JP6124191B1 - Corrosion evaluation method - Google Patents

Corrosion evaluation method Download PDF

Info

Publication number
JP6124191B1
JP6124191B1 JP2016161372A JP2016161372A JP6124191B1 JP 6124191 B1 JP6124191 B1 JP 6124191B1 JP 2016161372 A JP2016161372 A JP 2016161372A JP 2016161372 A JP2016161372 A JP 2016161372A JP 6124191 B1 JP6124191 B1 JP 6124191B1
Authority
JP
Japan
Prior art keywords
wave
waveform
received
corroded
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016161372A
Other languages
Japanese (ja)
Other versions
JP2018028509A (en
Inventor
久仁彦 新美
久仁彦 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSKENSA CO.,LTD
Original Assignee
NSKENSA CO.,LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSKENSA CO.,LTD filed Critical NSKENSA CO.,LTD
Priority to JP2016161372A priority Critical patent/JP6124191B1/en
Application granted granted Critical
Publication of JP6124191B1 publication Critical patent/JP6124191B1/en
Publication of JP2018028509A publication Critical patent/JP2018028509A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】腐食部で反射した波形部分のみを特定し、それを評価することができる腐食部評価方法を提供する。【解決手段】発信部2を金属管60の表面上で動かして腐食部5と発信部2との離間距離を変更すると、腐食部5で反射した超音波の波形部分AのみがX軸に沿って左右方向に移動すると共に、受信波に含まれるノイズ波形部分Bの強度のみがY軸に沿って上下方向に変化するため、腐食部5で反射した縦波表面波の波形部分Aと、ノイズ波形部分Bとを分離して、波形部分Aについて詳細に評価することが可能となる。【選択図】図2The present invention provides a corroded portion evaluation method capable of identifying only a corrugated portion reflected by a corroded portion and evaluating the corrugated portion. When a transmitter 2 is moved on the surface of a metal tube 60 to change the distance between the corroded portion 5 and the transmitter 2, only the waveform portion A of the ultrasonic wave reflected by the corroded portion 5 is along the X axis. Since only the intensity of the noise waveform portion B included in the received wave changes in the vertical direction along the Y axis, the waveform portion A of the longitudinal wave surface wave reflected by the corroded portion 5 and noise The waveform portion B can be separated and the waveform portion A can be evaluated in detail. [Selection] Figure 2

Description

本発明は、金属部材に含まれる腐食部を、超音波を用いて評価する腐食部評価方法に関する。   The present invention relates to a corroded portion evaluation method for evaluating a corroded portion included in a metal member using ultrasonic waves.

従来から、超音波を利用して、金属部材に含まれる腐食部を特定する方法はよく知られている。例えば、特許文献1には、SH波を用いて金属筒体の欠陥を評価する構成が開示されている。また、特許文献2には、SH波又はSV波を用いて支柱路面境界部の調査を行う構成が開示されている。いずれも、腐食部のエコーに基づいて評価する手法である。   Conventionally, a method for identifying a corroded portion contained in a metal member using ultrasonic waves is well known. For example, Patent Document 1 discloses a configuration for evaluating defects of a metal cylinder using SH waves. Patent Document 2 discloses a configuration for investigating a strut road surface boundary using an SH wave or an SV wave. Both are methods for evaluation based on echoes of corroded portions.

特開2004−361321号公報JP 2004-361321 A 実用新案登録第3198840号公報Utility Model Registration No. 3198840

しかしながら、表示部に表示された受信波の波形図には、ノイズが含まれており、ノイズを除去する手法が確立していないためノイズを含む状態で波形図を評価しているのが現状である。このため、評価精度を高めるには限界が生じており、かかる問題を解決することのできる手法が提案されることが望まれている。例えば、特許文献1,2にも、かかる課題の対処法は開示されていない。   However, the waveform diagram of the received wave displayed on the display unit contains noise, and since no method for removing the noise has been established, the waveform diagram is currently evaluated in a state including noise. is there. For this reason, there is a limit to improving the evaluation accuracy, and it is desired that a method capable of solving such a problem is proposed. For example, Patent Documents 1 and 2 do not disclose a method for dealing with such a problem.

