JP3782410B2 - Ultrasonic flaw detection method and apparatus using Rayleigh wave - Google Patents

Ultrasonic flaw detection method and apparatus using Rayleigh wave Download PDF

Info

Publication number
JP3782410B2
JP3782410B2 JP2003304012A JP2003304012A JP3782410B2 JP 3782410 B2 JP3782410 B2 JP 3782410B2 JP 2003304012 A JP2003304012 A JP 2003304012A JP 2003304012 A JP2003304012 A JP 2003304012A JP 3782410 B2 JP3782410 B2 JP 3782410B2
Authority
JP
Japan
Prior art keywords
wave
ultrasonic
probe
defect
radiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003304012A
Other languages
Japanese (ja)
Other versions
JP2005070011A (en
Inventor
甫 羽田野
秀秋 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2003304012A priority Critical patent/JP3782410B2/en
Publication of JP2005070011A publication Critical patent/JP2005070011A/en
Application granted granted Critical
Publication of JP3782410B2 publication Critical patent/JP3782410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique

Description

本発明は、対象物の外部から超音波を入射し、その反射波や透過波、あるいは回折波により対象物を破壊することなく内部の欠陥や物性的特性を調べる超音波探傷方法及びその装置に関する。   The present invention relates to an ultrasonic flaw detection method and an apparatus for inspecting internal defects and physical properties without destroying the object by reflected waves, transmitted waves, or diffracted waves from the outside of the object. .

最近、種々の装置や設備の安全性が求められている中で、事故の原因となりかねないきずを非破壊で早く正確に発見することが重要となってきている。非破壊検査法は対象物を破壊することなくきずや物性的特性を調べる方法であり、非破壊検査法の一種である超音波探傷法は、対象物の外部から超音波を入射し、その反射波や透過波、あるいは回折波を受信し分析することにより内部を調べるものである。   Recently, safety of various devices and facilities has been demanded, and it has become important to quickly and accurately find flaws that may cause accidents. The nondestructive inspection method is a method for examining flaws and physical properties without destroying the object.The ultrasonic flaw detection method, which is a type of nondestructive inspection method, applies ultrasonic waves from the outside of the object and reflects the reflection. The interior is examined by receiving and analyzing waves, transmitted waves, or diffracted waves.

従来の超音波探傷法は、きずの存在をある程度敏感に検出できたが、きずの形状や大きさに関する情報を得ることは難しかった。そこで、きずの寸法をより精確に測定し得る超音波探傷法としてTOFD(Time of Flight Diffraction)法が期待されている。TOFD法では、一対の送波用の超音波探触子と受波用の超音波探触子を、対象物の表面に一定距離を隔てて対向して配置し、送波用探触子から対象物中に超音波を放射する。対象物の表面を直接伝わる波(ラテラル波)、そして対象物の底面から反射された底面反射波とともに、対象物中にきずが存在する場合にきずの端部に入射した超音波によって生じる回折波を受波用探触子で受信し、これらの波の伝搬時間を基にきずの位置や寸法を測定しようとするものである。   Conventional ultrasonic flaw detection methods can detect the presence of flaws with some sensitivity, but it has been difficult to obtain information on the shape and size of flaws. Therefore, a TOFD (Time of Flight Diffraction) method is expected as an ultrasonic flaw detection method capable of measuring the size of a flaw more accurately. In the TOFD method, a pair of an ultrasonic probe for transmission and an ultrasonic probe for reception are arranged opposite to each other with a certain distance from the surface of an object, and the transmission probe is used. Ultrasound is emitted into the object. A wave that travels directly on the surface of the object (lateral wave), and a bottom surface reflected wave that is reflected from the bottom surface of the object, as well as a diffracted wave that is generated by the ultrasonic waves that enter the edge of the flaw when a flaw exists in the object Is received by a receiving probe, and the position and size of the flaw are to be measured based on the propagation time of these waves.

従来の超音波探傷試験におけるきずの寸法測定には、デシベルドロップ法、評価レベル法、DGS法などが広く用いられてきた。これらの手法は、探触子の移動距離やエコー高さに基づいた評価を行なうため、探触子のビームピロフィール、走査ピッチ、あるいは欠陥の傾き角度などによって、測定精度が影響を受けることを避け得なかった。これに対し上記TOFD法は、比較的高精度の測定が可能な伝搬時間を利用するため、きず寸法測定の精度の向上を期待できることになる。   A decibel drop method, an evaluation level method, a DGS method, and the like have been widely used for measuring the dimensions of flaws in conventional ultrasonic flaw detection tests. Since these methods perform evaluation based on the distance traveled by the probe and the echo height, the measurement accuracy is affected by the probe's beam profile, scan pitch, or tilt angle of the defect. It was inevitable. On the other hand, since the TOFD method uses a propagation time capable of relatively high accuracy measurement, it can be expected to improve the accuracy of flaw dimension measurement.

図6は、TOFD法における種々の波の伝搬経路の概要を示している。測定対象物30の表面に一定距離を隔てて一対の送波用探触子10と受波用探触子20とを配置し、その間に、高さDのスリット状の垂直なきず31が存在する場合を想定する。このとき受波用の探触子20によって、まず対象物30の表面を直接伝わるラテラル波LTが受信され、続いてきずの上端31a(超音波探触子10,20を配置した表面に近い側のきずの端部)からの上端回折波LUそしてきずの下端31b(超音波探触子10,20を配置した表面に遠い側のきずの端部)からの下端回折波LLが受信される。各々の信号の受信時刻に基づいて、きず31の上端31aの位置Z(表面からの距離)及び下端31bの位置[Z+D](表面からの距離)が求められる。ここで説明を簡略化するため例えばきず31が送波用探触子10と受波用探触子20の間の中央にある場合を想定すると、各探触子と傷との間の表面に沿った距離をそれぞれX、YとしてX=Y(Sとする)であるから、以下の数1、2の式が得られる。   FIG. 6 shows an outline of various wave propagation paths in the TOFD method. A pair of transmitting probe 10 and receiving probe 20 are arranged on the surface of the measurement object 30 at a predetermined distance, and a slit-shaped vertical flaw 31 having a height D exists between them. Assume that you want to. At this time, the lateral wave LT transmitted directly through the surface of the object 30 is first received by the wave receiving probe 20, and the upper end 31a (the side closer to the surface on which the ultrasonic probes 10 and 20 are arranged) is not continuously received. The upper end diffracted wave LU from the end of the flaw and the lower end diffracted wave LL from the lower end 31b of the flaw (the end of the flaw far from the surface on which the ultrasonic probes 10 and 20 are arranged) are received. Based on the reception time of each signal, the position Z (distance from the surface) of the upper end 31a of the flaw 31 and the position [Z + D] (distance from the surface) of the lower end 31b are obtained. Here, for the sake of simplicity, for example, assuming that the flaw 31 is in the center between the transmitting probe 10 and the receiving probe 20, the surface between each probe and the flaw is assumed. Since the distances along the line are X and Y, and X = Y (assuming S), the following equations 1 and 2 are obtained.

