present invention has the following effects.
First, Become a base In the case of the detection method, first, the receiving side or transmitting side probes 6 and 5 are connected to the metal tube 1. Inside Internal reflection pulse V of surface 1 ″ 0 Move to a position where the reception level of the probe becomes maximum, and the interval between the probes 5 and 6 is set to the initial interval 0 When set to, the receiving side probe 6 is subjected to the internal reflection pulse V. 0 Next, when the probes 6 and 5 on the receiving side or the transmitting side are moved so that the interval between them is narrowed, a carburized layer 2 is generated on the inner surface side. Interface F with the non-carburized layer 4 on the outer surface side 1 When there is a reflection pulse at, this reflection pulse is converted to the internal reflection pulse V. 0 Adjacent reflected pulse V on the short path side 1 Can be received by the receiving side probe 6.
[0081]
And the adjacent reflected pulse V on the short path side 1 , The occurrence of the carburized layer 2 on the inner surface side of the metal tube 1 can be detected by on-site nondestructive testing without cutting or grinding. In this case, the metal tube 1 is magnetic. Even if it is a pipe or a pipe with an uneven inner diameter, it is possible to reliably detect the occurrence of the carburized layer 2 on the inner surface side and grasp the carburization status.
[0082]
Also, Become a base In the case of the measurement method, when detecting the carburized layer 2 on the inner surface side, the reflected pulse V 0 , V 1 No way length L 0 , L 1 1/2 of the difference between (W 0 -W 1 ) Multiplied by the coefficient of the cosine function value of the refraction angle θ (W 0 -W 1 ) From cos θ, the thickness t of the carburized layer 2 of the metal tube 1 1 At this time, even if the metal tube 1 is a non-magnetic tube or the like, the thickness of the carburized layer 2 on the inner surface side can be accurately measured to more accurately grasp the carburization status. Based on the result, necessary repairs such as tube replacement can be appropriately performed.
[0083]
And , Claims 1 In the case of this detection method, the interval between the probes 5 and 6 is set to the initial interval Y. 0 When the probe 6 or 5 on the reception side or the transmission side is moved so that the interval is widened, the inner surface 1 of the metal tube 1 is formed when the carburized layer 3 is generated on the outer surface side. Reflected once, outer surface 1 After re-reflection, the interface F between the carburized layer 3 and the non-carburized layer 4 on the inner surface side thereof 2 The reflected pulse of the ultrasonic wave reflected again by the internal reflection pulse V 0 Adjacent reflection pulse V on the long path side of 2 Can be received by the receiving side probe 6.
[0084]
Therefore, the adjacent reflected pulse V on the long path side is 2 , The occurrence of the carburized layer 3 on the outer surface side of the metal tube 1 can be detected by on-site nondestructive testing without cutting, grinding, etc. In this case, the metal tube 1 is a magnetic tube. Even if the pipe has a non-uniform inner diameter, it is possible to reliably detect the carburization state by detecting the occurrence of the carburized layer 3 on the outer surface side.
[0085]
Claims 2 In the case of this measurement method, when detecting the carburized layer 3 on the outer surface side, the adjacent reflected pulse V on the long path side is detected. 2 And internal reflection pulse V 0 Path length L with 2 , L 0 1/2 of the difference between ((W 2 -W 0 ) Multiplied by the coefficient of the cosine function value of the refraction angle θ (W 2 -W 0 ) Thickness t of the carburized layer 3 on the outer surface side of the metal tube 1 from cos θ 2 At this time, even if the metal tube 1 is a non-magnetic tube or the like, the thickness of the carburized layer 3 on the outer surface side can be accurately measured to more accurately grasp the carburization status. .
[0086]
Next, the claim 3 For the detection method of Become a base Detection method and claims 1 By the detection method combined with this detection method, the occurrence of the carburized layers 2 and 3 on the inner surface side and the outer surface side of the metal tube 1 can be reliably detected by a non-destructive test in the field, and the carburization status can be grasped.
[0087]
Claims 4 For the measurement method of Become a base Measurement method and claims 2 The thickness t of the carburized layers 2 and 3 generated on the inner surface side and the outer surface side of the metal tube 1 by the measurement method combined with 1 , T 2 Can be accurately measured in a non-destructive test, and the carburization status of the inner surface side and the outer surface side can be grasped more accurately.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view in the tube axis direction of a metal tube according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of reflection of an inner surface reflection pulse of the metal tube of FIG. 1;
3 is an explanatory diagram of a reception waveform of the internal reflection pulse of FIG. 2;
4 is an explanatory diagram of reflection of an inner surface side carburized layer reflection pulse of the metal tube of FIG. 1; FIG.
5 is a reception waveform diagram of the inner-side carburized layer reflection pulse of FIG. 4;
6 is an end view of the metal tube of FIG. 1. FIG.
7 is an explanatory diagram of an example of the measurement result of the thickness of the inner surface side carburized layer of the metal pipe of FIG. 1;
8 is an explanatory diagram of reflection of an outer surface side carburized layer reflection pulse of the metal tube of FIG. 1; FIG.
9 is a reception waveform diagram of the outer-surface carburized layer reflection pulse of FIG. 8. FIG.
10 is an explanatory diagram of an example of a measurement result of a thickness of an outer surface side carburized layer of the metal pipe of FIG. 1;
[Explanation of symbols]
1 Metal tube
1 'exterior
1 ″ inner surface
2 Inside carburized layer
3 Carburized layer on the outer surface
5 Transmitter probe
6 Receiver probe
F 1 , F 2 interface
L 0 , L 1 , L 2 Path length
V 0 Internal reflection pulse
V 1 Inner side carburized layer reflection pulse
V 2 External side carburized layer reflection pulse
Y 0 Initial interval
t 0 , T 1 , T 2 thickness
θ Refraction angle