そこで本発明は、表示部で表示された受信波の波形図において、腐食部で反射した波形部分のみを特定し、それを評価することができる腐食部評価方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a corroded portion evaluation method that can specify only a waveform portion reflected by a corroded portion and evaluate it in a waveform diagram of a received wave displayed on a display portion.

本発明は、発信部と受信部とを用いた2探触子で、柱である金属部材に含まれる腐食部を評価するために、前記金属部材の表面に配置した発信部から超音波を発信し、前記腐食部で反射した前記超音波を、前記金属部材の表面に配置した受信部で受信し、受信した受信波の波形図を、所定のエコー表示部で、時間軸と受信波の強度を示す強度軸とに基づいて表示する腐食部評価方法であって、前記発信部及び前記受信部のうち少なくともいずれか一方と前記腐食部との離間距離を変化させながら、時間経過に伴う前記受信波の波形図の変化を前記エコー表示部で動的に表示するものであり、前記発信部及び前記受信部のうち少なくともいずれか一方と前記腐食部との離間距離を変化させながら、前記受信波の波形図において、前記腐食部で反射した超音波の波形部分のみを前記時間軸に沿って移動させると共に、前記受信部が受信したノイズ波形部分の強度のみを、前記強度軸に沿って所定の周期で強度が増減する態様の変化をさせて該変化態様を表示させることで、前記腐食部で反射した超音波の波形部分と、前記ノイズ波形部分とを分離し、前記エコー表示部にあっては、前記時間軸を横軸とし、前記強度軸を縦軸とし、前記超音波が、1MHz以下の縦波表面波であり、前記波形図は、前記受信波の整流されていない、正波部分及び負波部分を共に有する交流波の波形図であることを特徴とする腐食部評価方法である。 The present invention is a two-probe using a transmitter and a receiver , and transmits ultrasonic waves from a transmitter disposed on the surface of the metal member in order to evaluate a corroded part included in the metal member as a pillar. Then, the ultrasonic wave reflected by the corroded part is received by a receiving part arranged on the surface of the metal member, and a waveform diagram of the received wave is received by a predetermined echo display part with a time axis and the intensity of the received wave. The corrosion part evaluation method for displaying based on the intensity axis indicating the reception, with the passage of time, while changing the separation distance between at least one of the transmission part and the reception part and the corrosion part A change in the waveform diagram of the wave is dynamically displayed on the echo display unit, and the received wave is changed while changing a separation distance between at least one of the transmission unit and the reception unit and the corrosion unit. In the waveform diagram of And moving only the waveform portion of the ultrasonic wave along the time axis, and changing only the intensity of the noise waveform portion received by the receiving unit in a manner in which the intensity increases or decreases in a predetermined cycle along the intensity axis. Then, by displaying the change mode, the waveform portion of the ultrasonic wave reflected from the corrosion portion and the noise waveform portion are separated, and the echo display portion has the time axis as a horizontal axis, The intensity axis is a vertical axis, and the ultrasonic wave is a longitudinal surface wave of 1 MHz or less, and the waveform diagram is an AC wave having both a positive wave part and a negative wave part that are not rectified of the received wave. It is a corroded part evaluation method characterized by being a waveform diagram .

ここで、上記構成にあっては、前記発信部及び前記受信部のうち少なくともいずれか一方と前記腐食部との離間距離を変化させながら、前記受信波の波形図において、前記腐食部で反射した超音波の波形部分のみを前記時間軸に沿って移動させることができる。   Here, in the configuration described above, the reflected wave is reflected by the corroded portion in the waveform diagram of the received wave while changing the distance between at least one of the transmitting portion and the receiving portion and the corroded portion. Only the waveform portion of the ultrasonic wave can be moved along the time axis.

このように、前記腐食部で反射した超音波の波形部分のみが前記時間軸に沿って移動することで、評価対象の波形部分とノイズ部分とを共に含む波形図から、腐食部で反射した超音波の波形部分のみを分離し、そしてその波形部分について詳細に評価することが可能となる。   In this way, only the waveform portion of the ultrasonic wave reflected by the corroded portion moves along the time axis, so that the waveform reflected from the corroded portion can be obtained from the waveform diagram including both the waveform portion to be evaluated and the noise portion. Only the waveform portion of the sound wave can be separated and the waveform portion can be evaluated in detail.

