JPS61245055A - Ultrasonic flaw inspecting device - Google Patents

Ultrasonic flaw inspecting device

Info

Publication number
JPS61245055A
JPS61245055A JP60086427A JP8642785A JPS61245055A JP S61245055 A JPS61245055 A JP S61245055A JP 60086427 A JP60086427 A JP 60086427A JP 8642785 A JP8642785 A JP 8642785A JP S61245055 A JPS61245055 A JP S61245055A
Authority
JP
Japan
Prior art keywords
probe
focusing
defect
ultrasonic
focusing type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60086427A
Other languages
Japanese (ja)
Inventor
Makoto Senoo
誠 妹尾
Sakae Sugiyama
栄 杉山
Atsushi Yamada
淳 山田
Toyoki Suetsugu
末次 豊紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP60086427A priority Critical patent/JPS61245055A/en
Publication of JPS61245055A publication Critical patent/JPS61245055A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To execute the flaw inspection of various defects of a body to be inspected with high accuracy and at high speed by providing a non focusing type probe, a focusing type prove and an operating means, etc. CONSTITUTION:A defect 2 existing in the inside of a body to be inspected 1 is detected by a rough flaw inspection by the scan of a non-focusing type probe 3 first. At this time point, only the existence of a defect can be brought to a flaw inspection at the high speed. In this case, an ultrasonic beam emitted by a non-focusing type probe use transmitter-receiver 4 is reflected by the defect 2 and the time when it is received by the transmitter-receiver 4 is measured by a propagation time measuring circuit 5. From this propagation time and the sound speed of the ultrasonic wave of the body to be inspected 1, a distance extending from the surface of the body to be inspected 1 to the defect 2 is calculated by a data processor 6. Also, the device 6 calculates the direction and the position of a focus from a distance to the defect 2 and a position relation to the probe 3 of a focusing type probe. In this state, an ultrasonic wave is probe 3 of a focusing type probe. In this state, an ultrasonic wave is transmitted from a focusing type probe use transmitter-receiver 9 and it is received through a probe 7. In this case, by constituting the device so that the focal position of the ultrasonic wave covers a beam width by the probe 3, the defect 2 can be evaluated exactly.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超音波探傷装置に係り、特に被検体の各種欠陥
を高精度、かつ、高速にて探傷するのに好適な超音波探
傷装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an ultrasonic flaw detection device, and particularly to an ultrasonic flaw detection device suitable for detecting various defects in a specimen with high precision and at high speed. It is.

〔発明の背景〕[Background of the invention]

従来の超音波探傷装置は、粗探傷あるいは精密探傷等の
目的に応じて非集束型探触子を用いるかあるいは集束型
探触子(アレイ振動子など)を用いて探傷するようにし
てあった。そのため、粗探傷の場合は、欠陥の大きさの
評価は高精度を望めないが短時間で探傷を行うことがで
きた。一方、精密探傷の場合は、高精度の探傷を望める
が、探傷に要する時間が多大となるという長所、短所を
持ち合わせており、高精度で、かつ、高速な探傷をした
いという要求に応じることができなかった。
Conventional ultrasonic flaw detection equipment uses either a non-focused probe or a focused probe (array transducer, etc.) depending on the purpose of rough or precise flaw detection. . Therefore, in the case of rough flaw detection, it was possible to perform flaw detection in a short time, although high precision cannot be expected in evaluating the size of defects. On the other hand, in the case of precision flaw detection, high-precision flaw detection can be expected, but it has the advantage and disadvantage of requiring a large amount of time for flaw detection, and cannot meet the demand for high-precision and high-speed flaw detection. could not.

なお、この種の装置に関連するものとして、例えば、特
開昭59−56159号公報、特開昭59−60354
号公報がある。
In addition, as related to this type of device, for example, Japanese Patent Application Laid-Open No. 59-56159, Japanese Patent Application Laid-Open No. 59-60354,
There is a publication.

【発明の目的〕[Purpose of the invention]

本発明は上記に鑑みてなされたもので、その目的とする
ところは、被検体の各種欠陥を高精度、−)1つ、高速
で探傷することができる超音波エコー装置7番提供する
ことにある。
The present invention has been made in view of the above, and its purpose is to provide an ultrasonic echo device No. 7 that can detect various defects in a specimen with high precision and high speed. be.