Claims (4)

加熱炉,反応塔の配管等の熱が加わる金属管の外面側の浸炭層の発生を検出する浸炭層の検出方法において、
前記金属管の外面に間隔をとって超音波斜角探傷試験用の送信側探触子と受信側探触子とを設け、
超音波V透過法の試験により、前記送信側探触子から出射されて前記金属管の管面等で反射し、前記受信側探触子に反射パルスとして受信された超音波の受信レベル及び路程長を測定し、
前記受信側探触子が受信した反射パルスのうちの前記金属管の内面で反射した最も大きい内面反射パルスの受信レベルが最大になるように、前記両探触子の間隔を初期間隔に設定した後、
前記両探触子の間隔を前記初期間隔から広くし、
前記金属管の内面で反射して外面で再反射し、前記金属管の外面側の浸炭層と,該浸炭層より前記金属管の内面側の非浸炭層との界面で再々反射した前記内面反射パルスの長路程側の隣接反射パルスの受信の有無を検出し、
前記長路程側の隣接反射パルスの受信により、前記金属管の外面側の浸炭層の発生を検出する
ことを特徴とする浸炭層の検出方法。
In the method for detecting a carburized layer, which detects the occurrence of a carburized layer on the outer surface side of a metal pipe to which heat is applied, such as a heating furnace and piping of a reaction tower,
A transmission side probe and a reception side probe for ultrasonic oblique flaw detection tests are provided at intervals on the outer surface of the metal tube,
The ultrasonic reception level and path length of the ultrasonic wave emitted from the transmitting probe and reflected by the tube surface of the metal tube and received as a reflected pulse by the receiving probe by the ultrasonic V transmission test. Measure the length
The interval between the probes is set to the initial interval so that the reception level of the largest internal reflection pulse reflected by the inner surface of the metal tube among the reflection pulses received by the reception side probe is maximized. rear,
The interval between the two probes is increased from the initial interval,
Reflecting on the inner surface of the metal tube and re-reflecting on the outer surface, the inner surface reflection reflected again on the interface between the carburized layer on the outer surface side of the metal tube and the non-carburized layer on the inner surface side of the metal tube from the carburized layer. Detect the presence or absence of reception of adjacent reflected pulses on the long path side of the pulse,
The detection of the carburized layer on the outer surface side of the metal pipe is detected by reception of the adjacent reflected pulse on the long path side.
加熱炉,反応塔の配管等の熱が加わる金属管の外面側に発生した浸炭層の厚さを測定する浸炭層の厚さの測定方法において、
前記金属管の外側面に間隔をとって超音波斜角探傷試験用の送信側探触子と受信側探触子とを設け、
超音波V透過法の試験により、前記送信側探触子から出射されて前記金属管の管面等で反射し、前記受信側探触子に反射パルスとして受信された超音波の受信レベル及び路程長を測定し、
前記受信側探触子が受信した反射パルスのうちの前記金属管の内面で反射した最も大きい内面反射パルスの受信レベルが最大になるように、前記両探触子の間隔を初期間隔にして内面反射パルスの路程長を求めた後、
前記両探触子の間隔を前記初期間隔から広くし、
前記金属管の内面で反射して外面で再反射し、前記金属管の外面側の浸炭層と,該浸炭層より前記金属管の内面側の非浸炭層との界面で再々反射した前記内面反射パルスの長路程側の隣接反射パルスを受信したときに、前記長路程側の隣接反射パルスの受信レベルが最も大きくなる路程長を外面側浸炭層反射パルスの路程長として求め、
前記外面側浸炭層反射パルスの路程長と前記内面反射パルスの路程長との差の1/2に超音波の屈折角の余弦関数値の係数を乗算して前記金属管の外面側に発生した浸炭層の厚さを測定する
ことを特徴とする浸炭層の厚さの測定方法。
In the method of measuring the thickness of the carburized layer, which measures the thickness of the carburized layer generated on the outer surface side of the metal pipe to which heat is applied such as the heating furnace and the piping of the reaction tower,
A transmission side probe and a reception side probe for ultrasonic oblique flaw detection tests are provided at intervals on the outer surface of the metal tube,