また、上記構成は、前記発信部及び前記受信部のうち少なくともいずれか一方と前記腐食部との離間距離を変化させながら、前記受信波の波形図において、前記受信部が受信したノイズ波形部分の強度のみを前記強度軸に沿って変化させることができる。   Further, in the above configuration, the noise waveform portion received by the receiving unit in the waveform diagram of the received wave is changed while changing the separation distance between at least one of the transmitting unit and the receiving unit and the corroded unit. Only the intensity can be varied along the intensity axis.

このように、前記受信部が受信したノイズ波形部分の強度のみが前記強度軸に沿って変化することで、評価対象の波形部分とノイズ部分とを共に含む波形図から、腐食部で反射した超音波の波形部分のみを分離し、そしてその波形部分について詳細に評価することが可能となる。   In this way, only the intensity of the noise waveform portion received by the receiving unit changes along the intensity axis, so that a waveform diagram that includes both the waveform portion to be evaluated and the noise portion is reflected from the corroded portion. Only the waveform portion of the sound wave can be separated and the waveform portion can be evaluated in detail.

なお、前記エコー表示部にあって、前記時間軸を横軸とし、前記強度軸を縦軸とする構成が望ましい。   In the echo display unit, it is desirable that the time axis is a horizontal axis and the intensity axis is a vertical axis.

かかる構成とすることにより、受信波の波形図を例えばXY座標で表示することが可能となる。   With this configuration, it is possible to display the waveform diagram of the received wave, for example, with XY coordinates.

また、前記超音波が、1MHz以下の縦波表面波であることが望ましい。   Moreover, it is desirable that the ultrasonic wave is a longitudinal surface wave of 1 MHz or less.

かかる構成とすることにより、拘束により生ずるノイズを低減することが可能となる。   With such a configuration, it is possible to reduce noise caused by restraint.

本発明の腐食部評価方法は、受信波のノイズ部分と腐食部を反射した超音波の波形部分とを分離して判別することができるため、精度の高い腐食部の評価が可能となる。   Since the corroded part evaluation method of the present invention can separate and discriminate the noise part of the received wave from the waveform part of the ultrasonic wave reflected from the corroded part, it is possible to evaluate the corroded part with high accuracy.

評価装置を示す説明図である。It is explanatory drawing which shows an evaluation apparatus. エコー表示部を示す説明図である。It is explanatory drawing which shows an echo display part.

本発明の腐食部評価方法を、信号柱、標識柱、又は照明柱等のような金属管(金属部材)60に適用した場合を例にして、添付図面に従って説明する。なお、以下の説明において、便宜上、前後左右及び上下方向を規定して説明する場合があるが、このことは、本発明が下記説明に記載された方向にのみ限定されて使用されることを示すものではない。   The case where the corroded portion evaluation method of the present invention is applied to a metal tube (metal member) 60 such as a signal column, a marker column, or an illumination column will be described with reference to the accompanying drawings. In the following description, for the sake of convenience, there may be cases where the front / rear / left / right and up / down directions are defined, which indicates that the present invention is limited to the directions described in the following description. It is not a thing.

前記金属管60に含まれる腐食部5を検知するために使用される評価装置1は、図1に示すように、1MHz以下の縦波表面波(超音波)を発信する発信部2と、該超音波を受信するセンサーとしての受信部3と、受信した受信波の波形図を表示する図2に示すエコー表示部41を具備する波形表示装置4とを備えている。   As shown in FIG. 1, the evaluation device 1 used for detecting the corroded portion 5 included in the metal tube 60 includes a transmitter 2 that transmits a longitudinal surface wave (ultrasonic wave) of 1 MHz or less, A receiving unit 3 as a sensor for receiving ultrasonic waves and a waveform display device 4 including an echo display unit 41 shown in FIG. 2 for displaying a waveform diagram of the received received wave are provided.

また、図2に示すように、前記エコー表示部41では、X軸(横軸)を時間軸とし、Y軸(縦軸)を受信波の強度を示す強度軸として、前記受信波の波形図が二次元表示される。なお、前記エコー表示部41では、受信した波形図を動画として表示することが可能であり、時間経過に伴う波形の変化を動的に把握することが可能となっている。   As shown in FIG. 2, the echo display unit 41 uses the X axis (horizontal axis) as the time axis and the Y axis (vertical axis) as the intensity axis indicating the intensity of the received wave. Is displayed in two dimensions. The echo display unit 41 can display the received waveform diagram as a moving image, and can dynamically grasp a change in the waveform with time.