Figure 0003782410
Figure 0003782410

Figure 0003782410
Figure 0003782410

ただし、式中、TluとTllは各々、上端回折波と下端回折波について、送波用探触子から超音波として放射されきず端部で回折した後、回折波として受波用探触子に至るまでの伝搬時間、Vlは対象物における縦波の伝搬速度である。これらの数1,2の式から、きずの高さDは例えば次式によって推定される。   However, in the equation, Tlu and Tll are respectively diffracted at the end of the upper end diffracted wave and the lower end diffracted wave as ultrasonic waves from the transmitting probe, and then diffracted as a diffracted wave to the receiving probe. Vl is the propagation speed of the longitudinal wave in the object. From these equations 1 and 2, the height D of the flaw is estimated by the following equation, for example.

Figure 0003782410
Figure 0003782410

従って、DがZに比べて十分小さい場合(D≪Z)には、きずの高さDは、下記数4の式で近似的に与えられる。   Therefore, when D is sufficiently smaller than Z (D << Z), the height D of the flaw is approximately given by the following equation (4).

Figure 0003782410
Figure 0003782410

ただし、式中、θは回折波が受波用探触子に入射する際の平均的な入射角である。このとき上端回折波と下端回折波について、送波用探触子から超音波として放射され、回折波として受波用探触子に至るまでの伝搬時間の差は、上記数4の式を変形して次式のようになる。したがって検出される時間差は、きずの高さに起因している(例えば非特許文献1)。   In the equation, θ is an average incident angle when the diffracted wave is incident on the receiving probe. At this time, the difference in propagation time between the upper end diffracted wave and the lower end diffracted wave is radiated as an ultrasonic wave from the transmitting probe and reaches the receiving probe as a diffracted wave is transformed from the above equation (4). Then, the following formula is obtained. Therefore, the detected time difference is caused by the height of the flaw (for example, Non-Patent Document 1).

Figure 0003782410
Figure 0003782410
高橋 雅和著、「超音波斜角探傷法の研究」、東京理科大学博士論文(2002年9月)Masakazu Takahashi, “Study on Ultrasonic Bevel Inspection”, Tokyo University of Science Doctoral Dissertation (September 2002)

上記のようにTOFD法では、例えば数3式ないし数4式で示されるように、きずの上端回折波と下端回折波の伝搬時間差に基づいてきずの位置と寸法を測定しようとするものである。しかしきずの高さDが小さくなると例えば数5式で示されるように、上端回折波と下端回折波の伝搬時間の差、つまりTll−Tluが小さくなる。その結果、上端回折波と下端回折波の受波信号が時間的に重なるようになり、両者を判別して伝搬時間の差に基づいてきずの寸法Dを推定するのが困難になるという問題があった。このため非特許文献1に記載されているように、例えば5MHzの超音波による鉄鋼材料を対象としたTOFD法では一般に、探傷条件にもよるが概ね3mmがきずの高さの測定の下限寸法とされており、これより小さなきずの寸法測定は困難な状況にあった。また従来のTOFD法では、きずの上端と下端の位置が仮に推定できたとしても、きずの形状や状態の評価を行うための情報を得ることは困難であった。   As described above, in the TOFD method, as shown in, for example, Equation 3 to Equation 4, an attempt is made to measure the position and size of the defect based on the propagation time difference between the upper end diffracted wave and the lower end diffracted wave. . However, when the height D of the flaw is reduced, for example, as shown in Formula 5, the difference between the propagation times of the upper end diffracted wave and the lower end diffracted wave, that is, Tll-Tlu is reduced. As a result, the received signals of the upper end diffracted wave and the lower end diffracted wave overlap with each other in time, and it is difficult to estimate the dimension D that is not based on the difference in propagation time. there were. For this reason, as described in Non-Patent Document 1, for example, in the TOFD method for steel materials using ultrasonic waves of 5 MHz, generally, although it depends on the flaw detection conditions, approximately 3 mm is a lower limit dimension for measuring the height of a flaw. Therefore, it was difficult to measure the size of a flaw smaller than this. Further, in the conventional TOFD method, even if the positions of the upper end and the lower end of the flaw can be estimated, it is difficult to obtain information for evaluating the shape and state of the flaw.

本発明は、上記事情を背景としてなされたものであり、レーリー波を利用することでこれらの問題を解決してより微小なきずなどの欠陥の寸法測定を可能にし、併せて欠陥の評価も行うことを可能にする超音波探傷方法およびその装置を提供しようとするものである。   The present invention has been made against the background of the above circumstances, and by using the Rayleigh wave, it is possible to measure these defects by solving these problems and to evaluate the defects at the same time. It is an object of the present invention to provide an ultrasonic flaw detection method and an apparatus for the same.

以上説明したように、本発明のレーリー波を用いた超音波探傷方法のうち、請求項1記載の発明は、対となる送波用の超音波探触子と受波用の超音波探触子を、対象物の一つの表面に一定距離を隔てて配置し、前記送波用探触子から対象物中に超音波を放射し、対象物中に欠陥が存在する場合に欠陥の端部に入射した超音波によって生じる回折波を受波用探触子で受信することによって超音波探傷を行う超音波探傷方法において、
前記受波用超音波探触子で受波した超音波のうちから、前記欠陥の一端に入射した超音波の一部がモード変換されてレーリー表面波として欠陥の内表面に沿って伝搬し、欠陥の端部においてこのレーリー表面波の一部が再びモード変換されることによって対象物中に再放射された超音波を検出し、その検出信号に基づいて欠陥の評価を行うことを特徴とする。
As described above, of the ultrasonic flaw detection methods using Rayleigh waves according to the present invention, the invention according to claim 1 is a pair of ultrasonic probe for transmitting wave and ultrasonic probe for receiving wave. When a child is placed on one surface of the target object at a certain distance, an ultrasonic wave is radiated from the transmitting probe into the target object, and a defect exists in the target object, the end of the defect In the ultrasonic flaw detection method of performing ultrasonic flaw detection by receiving a diffracted wave generated by ultrasonic waves incident on the wave receiving probe,
Of the ultrasonic waves received by the receiving ultrasonic probe, a part of the ultrasonic waves incident on one end of the defect is mode-converted and propagated along the inner surface of the defect as a Rayleigh surface wave, A part of this Rayleigh surface wave is mode-converted again at the edge of the defect to detect ultrasonic waves re-radiated into the object, and the defect is evaluated based on the detection signal. .

請求項2記載のレーリー波を用いた超音波探傷方法は、請求項1記載の発明において、再放射された前記超音波を欠陥の少なくとも一つの端部で生じる回折波とともに検出し、再放射された前記超音波と前記回折波とが、送波用探触子から超音波として放射されて受波用探触子へ至る伝搬時間に基づいて、前記欠陥の内表面に添った寸法を推定することを特徴とする。   The ultrasonic flaw detection method using the Rayleigh wave according to claim 2 is the method according to claim 1, wherein the reradiated ultrasonic wave is detected together with the diffracted wave generated at at least one end of the defect, and reradiated. Further, the size along the inner surface of the defect is estimated based on the propagation time between the ultrasonic wave and the diffracted wave being emitted from the transmitting probe as ultrasonic waves to the receiving probe. It is characterized by that.