The ultrasonic reception level and path length of the ultrasonic wave emitted from the transmitting probe and reflected by the tube surface of the metal tube and received as a reflected pulse by the receiving probe by the ultrasonic V transmission test. Measure the length
Among the reflected pulses received by the receiving side probe, the inner surface is set with the interval between the probes as an initial interval so that the reception level of the largest inner surface reflected pulse reflected by the inner surface of the metal tube is maximized. After determining the path length of the reflected pulse,
The interval between the two probes is increased from the initial interval,
Reflecting on the inner surface of the metal tube and re-reflecting on the outer surface, the inner surface reflection reflected again on the interface between the carburized layer on the outer surface side of the metal tube and the non-carburized layer on the inner surface side of the metal tube from the carburized layer. When the adjacent reflected pulse on the long path side of the pulse is received, the path length at which the reception level of the adjacent reflected pulse on the long path side becomes the largest is obtained as the path length of the outer surface side carburized layer reflected pulse,
Generated on the outer surface side of the metal tube by multiplying 1/2 of the difference between the path length of the outer surface side carburized layer reflection pulse and the path length of the inner surface reflection pulse by the coefficient of the cosine function value of the ultrasonic refraction angle. A method for measuring the thickness of a carburized layer, characterized by measuring the thickness of the carburized layer.
加熱炉,反応塔の配管等の熱が加わる金属管の内面側及び外面側の浸炭層の発生を検出する浸炭層の検出方法において、
前記金属管の外面に間隔をとって超音波斜角探傷試験用の送信側探触子と受信側探触子とを設け、
超音波V透過法の試験により、前記送信側探触子から出射されて前記金属管の管面等で反射し、前記受信側探触子に反射パルスとして受信された超音波の受信レベル及び路程長を測定し、
前記受信側探触子が受信した反射パルスのうちの前記金属管の内面で反射した最も大きい内面反射パルスの受信レベルが最大になるように、前記両探触子の間隔を初期間隔に設定した後、
前記金属管の内面側の浸炭層の発生の検出により、前記両探触子の間隔を前記初期間隔から狭くし、
前記金属管の内面側の浸炭層と,該浸炭層より前記金属管の外面側の非浸炭層との界面で反射した前記内面反射パルスの短路程側の隣接反射パルスの受信の有無を検出し、
前記短路程側の隣接反射パルスの受信により、前記金属管の内面側の浸炭層の発生を検出し、
前記金属管の外面側の浸炭層の発生の検出により、前記両探触子の間隔を前記初期間隔から広くし、
前記金属管の内面で反射して外面で再反射し、前記金属管の外面側の浸炭層と,該浸炭層より前記金属管の内面側の非浸炭層との界面で再々反射した前記内面反射パルスの長路程側の隣接反射パルスの受信の有無を検出し、
前記長路程側の隣接反射パルスの受信により、前記金属管の外面側の浸炭層の発生を検出する
ことを特徴とする浸炭層の検出方法。
In the detection method of the carburized layer for detecting the occurrence of the carburized layer on the inner surface side and the outer surface side of the metal tube to which heat is applied such as the heating furnace and the piping of the reaction tower,
A transmission side probe and a reception side probe for ultrasonic oblique flaw detection tests are provided at intervals on the outer surface of the metal tube,
The ultrasonic reception level and path length of the ultrasonic wave emitted from the transmitting probe and reflected by the tube surface of the metal tube and received as a reflected pulse by the receiving probe by the ultrasonic V transmission test. Measure the length