次に、金属管60に含まれる腐食部5の検知手順について説明する。
まず、金属管60における表面の所要部位に発信部2を配置すると共に受信部3を配置する。そして、発信部2から縦波表面波を発信して受信部3で受信波を受信し、反射波を用いて腐食部5の位置を特定する。このとき受信された受信波の波形図は、エコー表示部41で確認することができる(図2(a)参照)。
Next, a procedure for detecting the corroded portion 5 included in the metal pipe 60 will be described.
First, the transmitter 2 and the receiver 3 are disposed at a required portion of the surface of the metal tube 60. And the longitudinal wave surface wave is transmitted from the transmission part 2, the reception wave is received by the reception part 3, and the position of the corrosion part 5 is specified using the reflected wave. The waveform diagram of the received wave received at this time can be confirmed on the echo display unit 41 (see FIG. 2A).

ここで、受信部3を金属管60の表面上で動かして腐食部5と受信部3との離間距離を変更すると、受信波の波形図において図2(b),(c)に示すように、腐食部5で反射した超音波の波形部分AのみがX軸に沿って左右方向に移動する。具体的には、受信部3を腐食部5に近づけると、図2(b)に示すように、波形部分Aは左方向に移動する。一方、受信部3を腐食部5から遠ざけると、図2(c)に示すように、波形部分Aは右方向に移動する。   Here, when the receiving unit 3 is moved on the surface of the metal tube 60 to change the separation distance between the corroded unit 5 and the receiving unit 3, as shown in FIGS. 2B and 2C in the waveform diagram of the received wave. Only the waveform portion A of the ultrasonic wave reflected by the corroded portion 5 moves in the left-right direction along the X axis. Specifically, when the receiving unit 3 is brought close to the corroded unit 5, the waveform portion A moves to the left as shown in FIG. On the other hand, when the receiving unit 3 is moved away from the corroded unit 5, the waveform portion A moves to the right as shown in FIG.

また、受信部3を金属管60の表面上で動かして腐食部5と受信部3との離間距離を変更すると、受信波に含まれるノイズ波形部分Bの強度のみがY軸に沿って上下方向に変化する。具体的には、受信部3を腐食部5に近づけたり遠ざけたりすると、図2(b),(c)に示すように、波形部分Bの強度が所定の周期で増減する。   Further, when the receiving unit 3 is moved on the surface of the metal tube 60 to change the separation distance between the corroded unit 5 and the receiving unit 3, only the intensity of the noise waveform portion B included in the received wave is vertically changed along the Y axis. To change. Specifically, when the receiving unit 3 is moved closer to or away from the corroded unit 5, the intensity of the waveform portion B increases or decreases at a predetermined cycle, as shown in FIGS.

このように、腐食部5で反射した超音波の波形部分AのみがX軸に沿って移動することで、腐食部5で反射した縦波表面波の波形部分Aと、ノイズ波形部分Bとを分離し、そして波形部分Aについて定量的に評価することが可能となる。   Thus, only the waveform portion A of the ultrasonic wave reflected by the corroded portion 5 moves along the X axis, so that the waveform portion A of the longitudinal surface wave reflected by the corroded portion 5 and the noise waveform portion B are obtained. It is possible to separate and evaluate the waveform portion A quantitatively.

また、同様に、受信部3が受信した受信波のノイズ波形部分Bの強度のみがY軸に沿って変化することで、腐食部5で反射した縦波表面波の波形部分Aと、ノイズ波形部分Bとを分離し、そして波形部分Aについて定量的に評価することが可能となる。   Similarly, only the intensity of the noise waveform portion B of the received wave received by the receiver 3 changes along the Y axis, so that the longitudinal wave surface wave waveform portion A reflected by the corroded portion 5 and the noise waveform Part B can be separated and the waveform part A can be evaluated quantitatively.