〔発明の概要〕[Summary of the invention]

本発明は、非集束型探触子と、集束型探触子と、上記非
集束型探触子によって検出された超音波エコーの伝播時
間から被検体に存在する欠陥の位置を演算する演算手段
と、前記欠陥位置に前記集束型探触子の焦点を合わせる
制御手段と、焦点を合わせた前記集束型探触子↓こよっ
て検出した超音波エコーを受信して、このエコー信号か
ら上記被検体の欠陥の大きさ、形状を検出する検出手段
とを具備する構成とした点にある。
The present invention includes a non-focusing probe, a focusing probe, and a calculation means for calculating the position of a defect existing in a subject from the propagation time of an ultrasonic echo detected by the non-focusing probe. and a control means for focusing the focusing probe on the defect position, and the focused focusing probe↓receives the detected ultrasonic echo, and detects the above-mentioned object from this echo signal. and detection means for detecting the size and shape of the defect.

(発明の実施例〕 以下本発明を第1図、第3FM、第6図に示した実施例
および第2図、第4図、第5図を用いて詳細に説明する
(Embodiments of the Invention) The present invention will be described in detail below with reference to the embodiments shown in FIGS. 1, 3FM, and 6, as well as FIGS. 2, 4, and 5.

第1図は本発明の超音波探傷装置の一実施例を示す基本
構成図である。第1図において、被検体1の内部に存在
する欠陥2は、まず、非集束型探触子3の走査による粗
探傷によって検出される。
FIG. 1 is a basic configuration diagram showing an embodiment of the ultrasonic flaw detection apparatus of the present invention. In FIG. 1, a defect 2 existing inside an object 1 is first detected by rough flaw detection by scanning with a non-focusing probe 3.

この時点では、非集束型探触子3からのビームの傷する
ことができる。ここで、非集束型探触子用送受信器4に
よって発射した超音波ビームが欠陥2によって反射され
て、それが送受信器4によって受信されるまでの時間を
伝播時間測定回路5によって測定する。この伝播時間と
被検体1の超音波の音速とから被検体1の表面から欠陥
2までの距離をデータ処理装置6で演算する。また、デ
ータ処理装置6は、欠陥2までの距離と集束型探触子(
ここでは−次元アレイ振動子を用いてある)7の非集束
型探触子3に対する位置関係から、焦点の方向と位置を
演算し、集束型探触子7の各探動子に対する遅延時間(
τ1.τ2.・・・τ、)8を設定する。この状態で集
束型探触子用送受信器9から超音波を送信し、かつ、反
射超音波を集束型探触子7を介して受信する。この超音
波の送受信において、超音波の焦点位置が非集束型探触
子8による超音波ビーム幅をカバーするように遅延時間
8を刻々変えなから超音波の送受信を繰り返せば、欠陥
2の形状を正確に評価することができる。
At this point, the beam from the unfocused probe 3 can be damaged. Here, the propagation time measurement circuit 5 measures the time from when the ultrasonic beam emitted by the non-focusing probe transceiver 4 is reflected by the defect 2 until it is received by the transceiver 4. The data processing device 6 calculates the distance from the surface of the object 1 to the defect 2 based on this propagation time and the sound speed of the ultrasonic wave of the object 1 . The data processing device 6 also calculates the distance to the defect 2 and the focusing probe (
The direction and position of the focal point are calculated based on the positional relationship of the non-focusing probe 3 (a -dimensional array transducer is used here), and the delay time for each probe of the focusing probe 7 (
τ1. τ2. ...τ, )8 is set. In this state, ultrasonic waves are transmitted from the focusing probe transceiver 9, and reflected ultrasonic waves are received via the focusing probe 7. When transmitting and receiving ultrasonic waves, if the delay time 8 is constantly changed so that the focal position of the ultrasonic waves covers the ultrasonic beam width by the non-focusing probe 8, and the ultrasonic waves are repeatedly transmitted and received, the shape of the defect 2 can be evaluated accurately.

したがって、非集束型探触子3としてビーム幅がある程
度広いものを用いることによって高速で粗な探傷を行う
ことができ、さらに欠陥が存在する場所は、集束型探触
子7によって高精度な欠陥評価を行うことができる。
Therefore, by using a non-focusing probe 3 with a somewhat wide beam width, it is possible to perform rough flaw detection at high speed. Evaluation can be carried out.