請求項3記載のレーリー波を用いた超音波探傷方法は、請求項1または2に記載の発明において、送波用探触子から対象物中に放射する超音波が主として縦波であり、欠陥の端部で生じた回折波の主として縦波成分と、欠陥の端部で再放射された前記超音波の主として縦波成分を各々検出することを特徴とする。   The ultrasonic flaw detection method using the Rayleigh wave according to claim 3 is the invention according to claim 1 or 2, wherein the ultrasonic wave radiated into the object from the transmission probe is mainly a longitudinal wave, In this case, the longitudinal wave component of the diffracted wave generated at the end of the ultrasonic wave and the longitudinal wave component of the ultrasonic wave re-radiated at the end of the defect are respectively detected.

請求項4記載のレーリー波を用いた超音波探傷方法の発明は、次の近似式(a)、(b)のいずれかまたは両方によって欠陥の内面に沿った長さDを推定することを特徴とするレーリー波を用いた超音波探傷方法。   The invention of the ultrasonic flaw detection method using Rayleigh waves according to claim 4 is characterized in that the length D along the inner surface of the defect is estimated by one or both of the following approximate expressions (a) and (b). An ultrasonic flaw detection method using Rayleigh waves.

Figure 0003782410
Figure 0003782410

Figure 0003782410
Figure 0003782410

ただし、
Tlr:送波用探触子から放射された超音波縦波成分が、送波用探触子から、欠陥の一端に入射してその超音波縦波の一部がモード変換されてレーリー表面波として欠陥の内表面に沿って伝搬し、欠陥の他端においてこのレーリー表面波の一部が再び超音波にモード変換されて対象物中に再放射されて超音波縦波成分として受波用探触子に至る伝搬時間。
Tlu:送波用探触子から放射された超音波縦波成分が、送波用探触子から、欠陥の上端(超音波探触子を配置した表面に近い側の欠陥の端部)で回折され回折波縦波成分として受波用探触子に至る伝搬時間。
Tll:送波用探触子から放射された超音波縦波成分が、送波用探触子から、欠陥の下端(超音波探触子を配置した表面に遠い側の欠陥の端部)で回折され回折波縦波成分として受波用探触子に至る伝搬時間。
Vr :対象物におけるレーリー表面波の伝搬速度。
Vl :対象物における縦波の伝搬速度。
θ :上記各縦波成分が受波用探触子に入射するときの平均的な入射角。
However,
Tlr: The ultrasonic longitudinal wave component radiated from the transmission probe is incident on one end of the defect from the transmission probe, and a part of the ultrasonic longitudinal wave is subjected to mode conversion, and the Rayleigh surface wave. And propagates along the inner surface of the defect, and at the other end of the defect, a part of this Rayleigh surface wave is mode-converted again into an ultrasonic wave and re-radiated into the object to receive the wave as a ultrasonic longitudinal wave component. Propagation time to the tentacle.
Tlu: The longitudinal component of the ultrasonic wave radiated from the transmission probe is transferred from the transmission probe at the upper end of the defect (the end of the defect near the surface on which the ultrasonic probe is disposed). Propagation time to the receiving probe as diffracted wave longitudinal wave component.
Tll: The longitudinal component of the ultrasonic wave radiated from the transmission probe is at the lower end of the defect (end of the defect far from the surface where the ultrasonic probe is arranged) from the transmission probe. Propagation time to the receiving probe as diffracted wave longitudinal wave component.
Vr: Propagation speed of Rayleigh surface wave in the object.
Vl: Longitudinal wave propagation speed in the object.
θ: An average incident angle when each longitudinal wave component is incident on the receiving probe.

請求項5記載のレーリー波を用いた超音波探傷方法は、請求項1〜4のいずれかに記載の発明において、前記送波用探触子および受波用探触子の内いずれか一つの探触子を単独にもしくは両者の探触子を同時に、送波用探触子および受波用探触子を結ぶ線にほぼ平行な方向に沿って前後方向に走査しつつ前記送波用探触子から超音波を放射するとともに前記受波用探触子で受波をし、その際に探触子の位置とともに振幅が周期的に変動する検出信号をもって、該検出信号が欠陥の内表面に沿って伝搬したレーリー表面波によって再放射された超音波の受波信号であると判別することを特徴とする。   The ultrasonic flaw detection method using the Rayleigh wave according to claim 5 is the invention according to any one of claims 1 to 4, wherein any one of the transmitting probe and the receiving probe is used. The transmitter probe is scanned in the front-rear direction along a line substantially parallel to the line connecting the transmitter probe and receiver probe, either alone or at the same time. An ultrasonic wave is radiated from the probe and received by the receiving probe. At this time, the detection signal has a detection signal whose amplitude periodically varies with the position of the probe. It is determined that the received signal is an ultrasonic wave re-radiated by the Rayleigh surface wave propagated along the line.

請求項6記載のレーリー波を用いた超音波探傷装置は、 対となる送波用の超音波探触子と受波用の超音波探触子とを備え、さらに前記送波用超音波探触子から放射され、対象物の欠陥の一端に入射した超音波の一部がモード変換されてレーリー表面波として欠陥の内表面に沿って伝搬し、欠陥の他端においてこのレーリー表面波の一部が再びモード変換されることによって対象物中に再放射された超音波を検出可能な手段を備えることを特徴とする。   An ultrasonic flaw detector using a Rayleigh wave according to claim 6 comprises a pair of a transmitting ultrasonic probe and a receiving ultrasonic probe, and further comprising the transmitting ultrasonic probe. A part of the ultrasonic wave radiated from the contact and incident on one end of the defect of the object is mode-converted and propagated along the inner surface of the defect as a Rayleigh surface wave. It is characterized by comprising means capable of detecting the ultrasonic wave re-radiated into the object by the mode conversion of the part again.

請求項7記載のレーリー波を用いた超音波探傷装置は、請求項6記載の発明において、前記検出する手段は、再放射された前記超音波とともに欠陥の端部で回折された回折波の検出が可能であることを特徴とする。   The ultrasonic flaw detector using the Rayleigh wave according to claim 7 is the invention according to claim 6, wherein the detecting means detects a diffracted wave diffracted at the edge of the defect together with the re-radiated ultrasonic wave. Is possible.

以上説明したように、本発明の超音波探傷方法によれば、受波用超音波探触子で受波した超音波のうちから、きずなどの欠陥の一端に入射した超音波の一部がモード変換されてレーリー表面波として欠陥の内表面に沿って伝搬し、欠陥の他端においてこのレーリー表面波の一部が再びモード変換されることによって対象物中に再放射された超音波を検出し、その検出信号に基づいて欠陥の評価を行うものとしたので、従来のTOFD法よりもさらに小さな欠陥の寸法測定が行えるようになり、併せて欠陥の評価を行うことができる。
また本発明の超音波探傷装置によれば、上記の再放射された超音波の検出が可能になり、上記効果が確実に得られる。
As described above, according to the ultrasonic flaw detection method of the present invention, a part of the ultrasonic wave incident on one end of a defect such as a flaw among ultrasonic waves received by the ultrasonic probe for receiving waves is obtained. Mode-converted and propagated along the inner surface of the defect as a Rayleigh surface wave, and a part of this Rayleigh surface wave is mode-converted again at the other end of the defect to detect ultrasonic waves re-radiated into the object. Since the defect is evaluated based on the detection signal, it becomes possible to measure the size of the defect even smaller than that of the conventional TOFD method, and the defect can be evaluated together.
Further, according to the ultrasonic flaw detection apparatus of the present invention, the re-radiated ultrasonic wave can be detected, and the above-described effect can be obtained with certainty.