なお、エコー表示部41は、必ずしも動画表示機能を有している必要はなく、時間経過に伴う受信波の波形図の変化態様が所定の時間間隔をおいて動的に把握できる機能を有していればよい。一方、本発明は、静止画による波形図によって受信波を評価する手法とは相違する。   Note that the echo display unit 41 does not necessarily have a moving image display function, and has a function of dynamically grasping a change mode of a waveform diagram of a received wave with a lapse of time at a predetermined time interval. It only has to be. On the other hand, the present invention is different from a technique for evaluating a received wave by a waveform diagram based on a still image.

また、受信部3に代えて、発信部2の位置を変化させて腐食部5との離間距離を変更するようにしてもよい。また、発信部2及び受信部3の両方の位置を変化させて前記離間距離を変更するようにしてもよい。   Further, the distance from the corroded portion 5 may be changed by changing the position of the transmitting portion 2 instead of the receiving portion 3. Moreover, you may make it change the said separation distance by changing the position of both the transmission part 2 and the receiving part 3. FIG.

なお、縦波を使用した理由は、以下の通りである。第一に拘束ノイズの出方が少ない。第二に音速が最も早いため、反射等によるモード変換があり横波に変わったとしても最も早い反射波を見れば特定が可能となる。第三にエコー高さの変化が少なく安定している。例えば、センサーを測定面に押さえるときの押さえ方にばらつきが生じても、これに関わらずエコー高さの変化が少ない利点がある。したがって、センサーを移動させてもエコー高さが安定する。具体的には、一般的に高さの誤差が±2dB(約1.3〜0.8倍)となり、センサーを移動させながらエコーを観察できる。   The reason for using the longitudinal wave is as follows. First, there are few restraint noises. Secondly, since the sound speed is the fastest, even if there is a mode conversion due to reflection or the like and it changes to a transverse wave, it can be identified by looking at the fastest reflected wave. Third, there is little change in echo height and it is stable. For example, there is an advantage that there is little change in the echo height regardless of variations in how the sensor is pressed against the measurement surface. Therefore, the echo height is stable even if the sensor is moved. Specifically, the height error is generally ± 2 dB (about 1.3 to 0.8 times), and the echo can be observed while moving the sensor.

また、上記送信周波数(1MHz)の範囲とした利点として、第一にノイズの低減ができる、第二に反射指向性の低減ができるという点が挙げられる。   Further, as an advantage of the range of the transmission frequency (1 MHz), firstly, noise can be reduced, and secondly, reflection directivity can be reduced.

また、上記のようにいわゆる2探触子を使用した利点として、第一に送信パルスの影響がない、第二に最もエコーが良く帰ってくる位置は送信位置とは限らず、前記の様に方向性不明である場合にも対応でき、多方向からの探傷が可能となる点が挙げられる。   Also, as described above, the advantage of using the so-called two probes is that, first, there is no influence of the transmission pulse, and second, the position where the echo returns most often is not necessarily the transmission position. It is possible to cope with the case where the directionality is unknown, and it is possible to perform flaw detection from multiple directions.

また、上記実施例は、測定支柱透過パルスをエコー高さの基準としている。この利点としては、第一に表面状態の影響を受けない、第二に同一地点の為、温度変化の影響を受けない、第三に曲面の影響を受けないという点が挙げられる。また、上記構成は、感度調整として最も適している。   Moreover, the said Example makes the measurement support | pillar transmission pulse the reference | standard of echo height. Advantages include firstly not being affected by the surface condition, secondly being not affected by temperature changes because of the same point, and thirdly not being affected by curved surfaces. The above configuration is most suitable for sensitivity adjustment.

また、上記構成は超音波のエコー高さが評価対象となるが、高さはあくまでも比であり、所定のエコー高さ(基準)に対して「高い」又は「低い」の評価を行うのが望ましい。一般的には、いわゆる底面エコー、あるいは基準傷(標準試験片)等が基準となりうるが、本実施例では、底面エコーは出現しない場合が多く、基準傷では表面状態、温度、又は曲率の影響が大きすぎて感度補正が非常に難しくなるおそれがある。そこで、透過波を採用することにより、個別に測定をすれば基準傷の場合の不利な点を問題解決することができる。なお、腐食部5の表面は一般に凸凹があり、複数の反射波で表わされる為、エコー高さのみでなく面積を考慮して評価することもできる。   In the above configuration, the echo height of the ultrasonic wave is an object to be evaluated, but the height is only a ratio, and “high” or “low” is evaluated with respect to a predetermined echo height (reference). desirable. In general, a so-called bottom surface echo or a reference scratch (standard test piece) can be used as a reference, but in this embodiment, the bottom surface echo often does not appear, and the effect of the surface condition, temperature, or curvature is the reference scratch. May be too large to make sensitivity correction very difficult. Therefore, by adopting the transmitted wave, the disadvantages in the case of the reference flaw can be solved if measurement is performed individually. In addition, since the surface of the corroded part 5 generally has unevenness and is represented by a plurality of reflected waves, it can be evaluated in consideration of not only the echo height but also the area.