第2図は第1図における送信信号と反射波受信信号との
時間関係を示す図である。
FIG. 2 is a diagram showing the time relationship between the transmitted signal and the reflected wave received signal in FIG. 1.

粗探傷によって得られる非集束型探触子3から欠陥2ま
での距離りは、超音波送信時点を起点とし、欠陥2から
反射された超音波が受信されるまでの伝播時間T(第2
図参照)と被検体1中の音速Cとから。
The distance from the unfocused probe 3 to the defect 2 obtained by rough flaw detection is determined by the propagation time T (second
(see figure) and the sound speed C in the object 1.

により算出することができる。このときの遅延時間Tは
、例えば、第3wRに示す実施例の構成の伝播時間測定
回路5によって測定可能である。第3図において、3は
非集束型探触子、4は非集束型探触子用送受信器、5は
伝播時間測定回路で、非集束型探触子用送受信器4から
超音波を非集束型探触子3に送信した時点で、カウンタ
回路51によりクロックパルス発生回路52からのパル
ス信号のカウントを開始し、欠陥2(第1図参照)から
反射された超音波信号は、非集束型探触子用送受信器4
を経てA G C(Automatic Ga1n C
ontrol)回路53で受信し、所定の振幅の信号に
増幅した後、反射波検出口l!54で所定の振幅vtを
超えたときにカウンタ停止信号を反射波検出回路54か
らカウンタ回路5工に送比し、カウンタ回路51による
クロックパルスのカウントを停止させる。このような構
成の伝播時間測定回路5によって、超音波の伝播時間T
に比例した計数値を得ることができる。なお、クロック
パルス発生回路52で発生するクロックパルスの周波数
は、非集束型探触子3から欠陥2までの距離の測定精度
によって決定する。
It can be calculated by The delay time T at this time can be measured, for example, by the propagation time measuring circuit 5 having the configuration of the embodiment shown in the third wR. In Fig. 3, 3 is a non-focusing type probe, 4 is a transceiver for a non-focusing type probe, and 5 is a propagation time measuring circuit, which defocuses the ultrasonic waves from the transceiver for a non-focusing type probe 4. At the time of transmission to the type probe 3, the counter circuit 51 starts counting the pulse signals from the clock pulse generation circuit 52, and the ultrasonic signal reflected from the defect 2 (see Fig. 1) is transmitted to the non-focused type probe 3. Probe transceiver 4
After that, AGC (Automatic Galn C)
control) circuit 53 and amplifies the signal to a predetermined amplitude, the reflected wave detection port l! 54, when the predetermined amplitude vt is exceeded, a counter stop signal is sent from the reflected wave detection circuit 54 to the counter circuit 5, causing the counter circuit 51 to stop counting clock pulses. By the propagation time measurement circuit 5 having such a configuration, the propagation time T of the ultrasonic wave is
A count value proportional to can be obtained. Note that the frequency of the clock pulse generated by the clock pulse generation circuit 52 is determined depending on the measurement accuracy of the distance from the non-focusing probe 3 to the defect 2.

第4図は第3図における各部の入出力信号の代表的なも
ののタイムチャートで、(a)は非集束型探触子用送受
信器4からのカウント開始信号〜、4a、(b)はAG
C回路53からの反射波の増幅信号53a、(a)は反
射波検出回路54からのカウンタ停止信号54a、(d
)はクロックパルス発生回路52からのクロックパルス
信号52aである。カウンタ回路51では、カウント開
始信号4aのパルスが入力される時点t1からクロック
パルス信号52aのパルスのカウントを開始し、カウン
ト停止信号54aのパルスが入力される時点t2 まで
の間クロックパルスをカウントする。
FIG. 4 is a time chart of typical input/output signals of each part in FIG.
The amplified signal 53a, (a) of the reflected wave from the C circuit 53 is the counter stop signal 54a, (d) from the reflected wave detection circuit 54.
) is a clock pulse signal 52a from the clock pulse generation circuit 52. The counter circuit 51 starts counting the pulses of the clock pulse signal 52a from time t1 when the pulse of the count start signal 4a is input, and counts the clock pulses until time t2 when the pulse of the count stop signal 54a is input. .