本発明者は、TOFD法においてきずなどの欠陥の一端に入射した超音波の一部がモード変換してレーリー表面波として欠陥の内表面に沿って伝搬し、欠陥の他端においてこのレーリー表面波の一部が再びモード変換して超音波として対象物中に再放射される現象を見いだした。図1はこの現象をコンピュータシミュレーションによって再現した一例であり、超音波の振動変位のベクトル図を時間を追って示したものである(a図〜d図)。欠陥であるきずの上端に入射した超音波縦波の一部がモード変換してレーリー表面波が生じ、きずの内表面に沿ってきずの下端に向かって伝搬する。下端に到達したレーリー表面波の一部は再びモード変換して下端から超音波として対象物中に再放射され、また一部はきずの下端で反射してきずの内表面に沿って上端に向かって伝搬する。このレーリー表面波が上端に達すると再び再放射と反射が行われ、レーリー表面波が減衰するまで同様の再放射と反射が繰り返される。またきずの下端に入射した超音波縦波によっても同様に、モード変換によるレーリー表面波の発生ときずの内表面に沿った伝搬、そして反射と再放射が繰り返される。この結果、きずの内表面に沿って伝搬したレーリー表面波によって再放射された超音波の受波信号からきずに関する多くの情報が得られることになる。   In the TOFD method, a part of ultrasonic waves incident on one end of a defect such as a flaw in the TOFD method is mode-converted and propagated along the inner surface of the defect as a Rayleigh surface wave, and this Rayleigh surface wave is transmitted at the other end of the defect. We found that a part of the image was re-radiated into the object as an ultrasonic wave after mode conversion again. FIG. 1 is an example in which this phenomenon is reproduced by computer simulation, and shows a vector diagram of ultrasonic vibration displacement over time (FIGS. A to d). A part of the longitudinal ultrasonic wave incident on the upper end of the flaw, which is a defect, is mode-converted to generate a Rayleigh surface wave, which propagates toward the lower end not along the inner surface of the flaw. Part of the Rayleigh surface wave that has reached the lower end is mode-converted again and re-radiated as an ultrasonic wave from the lower end into the object, and part of the wave is reflected at the lower end of the scratch toward the upper end along the inner surface of the scratch. Propagate. When the Rayleigh surface wave reaches the upper end, re-emission and reflection are performed again, and similar re-emission and reflection are repeated until the Rayleigh surface wave is attenuated. Similarly, the ultrasonic longitudinal wave incident on the lower end of the flaw repeats the propagation along the inner surface, the reflection and the re-radiation when the Rayleigh surface wave is generated by the mode conversion. As a result, a lot of information about the flaw can be obtained from the received wave signal of the ultrasonic wave re-radiated by the Rayleigh surface wave propagated along the inner surface of the flaw.

本発明は、きずなどの欠陥の一端に入射した超音波の一部がモード変換してレーリー表面波として欠陥の内表面に沿って伝搬し、欠陥の他端においてこのレーリー表面波の一部が再びモード変換して超音波として対象物中に再放射される現象を利用して、欠陥の内表面に沿って伝搬したレーリー表面波によって再放射された超音波を検出し、その検出信号に基づいて欠陥の寸法測定と評価を行うものである。   In the present invention, a part of the ultrasonic wave incident on one end of a defect such as a flaw is mode-converted and propagated along the inner surface of the defect as a Rayleigh surface wave, and a part of the Rayleigh surface wave is transmitted at the other end of the defect. Using the phenomenon of mode conversion again and re-radiation into the object as an ultrasonic wave, the ultrasonic wave re-radiated by the Rayleigh surface wave propagated along the inner surface of the defect is detected, and based on the detection signal Measure and evaluate the dimensions of defects.

図2は、送波用探触子10から放射された超音波縦波Lが対象物30中の垂直なスリット状のきず31の上端31aに入射し、その超音波縦波の一部がモード変換してレーリー表面波Rとしてきず31の内表面に沿って伝搬し、きず31の下端31bにおいてこのレーリー表面波の一部が再びモード変換して超音波縦波Lとして対象物30中に再放射されて受波用探触子20に至る伝搬経路を示したものである。ここで説明を簡略化するため、例えばきずが対となる送波用探触子と受波用探触子の間の中央にある場合を想定する。なお、図5に示す対象物と同様に、きず31の上端31aの位置をZ(表面からの距離)及び下端31bの位置を[Z+D](表面からの距離)とする。また、対象物の表面における探触子と傷との距離をそれぞれX、Yとすると、X=Y(Sとする)であるので、上記再放射された超音波に関し、送波用探触子10から受波用探触子20に至るまでの伝搬時間Tlrは、次式によって与えられる。式中、Vrは対象物におけるレーリー表面波の伝搬速度である。   FIG. 2 shows that the ultrasonic longitudinal wave L radiated from the transmission probe 10 is incident on the upper end 31a of a vertical slit 31 in the object 30, and a part of the ultrasonic longitudinal wave is a mode. The Rayleigh surface wave R is converted and propagated along the inner surface of the flaw 31, and a part of the Rayleigh surface wave is mode-converted again at the lower end 31 b of the flaw 31, and is regenerated into the object 30 as the ultrasonic longitudinal wave L. The propagation path which is radiated and reaches the wave receiving probe 20 is shown. In order to simplify the description, for example, a case is assumed in which a flaw is in the center between a pair of a transmitting probe and a receiving probe. Similarly to the object shown in FIG. 5, the position of the upper end 31a of the flaw 31 is Z (distance from the surface) and the position of the lower end 31b is [Z + D] (distance from the surface). Further, if the distance between the probe and the scratch on the surface of the object is X and Y, respectively, X = Y (assuming S). The propagation time Tlr from 10 to the receiving probe 20 is given by the following equation. In the equation, Vr is the propagation speed of the Rayleigh surface wave in the object.