The interval between the probes is set to the initial interval so that the reception level of the largest internal reflection pulse reflected by the inner surface of the metal tube among the reflection pulses received by the reception side probe is maximized. rear,
By detecting the occurrence of a carburized layer on the inner surface side of the metal tube, the interval between the probes is reduced from the initial interval,
The presence or absence of reception of adjacent reflected pulses on the short path side of the inner surface reflected pulse reflected at the interface between the carburized layer on the inner surface side of the metal tube and the non-carburized layer on the outer surface side of the metal tube from the carburized layer is detected. ,
By detecting the adjacent reflected pulse on the short path side, the occurrence of a carburized layer on the inner surface side of the metal tube is detected,
By detecting the occurrence of a carburized layer on the outer surface side of the metal tube, the interval between the probes is increased from the initial interval,
Reflecting on the inner surface of the metal tube and re-reflecting on the outer surface, the inner surface reflection reflected again on the interface between the carburized layer on the outer surface side of the metal tube and the non-carburized layer on the inner surface side of the metal tube from the carburized layer. Detect the presence or absence of reception of adjacent reflected pulses on the long path side of the pulse,
The detection of the carburized layer on the outer surface side of the metal pipe is detected by reception of the adjacent reflected pulse on the long path side.
加熱炉,反応塔の配管等の熱が加わる金属管の内面側及び外面側に発生した浸炭層の厚さを測定する浸炭層の厚さの測定方法において、
前記金属管の外面に間隔をとって超音波斜角探傷試験用の送信側探触子と受信側探触子とを設け、
超音波V透過法の試験により、前記送信側探触子から出射されて前記金属管の管面等で反射し、前記受信側探触子に反射パルスとして受信された超音波の受信レベル及び路程長を測定し、
前記受信側探触子が受信した反射パルスのうちの前記金属管の内面で反射した最も大きい内面反射パルスの受信レベルが最大になるように、前記両探触子の間隔を初期間隔にして内面反射パルスの路程長を求めた後、
前記金属管の内面側に発生した浸炭層の厚さの測定により、前記両探触子の間隔を前記初期間隔より狭くし、
前記金属管の内面側の浸炭層と,該浸炭層より前記金属管の外面側の非浸炭層との界面で反射した前記内面反射パルスの短路程側の隣接反射パルスを受信したときに、前記短路程側の隣接反射パルスの受信レベルが最も大きくなる路程長を内面側浸炭層反射パルスの路程長として求め、
前記内面反射パルスの路程長と前記内面側浸炭層反射パルスの路程長との差の1/2に超音波の屈折角の余弦関数値の係数を乗算して前記金属管の内面側に発生した浸炭層の厚さを測定し、
前記金属管の外面側に発生した浸炭層の厚さの測定により、前記両探触子の間隔を前記初期間隔より広くし、
前記金属管の内面で反射して外面で再反射し、前記金属管の外面側の浸炭層と,該浸炭層より前記金属管の内面側の非浸炭層との界面で再々反射した前記内面反射パルスの長路程側の隣接反射パルスを受信したときに、前記長路程側の隣接反射パルスの受信レベルが最も大きくなる路程長を外面側浸炭層反射パルスの路程長として求め、
前記外面側浸炭層反射パルスの路程長と前記内面反射パルスの路程長との差の1/2に超音波の屈折角の余弦関数値の係数を乗算して前記金属管の外面側に発生した浸炭層の厚さを測定する
ことを特徴とする浸炭層の厚さの測定方法。
In the method for measuring the thickness of the carburized layer, which measures the thickness of the carburized layer generated on the inner surface side and outer surface side of the metal tube to which heat is applied, such as the heating furnace and the piping of the reaction tower,
A transmission side probe and a reception side probe for ultrasonic oblique flaw detection tests are provided at intervals on the outer surface of the metal tube,
The ultrasonic reception level and path length of the ultrasonic wave emitted from the transmitting probe and reflected by the tube surface of the metal tube and received as a reflected pulse by the receiving probe by the ultrasonic V transmission test. Measure the length