(1)式によって非集束型探触子3から欠陥2までの距
離が求められれば、非集束型探触子3、集束型探触子7
と欠陥2との位置関係が第5図に示すような場合を想定
すれば、集束型探触子7に用いている各アレイ振動子の
遅れ時間τ、(i=1〜n)は、次のように決定するこ
とができる。
If the distance from the non-focusing probe 3 to the defect 2 is determined by equation (1), then the distance between the non-focusing probe 3 and the focusing probe 7 is
Assuming that the positional relationship between and defect 2 is as shown in Figure 5, the delay time τ, (i = 1 to n) of each array transducer used in the focusing probe 7 is as follows. It can be determined as follows.

ここで、アレイ振動子はn個、集束型探触子7の中心か
ら非集束型探触子3の中心までの距離をD、非集束型探
触子3の直径をd、焦点位置をP、、集束型探触子7の
中心から焦点位置P、までの水平距離をXo、アレイ探
触子の位置を集束型探触子7の中心を零としてそれぞれ
x1〜Xいアレイ探触子のピッチ間隔をPとすると、i
番目のアレイ振動子の位1!xi 、焦点位IIP、の
位置xllはそれぞれ次式のようになる。
Here, the number of array transducers is n, the distance from the center of the focused probe 7 to the center of the non-focused probe 3 is D, the diameter of the non-focused probe 3 is d, and the focal position is P. , , the horizontal distance from the center of the focusing probe 7 to the focal point P is Xo, and the position of the array probe is x1 to X, respectively, with the center of the focusing probe 7 as zero. If the pitch interval is P, then i
The digit 1 of the th array transducer! The positions xll of xi, focal position IIP, and focal position IIP are expressed by the following equations.

X、 = L tan θa         −(3
)ここに、θ。;集束型探触子7の中心から垂線と焦点
位MPFとを結ぶ線との なす角 L;集束型探触子7の中心から焦点 位Wt P F までの垂直距離 よって、i番目のアレイ振動子から送信された超音波の
被検体1の中のビーム路程Q1は、nt=57τX、)
 ”+L”   ・・・(4)で表わされる。したがっ
て、1番目のアレイ振動子のビーム路程を基準にすれば
、各アレイ振動子の路程差Δg、(i=1〜n)および
遅延時間τ、は、被検体1中の音速をCとすると、ハ、
=!Σ;−5璽ア;・・・(5) で示される。
X, = L tan θa −(3
) here, θ. ;Angle L between the perpendicular from the center of the focusing probe 7 and a line connecting the focal point MPF;Depending on the vertical distance from the center of the focusing probe 7 to the focal point Wt P F, the i-th array vibration The beam path length Q1 of the ultrasonic waves transmitted from the child in the subject 1 is nt=57τX,)
"+L"...Represented by (4). Therefore, if the beam path length of the first array transducer is used as a reference, the path length difference Δg, (i=1 to n) and delay time τ of each array transducer are as follows: ,Ha,
=! It is shown as Σ;-5〽a;...(5).

このように、欠陥2の焦点位置Pvまでの垂直圧JII
Lと集束型探触子7の中心からの欠陥2の焦点位[P、
までの水平距離X。および被検体1中の音速Cとの関係
から、超音波ビームは(6)式によって決まる各アレイ
振動子に対する遅延時間τ、を設定すれば、焦点位1 
p vに焦点を結ばせることができる。
In this way, the vertical pressure JII to the focus position Pv of defect 2
L and the focal position of the defect 2 from the center of the focusing probe 7 [P,
Horizontal distance to X. From the relationship with the sound velocity C in the object 1, the ultrasonic beam can be set at the focal position 1 by setting the delay time τ for each array transducer determined by equation (6).
It is possible to focus on p v.

そして、探傷方向を第5図に示すように右方向とすれば
、非集束型探触子3で最初に反射波が受信されるのは、
欠陥2の最左端にほぼ対応する。
If the flaw detection direction is set to the right as shown in FIG. 5, the reflected wave is first received by the non-focusing probe 3 as
This almost corresponds to the leftmost edge of defect 2.