Figure 0003782410
Figure 0003782410

なおここでは、きずが一対の探触子の間の中央にある場合を想定しているので、先ずきずの上端に入射し、レーリー表面波としてきず表面を伝搬した後、きずの下端から再放射された超音波の伝搬時間Tlrと、先ずきずの下端に入射し、レーリー表面波としてきず表面を伝搬した後、きずの上端から再放射された超音波の伝搬時間は互いに等しくなり、両者各々の伝搬経路を経た超音波が同時に重畳して受信されることになる。そして、送波用探触子および受波用探触子の内いずれか一つの探触子を単独に、もしくは両者の探触子を同時に前後方向(送波用探触子および受波用探触子を結ぶ線にほぼ平行な方向)に移動すると、レーリー表面波から再びモード変換した超音波の受波信号の振幅は、探触子の位置によって周期的な変動を呈する。これは最初にきずの上端に入射してきずの下端から再放射された超音波の伝搬経路長と、最初にきずの下端に入射してきずの上端から再放射された超音波の伝搬経路長が、探触子の移動に伴って互いに異なった変化をするため、両者の経路を経た超音波が干渉し、加算されて受信されるためである。これに対し、上端回折波と下端回折波の振幅は、探触子の位置の移動による伝搬距離の変化に対応してなだらかな変化を示す。   In this case, it is assumed that the flaw is in the center between the pair of probes. The ultrasonic wave propagation time Tlr is incident on the lower end of the flaw and propagates through the flaw surface as a Rayleigh surface wave. The ultrasonic waves that have passed through the propagation path are simultaneously superimposed and received. Then, either one of the transmitting probe and the receiving probe is used alone, or both of the probes are simultaneously moved in the front-rear direction (transmitting probe and receiving probe). When moving in a direction substantially parallel to the line connecting the transducers, the amplitude of the ultrasonic wave reception signal mode-converted again from the Rayleigh surface wave exhibits periodic fluctuations depending on the position of the probe. This is because the propagation path length of the ultrasonic wave incident on the upper end of the flaw and re-radiated from the lower end of the flaw, and the propagation path length of the ultrasonic wave incident on the lower end of the flaw and re-radiated from the upper end of the flaw first, This is because the ultrasonic waves that have passed through both paths interfere with each other and are added and received because they change differently with the movement of the probe. On the other hand, the amplitudes of the upper end diffracted wave and the lower end diffracted wave show a gentle change corresponding to the change in the propagation distance due to the movement of the position of the probe.

本発明では、送波用探触子および受波用探触子の内いずれか一つの探触子を単独に、もしくは両者の探触子を同時に上記前後方向に走査しながら超音波受波信号を探触子の位置の変化とともに記録・測定する機能を提供し、上記の特性を利用することによって、上端回折波あるいは下端回折波等の受波信号と、きずなどの欠陥の内表面に沿って伝搬したレーリー表面波によって再放射された超音波の受波信号を判別することができる。
なお、欠陥の内表面に沿って伝搬したレーリー表面波によって再放射された超音波に関し、送波用探触子から受波用探触子に至る伝搬時間Tlrと、欠陥の上端回折波に関し、送波用探触子から受波用探触子に至る伝搬時間Tluとの間の時間差は次式のようになる。
In the present invention, an ultrasonic wave reception signal is scanned while either one of the probe for transmission and the probe for reception is scanned alone, or both probes are simultaneously scanned in the front-rear direction. Provides the function to record and measure the position of the probe along with the change in the position of the probe. The received signal of the ultrasonic wave re-radiated by the Rayleigh surface wave propagated in this manner can be discriminated.
Regarding the ultrasonic wave re-radiated by the Rayleigh surface wave propagated along the inner surface of the defect, regarding the propagation time Tlr from the transmitting probe to the receiving probe and the upper end diffracted wave of the defect, The time difference between the propagation time Tlu from the transmitting probe to the receiving probe is given by the following equation.

Figure 0003782410
Figure 0003782410

したがって欠陥の内表面に沿った長さDは、上記TlrとTluの時間差から下記数10の式のように求められる。   Therefore, the length D along the inner surface of the defect is obtained from the time difference between Tlr and Tlu as shown in the following equation (10).

Figure 0003782410
Figure 0003782410

一方、上記の伝搬時間Tlrと、欠陥の下端回折波の送波用探触子から受波用探触子に至る伝搬時間Tllとの間の時間差は次式のようになる。   On the other hand, the time difference between the above-described propagation time Tlr and the propagation time Tll from the probe for transmitting the bottom edge diffracted wave of the defect to the probe for receiving is given by the following equation.

Figure 0003782410
Figure 0003782410

したがって、欠陥内表面に沿った長さDはTlrとTllの時間差から下記のようにも求められる。   Therefore, the length D along the inner surface of the defect is also obtained from the time difference between Tlr and Tll as follows.

Figure 0003782410
Figure 0003782410

同一の欠陥について、従来のTOFD法により例えば上端回折波および下端回折波に着目して数3の式または数4の式によって求めた欠陥の高さD(以下D1とする)と、本発明の数10の式または数12の式によって求めた欠陥の内表面に沿った長さD(以下D2とする)を比較することによって、欠陥の状況を評価することもできる。D1≒D2の場合には欠陥がほぼ直線状をしていることが推定され、D1<D2の場合には欠陥が直線状でなく例えば湾曲していることが推定され、またD1>D2の場合には欠陥が上端と下端の間で途切れていることが推定される。さらに上端回折波および下端回折波は受信されるものの、欠陥の内表面に沿って伝搬したレーリー表面波により再放射された超音波が探触子の位置に関わらず微弱であったり受信されない場合は、欠陥が閉じた状態もしくはそれに近い状態にあることが推定される。   For the same defect, the defect height D (hereinafter referred to as D1) obtained by the formula (3) or the formula (4) focusing on the upper end diffraction wave and the lower end diffraction wave, for example, by the conventional TOFD method, The situation of the defect can also be evaluated by comparing the length D (hereinafter referred to as D2) along the inner surface of the defect obtained by the equation (10) or (12). In the case of D1≈D2, it is estimated that the defect is substantially linear, in the case of D1 <D2, it is estimated that the defect is not linear but is curved, for example, and in the case of D1> D2 It is estimated that the defect is interrupted between the upper end and the lower end. In addition, when the top and bottom diffracted waves are received, the ultrasonic wave re-radiated by the Rayleigh surface wave propagated along the inner surface of the defect is weak or not received regardless of the position of the probe. It is estimated that the defect is in a closed state or a state close thereto.

縦波の伝搬速度Vlとレーリー表面波の伝搬速度Vrの比は材料によって異なるが、例えば鉄鋼材料の場合には2.1(Vl≒2.1Vr)程度とされる。従って例えば超音波の入射角θが60°の場合を想定するとcosθ=0.5になるので、微小な欠陥に対してレーリー表面波から再びモード変換した超音波縦波の伝搬時間Tlrと例えば下端回折波の伝搬時間Tllとの時間差は、数11の式から次式のようになる。   The ratio of the propagation velocity Vl of the longitudinal wave and the propagation velocity Vr of the Rayleigh surface wave differs depending on the material. For example, in the case of a steel material, it is about 2.1 (Vl≈2.1 Vr). Therefore, for example, assuming that the incident angle θ of the ultrasonic wave is 60 °, cos θ = 0.5, so that the propagation time Tlr of the ultrasonic longitudinal wave obtained by mode conversion again from the Rayleigh surface wave with respect to a minute defect and the lower end, for example, The time difference from the propagation time Tll of the diffracted wave is expressed by the following equation from the equation (11).

Figure 0003782410
Figure 0003782410

一方、従来のTOFD法で用いる例えば下端回折波の伝搬時間Tllと上端回折波の伝搬時間Tluの時間差は、同じ条件の下で数5の式から次式のようになる。   On the other hand, for example, the time difference between the propagation time Tll of the lower-end diffracted wave and the propagation time Tlu of the upper-end diffracted wave used in the conventional TOFD method is expressed by the following equation from Equation 5 under the same conditions.