Among the reflected pulses received by the receiving side probe, the inner surface is set with the interval between the probes as an initial interval so that the reception level of the largest inner surface reflected pulse reflected by the inner surface of the metal tube is maximized. After determining the path length of the reflected pulse,
By measuring the thickness of the carburized layer generated on the inner surface side of the metal tube, the distance between the probes is made smaller than the initial distance,
When the adjacent reflected pulse on the short path side of the inner surface reflected pulse reflected at the interface between the carburized layer on the inner surface side of the metal tube and the non-carburized layer on the outer surface side of the metal tube from the carburized layer, Obtain the path length at which the reception level of the adjacent reflected pulse on the short path side is the largest as the path length of the inner side carburized layer reflected pulse,
Generated on the inner surface side of the metal tube by multiplying 1/2 of the difference between the path length of the inner surface reflection pulse and the path length of the inner surface side carburized layer reflection pulse by the coefficient of the cosine function value of the ultrasonic refraction angle. Measure the thickness of the carburized layer,
By measuring the thickness of the carburized layer generated on the outer surface side of the metal tube, the distance between the probes is wider than the initial distance,
Reflecting on the inner surface of the metal tube and re-reflecting on the outer surface, the inner surface reflection reflected again on the interface between the carburized layer on the outer surface side of the metal tube and the non-carburized layer on the inner surface side of the metal tube from the carburized layer. When the adjacent reflected pulse on the long path side of the pulse is received, the path length at which the reception level of the adjacent reflected pulse on the long path side becomes the largest is obtained as the path length of the outer surface side carburized layer reflected pulse,
Generated on the outer surface side of the metal tube by multiplying 1/2 of the difference between the path length of the outer surface side carburized layer reflection pulse and the path length of the inner surface reflection pulse by the coefficient of the cosine function value of the ultrasonic refraction angle. A method for measuring the thickness of a carburized layer, characterized by measuring the thickness of the carburized layer.
JP12682099A 1999-05-07 1999-05-07 Method for detecting carburized layer and measuring thickness thereof Expired - Lifetime JP4363699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12682099A JP4363699B2 (en) 1999-05-07 1999-05-07 Method for detecting carburized layer and measuring thickness thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12682099A JP4363699B2 (en) 1999-05-07 1999-05-07 Method for detecting carburized layer and measuring thickness thereof