2 発信部
3 受信部
5 腐食部
41 エコー表示部
60 金属管(金属部材)
2 Transmitter 3 Receiver 5 Corrosion 41 Echo Display 60 Metal Tube (Metal Member)

Claims (1)

発信部と受信部とを用いた2探触子で、柱である金属部材に含まれる腐食部を評価するために、前記金属部材の表面に配置した発信部から超音波を発信し、前記腐食部で反射した前記超音波を、前記金属部材の表面に配置した受信部で受信し、受信した受信波の波形図を、所定のエコー表示部で、時間軸と受信波の強度を示す強度軸とに基づいて表示する腐食部評価方法であって、
前記発信部及び前記受信部のうち少なくともいずれか一方と前記腐食部との離間距離を変化させながら、時間経過に伴う前記受信波の波形図の変化を前記エコー表示部で動的に表示するものであり、
前記発信部及び前記受信部のうち少なくともいずれか一方と前記腐食部との離間距離を変化させながら、前記受信波の波形図において、前記腐食部で反射した超音波の波形部分のみを前記時間軸に沿って移動させると共に、
前記受信部が受信したノイズ波形部分の強度のみを、前記強度軸に沿って所定の周期で強度が増減する態様の変化をさせて該変化態様を表示させることで、前記腐食部で反射した超音波の波形部分と、前記ノイズ波形部分とを分離し、
前記エコー表示部にあっては、前記時間軸を横軸とし、前記強度軸を縦軸とし、
前記超音波が、1MHz以下の縦波表面波であり、
前記波形図は、前記受信波の整流されていない、正波部分及び負波部分を共に有する交流波の波形図である
ことを特徴とする腐食部評価方法。
In order to evaluate the corroded part included in the metal member that is a pillar, the ultrasonic wave is transmitted from the transmitter disposed on the surface of the metal member with the two probes using the transmitter and the receiver. The ultrasonic wave reflected by the part is received by the receiving part arranged on the surface of the metal member, and a waveform diagram of the received received wave is displayed on the predetermined echo display part on the time axis and the intensity axis indicating the intensity of the received wave. Corrosion part evaluation method to display based on
Those wherein while transmitting unit and the at least one of said receiving portion to change the distance between the corrosion portion, dynamically displaying the change in the waveform diagram of the received wave with time in the echo display unit And
While changing the separation distance between at least one of the transmitter and the receiver and the corroded portion, in the waveform diagram of the received wave, only the waveform portion of the ultrasonic wave reflected by the corroded portion is the time axis. And move along
Only the intensity of the noise waveform portion received by the receiving unit is changed in a mode in which the intensity increases or decreases in a predetermined cycle along the intensity axis, and the change mode is displayed, thereby super Separate the waveform portion of the sound wave from the noise waveform portion,
In the echo display unit, the time axis is a horizontal axis, the intensity axis is a vertical axis,
The ultrasonic wave is a longitudinal surface wave of 1 MHz or less,
The corroded portion evaluation method , wherein the waveform diagram is a waveform diagram of an AC wave having both a positive wave portion and a negative wave portion, in which the received wave is not rectified .
JP2016161372A 2016-08-19 2016-08-19 Corrosion evaluation method Active JP6124191B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016161372A JP6124191B1 (en) 2016-08-19 2016-08-19 Corrosion evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016161372A JP6124191B1 (en) 2016-08-19 2016-08-19 Corrosion evaluation method

Publications (2)

Publication Number Publication Date
JP6124191B1 true JP6124191B1 (en) 2017-05-10
JP2018028509A JP2018028509A (en) 2018-02-22

Family

ID=58704685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016161372A Active JP6124191B1 (en) 2016-08-19 2016-08-19 Corrosion evaluation method