Figure 0003782410
Figure 0003782410

したがって本発明においては前記条件において従来のTOFD法に比べて同一の欠陥について約1.6倍の時間差を確保できるので、各々の超音波信号の伝搬時間を測定する時間分解能が同一の場合、本発明において従来のTOFD法に比べて約0.6(≒1/1.6)倍の、より小さい欠陥まで寸法測定ができることになる。   Therefore, in the present invention, a time difference of about 1.6 times can be secured for the same defect under the above conditions, compared with the conventional TOFD method. Therefore, when the time resolution for measuring the propagation time of each ultrasonic signal is the same, In the present invention, the size can be measured up to a smaller defect which is approximately 0.6 (≈1 / 1.6) times that of the conventional TOFD method.

以下、本発明の一実施例について説明する。
図3は、本発明の超音波探傷装置の概略図であり、送波用探触子10と受波用探触子20とを備えている。前記送波用探触子10は、送波用制御部1に接続され、受波用探触子20は、受波用制御部2に接続されている。前記送波用制御部1と受波用制御部2とは、一体に構成され、それぞれが送波用探触子10と受波用探触子20とを制御し、また、受波した受波信号の信号処理がなされる。
送波用制御部1と受波用制御部2とは、共通するタイマ(図示しない)を備え、送波用探触子10から放射された超音波が、受波用探触子20で受波されるまでの時間の測定が可能になっている。また、受波用制御部2には、受波信号に基づいて波形を表示するための表示部3が接続されている。表示部3には、CRT、LCD等の適宜の表示装置を用いることができる。また、表示部3をタッチパネルによって構成し、ユーザによる入力を可能にするものであってもよい。
Hereinafter, an embodiment of the present invention will be described.
FIG. 3 is a schematic diagram of the ultrasonic flaw detector according to the present invention, which includes a transmitting probe 10 and a receiving probe 20. The transmission probe 10 is connected to the transmission control unit 1, and the reception probe 20 is connected to the reception control unit 2. The transmission control unit 1 and the reception control unit 2 are integrally configured, and each control the transmission probe 10 and the reception probe 20, and receive the received wave. Wave signal processing is performed.
The transmission control unit 1 and the reception control unit 2 include a common timer (not shown), and the ultrasonic wave radiated from the transmission probe 10 is received by the reception probe 20. It is possible to measure the time to wave. The receiving control unit 2 is connected to a display unit 3 for displaying a waveform based on the received signal. As the display unit 3, an appropriate display device such as a CRT or an LCD can be used. Moreover, the display part 3 may be comprised with a touch panel, and the input by a user may be enabled.

次に、上記超音波探傷装置の動作について説明する。
送波用制御部1の制御によって送波用探触子10から対象物30に対し、所望の超音波が放射される。対象物30にきず31が存在すると、前記で説明したようにこのきず31によって回折波やきずの表面を伝搬するレーリー波が生じ、さらにレーリー波は、超音波として再放射される。これらの回折波や再放射された超音波は、受波用探触子20で受波され、受波信号が受波用制御部2に送られる。受波用制御部2では、この受波信号に基づいて表示部3を制御し、受波パターンを表示部3に表示可能とする。表示部3では、受波されたパターンに基づいて再放射された超音波および回折波を認識することができる。したがって、受波用制御部2および表示部3は、再放射された前記超音波と、きずの端部で回折された回折波の検出が可能な手段としても機能している。なお、受波用制御部2では、再放射された前記超音波と、きずの端部で回折された回折波の検出に基づいて、前記タイマにより、再放射された前記超音波と前記回折波とが送波用探触子から超音波として放射されて受波用探触子へ至る伝搬時間を得て、きずの内表面に添った寸法を算出する演算部として機能させることもできる。なお、受波用制御部2では、受波信号に基づいて、再放射された前記超音波と、きずの端部で回折された回折波の検出を行う機能を持たせることもできる。
Next, the operation of the ultrasonic flaw detector will be described.
A desired ultrasonic wave is emitted from the transmission probe 10 to the object 30 by the control of the transmission control unit 1. When the flaw 31 exists in the object 30, as described above, a Rayleigh wave propagating on the surface of the diffracted wave or the flaw is generated by the flaw 31, and the Rayleigh wave is re-radiated as an ultrasonic wave. These diffracted waves and re-radiated ultrasonic waves are received by the receiving probe 20, and a received signal is sent to the receiving control unit 2. The reception control unit 2 controls the display unit 3 on the basis of the received signal so that the reception pattern can be displayed on the display unit 3. The display unit 3 can recognize ultrasonic waves and diffracted waves re-radiated based on the received pattern. Therefore, the reception control unit 2 and the display unit 3 also function as means capable of detecting the re-radiated ultrasonic wave and the diffracted wave diffracted at the end of the flaw. The reception control unit 2 detects the re-radiated ultrasonic wave and the diffracted wave by the timer based on the detection of the re-radiated ultrasonic wave and the diffracted wave diffracted at the edge of the flaw. It is also possible to obtain a propagation time from the transmitting probe to the receiving probe, which is radiated as an ultrasonic wave, and to function as a calculation unit that calculates the dimension along the inner surface of the flaw. Note that the receiving control unit 2 may have a function of detecting the re-radiated ultrasonic wave and the diffracted wave diffracted at the end of the flaw based on the received signal.

図4は、本発明の第1実施例において高さ3mmの垂直なスリット状のきずを含む試験体を対象にして、5MHzの超音波縦波を放射し、受波用探触子によって回折波等を受信した縦波超音波の信号波形の例である。ラテラル波(LT)、上端回折波(LU)、下端回折波(LL)に続いてきずの内表面に沿って伝搬したレーリー表面波によって再放射された超音波縦波(LR)が記録されている。本実施例ではきずの高さが小さいので上端回折波と下端回折波の受波信号が重畳しているため、従来のTOFD法できずの高さを推定するのが困難な例である。しかし本発明においては、上端回折波の縦波成分の受信時刻ときずの内表面に沿って伝搬したレーリー表面波によって再放射された超音波縦波の受信時刻との時間差を基に数10の式を適用して、きずの内面に沿った長さを精確に推定できた。   FIG. 4 shows a test object including a vertical slit-shaped flaw having a height of 3 mm in the first embodiment of the present invention, and a 5 MHz ultrasonic longitudinal wave is radiated and diffracted by a receiving probe. It is an example of the signal waveform of the longitudinal wave ultrasonic wave which received etc. The longitudinal wave (LR) re-radiated by the Rayleigh surface wave that propagates along the inner surface that does not follow the lateral wave (LT), upper-end diffracted wave (LU), and lower-end diffracted wave (LL) is recorded. Yes. In this embodiment, since the height of the flaw is small, the received signals of the upper end diffracted wave and the lower end diffracted wave are superimposed, which makes it difficult to estimate the height that cannot be achieved by the conventional TOFD method. However, in the present invention, the time of reception of the longitudinal wave component of the upper-end diffracted wave and the time difference from the reception time of the ultrasonic longitudinal wave re-radiated by the Rayleigh surface wave that propagated along the inner surface immediately before the reception time By applying the formula, the length along the inner surface of the flaw could be estimated accurately.