Publications (2)

Publication Number Publication Date
JP2000321041A JP2000321041A (en) 2000-11-24
JP4363699B2 true JP4363699B2 (en) 2009-11-11

Family

ID=14944764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12682099A Expired - Lifetime JP4363699B2 (en) 1999-05-07 1999-05-07 Method for detecting carburized layer and measuring thickness thereof

Country Status (1)

Country Link
JP (1) JP4363699B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5132886B2 (en) * 2006-01-16 2013-01-30 非破壊検査株式会社 Boundary surface position detection method and boundary surface position detection device
JP5149604B2 (en) * 2007-12-06 2013-02-20 住友金属テクノロジー株式会社 Method and apparatus for measuring carburization depth of steel material
JP5083271B2 (en) * 2009-04-28 2012-11-28 株式会社Ihi Carburizing depth measuring method and carburizing depth measuring device
JP6124191B1 (en) * 2016-08-19 2017-05-10 有限会社Ns検査 Corrosion evaluation method
EP3470775B1 (en) * 2017-10-11 2022-12-14 Flexim Flexible Industriemesstechnik GmbH Method and measuring assembly for measuring layer thickness and sound wave speed in single-layered or multilayered samples by means of ultrasound without a priori knowledge of the other variable
CN108507504A (en) * 2018-04-13 2018-09-07 徐州工程学院 The device and its application method of friction welding (FW) weldment excircle dimension are measured for ultrasonic method
JP2020106277A (en) * 2018-12-26 2020-07-09 株式会社ディスコ Thickness measuring device, and processing device equipped with thickness measuring device

Also Published As

Publication number Publication date
JP2000321041A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
US6968727B2 (en) Calibration method and device for long range guided wave inspection of piping
US7474092B1 (en) Method and device for long-range guided-wave inspection of fire side of waterwall tubes in boilers
US9810666B2 (en) Device and method for nondestructive inspection of tubular products, especially on site
US8091427B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
CN109307568B (en) Nondestructive testing method for welding residual stress and probe adopting same
CN105572226A (en) Measurement method for depositing amount of oxide skin inside boiler pipe
JP4363699B2 (en) Method for detecting carburized layer and measuring thickness thereof
JP2011027571A (en) Piping thickness reduction inspection apparatus and piping thickness reduction inspection method
US20150285768A1 (en) Apparatus and method for inspection of tubes in a boiler
CN117890472A (en) Online rapid detection device and detection method for high-temperature pipeline
JP5297791B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
EP0554958B1 (en) Apparatus and method for pipe or tube inspection
CN106442719A (en) Pipeline bended waveguide detection method and system based on spiral comb type transducer
Gori et al. Guided waves by EMAT transducers for rapid defect location on heat exchanger and boiler tubes
JP5431905B2 (en) Nondestructive inspection method and nondestructive inspection apparatus using guide wave
JP2010048817A (en) Nondestructive inspection device and method using guide wave
US3186216A (en) Method and apparatus for generating and receiving ultrasonic helical waves
JP6458167B2 (en) Pipe thickness measuring apparatus and method using ultrasonic waves
Alleyne et al. An introduction to long-range screening using guided waves
Berndt NON-DESTRUCTIVE TESTING METHODS FOR GEOTHERMAL PIPING.
Mihovski et al. Application of ultrasonic methods for manufacture of pipelines and maintenance
Bertoncini et al. 3D characterization of defects in Guided Wave monitoring of pipework using a magnetostrictive sensor
JP2011058980A (en) Method and device for measuring carburized layer of tubular body
Park et al. Application of ultrasonic guided wave to heat exchanger tubes inspection
Macmillan et al. A new approach to boiler, pipeline and turbine inspections

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140828

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term