Country Status (1)

Country Link
JP (1) JP6124191B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644445B2 (en) * 2018-09-03 2023-05-09 Kunihiko Niimi Method for evaluating corroded part

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312790A (en) * 1992-05-06 1993-11-22 Mitsubishi Heavy Ind Ltd Detecting apparatus of exfoliation of coating film
JP2000206097A (en) * 1999-01-11 2000-07-28 Kanto Special Steel Works Ltd Method and device for ultrasonic flaw detection of flaw on surface of sample traveling at fixed speed
JP2000321041A (en) * 1999-05-07 2000-11-24 Nichizou Tec:Kk Method for detecting carburizing layer and method for its thickness
JP2001041937A (en) * 1999-08-02 2001-02-16 Furukawa Electric Co Ltd:The Method for detecting defect of pressure bonding part of aerial wire
JP2007139684A (en) * 2005-11-22 2007-06-07 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method of internally finned pipe and ultrasonic flaw detection device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312790A (en) * 1992-05-06 1993-11-22 Mitsubishi Heavy Ind Ltd Detecting apparatus of exfoliation of coating film
JP2000206097A (en) * 1999-01-11 2000-07-28 Kanto Special Steel Works Ltd Method and device for ultrasonic flaw detection of flaw on surface of sample traveling at fixed speed
JP2000321041A (en) * 1999-05-07 2000-11-24 Nichizou Tec:Kk Method for detecting carburizing layer and method for its thickness
JP2001041937A (en) * 1999-08-02 2001-02-16 Furukawa Electric Co Ltd:The Method for detecting defect of pressure bonding part of aerial wire
JP2007139684A (en) * 2005-11-22 2007-06-07 Sumitomo Metal Ind Ltd Ultrasonic flaw detection method of internally finned pipe and ultrasonic flaw detection device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644445B2 (en) * 2018-09-03 2023-05-09 Kunihiko Niimi Method for evaluating corroded part

Also Published As

Publication number Publication date
JP2018028509A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
CN105699492B (en) A kind of ultrasonic imaging method for weld seam detection
US7779693B2 (en) Method for nondestructive testing of pipes for surface flaws
US9423380B2 (en) Ultrasonic inspection method, ultrasonic test method and ultrasonic inspection apparatus
Ma et al. The reflection of guided waves from simple dents in pipes
JP2019197007A (en) Determination device, determination program, and determination method of ultrasonic flaw detection
US10222352B2 (en) Method and device for improving the SAFT analysis when measuring irregularities
CN102590341B (en) Method for detecting sonic time and tracking phase wave band of concrete pile shaft by ultrasonic transmission method
CN109196350A (en) Pass through the method for the defects of ultrasound detection material
JP5815921B2 (en) Defect evaluation apparatus for underground structure, defect evaluation method for underground structure, and defect evaluation program for underground structure
JP4591850B2 (en) Ultrasonic inspection method and apparatus
WO2020250378A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JP6124191B1 (en) Corrosion evaluation method
JP6385017B1 (en) Corrosion evaluation method
JP2019109107A (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, manufacturing equipment row of steel material, manufacturing method of steel material, and quality assurance of steel material
JP2016205858A (en) Defect inspection device and control method thereof, program, and storage medium
JP4738243B2 (en) Ultrasonic flaw detection system
JP2005300274A (en) Automatic ultrasonic flaw detection apparatus and method of thick-wall structure
JP2005274444A (en) Ultrasonic flaw detection image processor, and processing method therefor
US11644445B2 (en) Method for evaluating corroded part
CN209821382U (en) Dynamic plane height measurement sensor and height measurement system
CN106018560A (en) Ultrasonic detector for crack propagation of USV (unmanned surface vehicle) body
JP2005070017A (en) Ultrasonic flaw detection method using vertical and horizontal diffracted waves and apparatus therefor
JP3782410B2 (en) Ultrasonic flaw detection method and apparatus using Rayleigh wave
JP2005345138A (en) Method of ultrasound flaw detection and method of measuring thickness of material quality changed part
JP7139061B2 (en) Buried Object Exploration Device and Sound Speed Estimation Method for Buried Object Exploration

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170324

R150 Certificate of patent or registration of utility model

Ref document number: 6124191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350