図5は本発明の第2実施例において未知のきずを含む試験体を対象にして、5MHzの超音波縦波を放射し、受波用探触子によって受波した縦波超音波の信号波形の例である。ラテラル波(LT)、上端回折波(LU)、下端回折波(LL)に続いてきずの内表面に沿って伝搬したレーリー表面波によって再放射された超音波縦波(LR)が記録されている。ここでは上端回折波、下端回折波が分離して記録されているので従来のTOFDにより、例えば数3の式あるいは数4の式を適用して、きずの高さが約5mmであると推定した。一方本発明により例えば数10の式あるいは数12の式を適用して、きずの内表面に沿った長さが約7mmと推定された。従ってここではきずの形状が例えば直線状ではなく湾曲していることが推定される。   FIG. 5 shows a signal waveform of a longitudinal ultrasonic wave radiated by a 5 MHz ultrasonic longitudinal wave and received by a receiving probe for a specimen containing an unknown flaw in the second embodiment of the present invention. It is an example. The longitudinal wave (LR) re-radiated by the Rayleigh surface wave that propagates along the inner surface that does not follow the lateral wave (LT), upper-end diffracted wave (LU), and lower-end diffracted wave (LL) is recorded. Yes. Here, since the upper end diffracted wave and the lower end diffracted wave are recorded separately, the height of the flaw is estimated to be about 5 mm by applying the formula (3) or (4), for example, by the conventional TOFD. . On the other hand, the length along the inner surface of the flaw was estimated to be about 7 mm by applying the formula (10) or the formula (12) according to the present invention. Therefore, it is estimated here that the shape of the flaw is curved, for example, not linear.

(a)〜(d)図は、欠陥の内表面を伝搬するレーリー表面波のシミュレーション結果を経過時間に従って示す図である。(A)-(d) figure is a figure which shows the simulation result of the Rayleigh surface wave which propagates the inner surface of a defect according to elapsed time. 本発明における欠陥の内表面に沿って伝搬するレーリー表面波を含む超音波の伝搬経路の概要図である。It is a schematic diagram of the propagation path of the ultrasonic wave including the Rayleigh surface wave propagating along the inner surface of the defect in the present invention. 本発明の超音波探傷装置の実施例を示す図である。It is a figure which shows the Example of the ultrasonic flaw detector of this invention. 同じく第1実施例における受波信号波形を示す図である。It is a figure which similarly shows the received signal waveform in 1st Example. 同じく第2実施例における受波信号波形を示す図である。It is a figure which similarly shows the received signal waveform in 2nd Example. 従来のTOFD法で利用される超音波の伝搬経路の概要を示す図である。It is a figure which shows the outline | summary of the propagation path of the ultrasonic wave utilized by the conventional TOFD method.

符号の説明Explanation of symbols

1 送波用制御部
2 受波用制御部
3 表示部
10 送波用探触子
20 受波用探触子
30 対象物
31 きず
31a きずの上端
31b きずの下端
DESCRIPTION OF SYMBOLS 1 Control part for transmission 2 Control part for reception 3 Display part 10 Probe for transmission 20 Probe for reception 30 Target object 31 Scratch 31a Scratch upper end 31b Scratch bottom

Claims (7)