よって、集束型探触子7による精密探傷範囲としては、
被検体1の深さLで、超音波ビームの焦点P、としては
、 X、 <X<X、+ΔX+7)範囲を探傷すれば、
欠陥2の大きさ、形状を精密に測定することができる。
Therefore, the precision flaw detection range using the focusing probe 7 is as follows:
At the depth L of the object 1, the focal point P of the ultrasonic beam is X, <X<X, +ΔX+7).
The size and shape of the defect 2 can be precisely measured.

なお、ここでは、非集束型探触子3と集束型探触子7と
を間隔りだけ離して一体として走査し、非集束型探触子
3で欠陥2を検出した場所から移動しない状態で集束型
探触子7の一次元アレイ撮動子による超音波ビームを走
査する方式について述べたが、欠陥2の深さLが小さい
場合には、集束型探触子7によるビーム入射角θ。が大
きくなり過ぎる場合が発生する。このような場合には、
集束型探触子7の中心を欠陥2の検出をした位置まで移
動した後、焦点距離Rが、L<R<L+ΔLの範囲で超
音波ビームを扇形に走査しなから探傷するようにした方
がよい、ただし、焦点距離変化範囲ΔLはあらかじめ予
想される欠陥2の大きさから設定しておくようにする。
In this case, the non-focusing probe 3 and the focusing probe 7 are separated by an interval and scanned as a unit, and the non-focusing probe 3 is scanned without moving from the location where the defect 2 is detected. The method of scanning the ultrasonic beam using the one-dimensional array sensor of the focusing probe 7 has been described, but if the depth L of the defect 2 is small, the beam incidence angle θ by the focusing probe 7 will change. may become too large. In such a case,
After moving the center of the focusing probe 7 to the position where the defect 2 is detected, the ultrasonic beam is scanned in a fan shape within the range of focal length R < R < L + ΔL before flaw detection is performed. However, the focal length change range ΔL should be set in advance based on the expected size of the defect 2.

上記した本発明の実施例によれば、探傷領域が広範囲な
被検体1に対しても、高精度、かつ、高速で欠陥2の評
価が可能になるという利点がある。
According to the embodiment of the present invention described above, there is an advantage that it is possible to evaluate defects 2 with high accuracy and at high speed even for the object 1 whose flaw detection area is wide.

なお、上記した実施例では、集束型探触子7として一次
元アレイ振動子を用いたものについて説明したが、第6
図に示すように、焦点距離が固定された複数個の集束型
探触子71〜7.を用い、アレイ振動子を用いた場合と
同様に、非集束型探触子3によって得られる欠陥2まで
の超音波の伝播時間から欠陥2までの距離を算出し、そ
のデータに基づいて欠陥2までの距離に合った焦点距離
を有する集束型探触子7.を探触子切替器10によって
選択し、その選択された集束型探触子71を位置決めし
なから欠陥2の大きさ、形などを高精度で探傷するよう
にしてもよい。
In the above embodiment, a one-dimensional array transducer was used as the focusing probe 7, but the sixth embodiment
As shown in the figure, a plurality of focusing probes 71-7. each have a fixed focal length. As in the case of using an array transducer, the distance to defect 2 is calculated from the propagation time of the ultrasonic wave to defect 2 obtained by the non-focusing probe 3, and the distance to defect 2 is calculated based on the data. 7. A focusing probe with a focal length matching the distance to 7. The size, shape, etc. of the defect 2 may be detected with high precision by selecting the selected focusing probe 71 using the probe switching device 10 and positioning the selected focusing probe 71.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、被検体の各種欠
陥を高精度、かつ、高速で探傷することができるという
効果がある。
As explained above, according to the present invention, there is an effect that various defects in a test object can be detected with high precision and at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超音波探傷装置の一実施例を示す基本
構成図、第2図は第1図における送信信号と反射波受信
信号との時間関係を示す図、第3図は第1図の伝播時間
測定回路の一実施例を示すブロック図、第4図は第3図
における各部の入出力信号の代表的なもののタイムチャ
ート、第5図は集束型探触子、非集束型探触子、欠陥お
よび超音波ビームの焦点位置の関係を示す図、第6図は
本発明の他の実施例を示す基本構成図である。 1・・・被検体、2・・・欠陥、3・・・非集束型探触
子、4・・・非集束型探触子用送受信器、5・・・伝播
時間測定回路、6・・・データ処理装置、7・・・集束
型探触子、8・・・遅延回路、9・・・集束型探触子用
送受信器。 10・・・探触子切替器、51・・・カウンタ回路、5
2・・・クロックパルス発生回路、53・・・AGC回
路。 第 2 口 ′$3日 第+ 口 ′yfJs  閉 第 i
FIG. 1 is a basic configuration diagram showing an embodiment of the ultrasonic flaw detection device of the present invention, FIG. 2 is a diagram showing the time relationship between the transmitted signal and the reflected wave reception signal in FIG. 1, and FIG. Figure 4 is a time chart of typical input/output signals of each part in Figure 3. Figure 5 is a block diagram showing an example of the propagation time measurement circuit shown in Figure 3. FIG. 6 is a diagram illustrating the relationship among the probe, the defect, and the focal position of the ultrasonic beam, and is a basic configuration diagram illustrating another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Object, 2... Defect, 3... Unfocused probe, 4... Transmitter/receiver for non-focused probe, 5... Propagation time measurement circuit, 6... - Data processing device, 7... Focusing type probe, 8... Delay circuit, 9... Transmitter/receiver for focusing type probe. 10... Probe switching device, 51... Counter circuit, 5
2... Clock pulse generation circuit, 53... AGC circuit. 2nd opening '$ 3rd day + opening 'yfJs closing i