対となる送波用の超音波探触子と受波用の超音波探触子を、対象物の一つの表面に一定距離を隔てて配置し、前記送波用探触子から対象物中に超音波を放射し、対象物中に欠陥が存在する場合に欠陥の端部に入射した超音波によって生じる回折波を受波用探触子で受信することによって超音波探傷を行う超音波探傷方法において、
前記受波用超音波探触子で受波した超音波のうちから、前記欠陥の一端に入射した超音波の一部がモード変換されてレーリー表面波として欠陥の内表面に沿って伝搬し、該欠陥の端部においてこのレーリー表面波の一部が再びモード変換されることによって対象物中に再放射された超音波を検出し、その検出信号に基づいて欠陥の評価を行うことを特徴とするレーリー波を用いた超音波探傷方法。
A pair of ultrasonic transducers for transmitting and receiving waves and a ultrasonic probe for receiving waves are arranged at a certain distance on one surface of the object, and the transmitting probe is placed in the object. Ultrasonic flaw detection is performed by receiving a diffracted wave generated by the ultrasonic wave incident on the edge of the defect when the defect is present in the object and receiving the diffracted wave with the receiving probe. In the method
Of the ultrasonic waves received by the receiving ultrasonic probe, a part of the ultrasonic waves incident on one end of the defect is mode-converted and propagated along the inner surface of the defect as a Rayleigh surface wave, A feature is that ultrasonic waves re-radiated into the object are detected by mode-converting a part of the Rayleigh surface wave again at the edge of the defect, and the defect is evaluated based on the detection signal. An ultrasonic flaw detection method using Rayleigh waves.
再放射された前記超音波を欠陥の少なくとも一つの端部で生じる回折波とともに検出し、再放射された前記超音波と前記回折波とが、送波用探触子から超音波として放射されて受波用探触子へ至る伝搬時間に基づいて、前記欠陥の内表面に添った寸法を推定することを特徴とするレーリー波を用いた請求項1記載の超音波探傷方法。 The re-radiated ultrasonic wave is detected together with a diffracted wave generated at at least one end of the defect, and the re-radiated ultrasonic wave and the diffracted wave are radiated as an ultrasonic wave from a transmission probe. 2. The ultrasonic flaw detection method according to claim 1, wherein a Rayleigh wave is used to estimate a dimension along the inner surface of the defect based on a propagation time to the wave receiving probe. 送波用探触子から対象物中に放射する超音波が主として縦波であり、欠陥の端部で生じた回折波の主として縦波成分と、欠陥の端部で再放射された前記超音波の主として縦波成分とを各々検出することを特徴とする上記請求項1または2に記載のレーリー波を用いた超音波探傷方法。 The ultrasonic waves radiated into the object from the probe for transmission are mainly longitudinal waves, and mainly the longitudinal wave component of the diffracted wave generated at the edge of the defect and the ultrasonic waves re-radiated at the edge of the defect. The ultrasonic flaw detection method using Rayleigh waves according to claim 1 or 2, wherein the longitudinal wave component is mainly detected. 次の近似式(a)、(b)のいずれかまたは両方によって欠陥の内面に沿った長さDを推定することを特徴とするレーリー波を用いた超音波探傷方法。
Figure 0003782410
ただし、
Tlr:送波用探触子から放射された超音波縦波成分が、送波用探触子から、欠陥の一端に入射してその超音波縦波の一部がモード変換されてレーリー表面波として欠陥の内表面に沿って伝搬し、欠陥の他端においてこのレーリー表面波の一部が再び超音波にモード変換されて対象物中に再放射されて超音波縦波成分として受波用探触子に至る伝搬時間。
Tlu:送波用探触子から放射された超音波縦波成分が、送波用探触子から、欠陥の上端(超音波探触子を配置した表面に近い側の欠陥の端部)で回折され回折波縦波成分として受波用探触子に至る伝搬時間。
Tll:送波用探触子から放射された超音波縦波成分が、送波用探触子から、欠陥の下端(超音波探触子を配置した表面に遠い側の欠陥の端部)で回折され回折波縦波成分として受波用探触子に至る伝搬時間。
Vr :対象物におけるレーリー表面波の伝搬速度。
Vl :対象物における縦波の伝搬速度。
θ :上記各縦波成分が受波用探触子に入射するときの平均的な入射角。
An ultrasonic flaw detection method using Rayleigh waves, wherein the length D along the inner surface of the defect is estimated by one or both of the following approximate expressions (a) and (b):
Figure 0003782410
However,
Tlr: The ultrasonic longitudinal wave component radiated from the transmission probe is incident on one end of the defect from the transmission probe, and a part of the ultrasonic longitudinal wave is subjected to mode conversion, and the Rayleigh surface wave. And propagates along the inner surface of the defect, and at the other end of the defect, a part of this Rayleigh surface wave is mode-converted again into an ultrasonic wave and re-radiated into the object to receive the wave as a ultrasonic longitudinal wave component. Propagation time to the tentacle.
Tlu: The longitudinal component of the ultrasonic wave radiated from the transmission probe is transferred from the transmission probe at the upper end of the defect (the end of the defect near the surface on which the ultrasonic probe is disposed). Propagation time to the receiving probe as diffracted wave longitudinal wave component.
Tll: The longitudinal component of the ultrasonic wave radiated from the transmission probe is at the lower end of the defect (end of the defect far from the surface where the ultrasonic probe is arranged) from the transmission probe. Propagation time to the receiving probe as diffracted wave longitudinal wave component.
Vr: Propagation speed of Rayleigh surface wave in the object.
Vl: Longitudinal wave propagation speed in the object.
θ: An average incident angle when each longitudinal wave component is incident on the receiving probe.
前記送波用探触子および受波用探触子の内いずれか一つの探触子を単独にもしくは両者の探触子を同時に、送波用探触子および受波用探触子を結ぶ線にほぼ平行な方向に沿って前後方向に走査しつつ前記送波用探触子から超音波を放射するとともに前記受波用探触子で受波をし、その際に探触子の位置とともに振幅が周期的に変動する検出信号をもって、該検出信号が欠陥の内表面に沿って伝搬したレーリー表面波によって再放射された超音波の受波信号であると判別することを特徴とする請求項1〜4のいずれかに記載のレーリー波を用いた超音波探傷方法。 Either one of the transmitting probe and the receiving probe is used alone or both probes are connected simultaneously, and the transmitting probe and the receiving probe are connected. Ultrasound is emitted from the transmitting probe while scanning in the front-rear direction along a direction substantially parallel to the line, and received by the receiving probe, at which time the position of the probe And a detection signal whose amplitude periodically fluctuates and discriminates that the detection signal is a received signal of an ultrasonic wave re-radiated by a Rayleigh surface wave propagated along the inner surface of the defect. Item 5. An ultrasonic flaw detection method using Rayleigh waves according to any one of Items 1 to 4. 対となる送波用の超音波探触子と受波用の超音波探触子とを備え、さらに前記送波用超音波探触子から放射され、対象物の欠陥の一端に入射した超音波の一部がモード変換されてレーリー表面波として欠陥の内表面に沿って伝搬し、欠陥の他端においてこのレーリー表面波の一部が再びモード変換されることによって対象物中に再放射された超音波を検出可能な手段を備えることを特徴とするレーリー波を用いた超音波探傷装置。 An ultrasonic probe for transmitting and a receiving ultrasonic probe to be paired; and an ultrasonic wave radiated from the transmitting ultrasonic probe and incident on one end of the defect of the object A part of the sound wave is mode-converted and propagated along the inner surface of the defect as a Rayleigh surface wave, and a part of this Rayleigh surface wave is re-radiated into the object by being mode-converted again at the other end of the defect. An ultrasonic flaw detector using Rayleigh waves, characterized in that it comprises means capable of detecting ultrasonic waves. 前記検出する手段は、再放射された前記超音波とともに欠陥の端部で回折された回折波の検出が可能であることを特徴とする請求項6記載のレーリー波を用いた超音波探傷装置。 The ultrasonic flaw detection apparatus using Rayleigh waves according to claim 6, wherein the detecting means is capable of detecting a diffracted wave diffracted at an edge of the defect together with the re-radiated ultrasonic wave.
JP2003304012A 2003-08-28 2003-08-28 Ultrasonic flaw detection method and apparatus using Rayleigh wave Expired - Lifetime JP3782410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304012A JP3782410B2 (en) 2003-08-28 2003-08-28 Ultrasonic flaw detection method and apparatus using Rayleigh wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304012A JP3782410B2 (en) 2003-08-28 2003-08-28 Ultrasonic flaw detection method and apparatus using Rayleigh wave

Publications (2)

Publication Number Publication Date
JP2005070011A JP2005070011A (en) 2005-03-17
JP3782410B2 true JP3782410B2 (en) 2006-06-07

Family

ID=34407818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304012A Expired - Lifetime JP3782410B2 (en) 2003-08-28 2003-08-28 Ultrasonic flaw detection method and apparatus using Rayleigh wave

Country Status (1)

Country Link
JP (1) JP3782410B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004303A1 (en) * 2005-07-06 2007-01-11 Central Research Institute Of Electric Power Industry Method and instrument for measuring flaw height in ultrasonic testing
US7891247B2 (en) * 2007-05-16 2011-02-22 The Boeing Company Method and system for detecting an anomaly and determining its size
CN113720919A (en) * 2021-08-07 2021-11-30 南京中车浦镇城轨车辆有限责任公司 Method for detecting debonding defect of vehicle window bonding interface

Also Published As

Publication number Publication date
JP2005070011A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP4938050B2 (en) Ultrasonic diagnostic evaluation system
JP5800667B2 (en) Ultrasonic inspection method, ultrasonic flaw detection method and ultrasonic inspection apparatus
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
JP4355679B2 (en) Ultrasonic test method and ultrasonic test apparatus
RU2604562C2 (en) Method of resilient properties ultrasonic measurement
KR101251204B1 (en) Ultrasonic nondestructive inspection device and ultrasonic nondestructive inspection method
JP5567471B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2014077708A (en) Inspection device and inspection method
JP3782410B2 (en) Ultrasonic flaw detection method and apparatus using Rayleigh wave
JP2012215520A (en) Ultrasonic measuring method and device for surface crack depth
JP3713007B2 (en) Ultrasonic inspection equipment
JP2004150875A (en) Method and system for imaging internal flaw using ultrasonic waves
JP2001208729A (en) Defect detector
JP2011529170A (en) Improved ultrasonic non-destructive inspection using coupling check
JP3732491B2 (en) Ultrasonic flaw detection method and apparatus using longitudinal wave and transverse wave diffracted wave
JP5567472B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2001305111A (en) Ultrasonic rail flaw detector
JP4112526B2 (en) Ultrasonic flaw detection method and apparatus
JP2006138672A (en) Method of and device for ultrasonic inspection
JP4429810B2 (en) Ultrasonic flaw detection method
Chang et al. Development of non-contact air coupled ultrasonic testing system for reinforced concrete structure
JP4173071B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JPS61245055A (en) Ultrasonic flaw inspecting device
JPH08261992A (en) Ultrasonic flaw detector
JP4323293B2 (en) Ultrasonic flaw detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060309

R150 Certificate of patent or registration of utility model

Ref document number: 3782410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term