Claims (1)

【特許請求の範囲】 1、金属材料に存在する各種欠陥を検出する超音波探傷
装置において、非集束型探触子と、集束型探触子と、前
記非集束型探触子によって検出された超音波エコーの伝
播時間から被検体に存在する欠陥の位置を演算する演算
手段と、前記欠陥位置に前記集束型探触子の焦点を合わ
せる制御手段と、焦点を合わせた前記集束型探触子によ
って検出した超音波エコーを受信して、該エコー信号か
ら前記被検体の欠陥の大きさ、形状を検出する検出手段
とを具備することを特徴とする超音波探傷装置。 2、前記集束型探触子は、遅延時間を前記非集束型探触
子によって検出された超音波エコーの伝播時間によって
変更できる複数のアレイ振動子を用いてある特許請求の
範囲第1項記載の超音波探傷装置。 3、前記集束型探触子は、焦点が異なる複数個の集束型
探触子からなり、前記制御手段は、前記非集型探触子に
よって検出された超音波エコーの伝播時間に応じて前記
集束型探触子を切り替える探触子切替手段を備えている
特許請求の範囲第1項記載の超音波探傷装置。
[Claims] 1. In an ultrasonic flaw detection device for detecting various defects present in metal materials, there is a non-focusing probe, a focusing probe, and a defect detected by the non-focusing probe. a calculation means for calculating the position of a defect existing in the object from the propagation time of an ultrasonic echo; a control means for focusing the focusing probe on the defect position; and a focusing probe for focusing the focusing probe on the defect position. 1. An ultrasonic flaw detection apparatus comprising: a detecting means for receiving an ultrasonic echo detected by the above-described method, and detecting the size and shape of the defect in the object from the echo signal. 2. The focused probe uses a plurality of array transducers whose delay time can be changed depending on the propagation time of the ultrasonic echoes detected by the non-focused probe. Ultrasonic flaw detection equipment. 3. The focusing probe is composed of a plurality of focusing probes having different focuses, and the control means is configured to adjust the focusing probe according to the propagation time of the ultrasonic echo detected by the non-focusing probe. The ultrasonic flaw detection apparatus according to claim 1, further comprising probe switching means for switching between focusing probes.
JP60086427A 1985-04-24 1985-04-24 Ultrasonic flaw inspecting device Pending JPS61245055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086427A JPS61245055A (en) 1985-04-24 1985-04-24 Ultrasonic flaw inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086427A JPS61245055A (en) 1985-04-24 1985-04-24 Ultrasonic flaw inspecting device

Publications (1)

Publication Number Publication Date
JPS61245055A true JPS61245055A (en) 1986-10-31

Family

ID=13886599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086427A Pending JPS61245055A (en) 1985-04-24 1985-04-24 Ultrasonic flaw inspecting device

Country Status (1)

Country Link
JP (1) JPS61245055A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169555A (en) * 1987-01-06 1988-07-13 Nippon Steel Corp Ultrasonic flaw detecting method for cast and forged body and thick wall steel with complicate internal defect
JPS6469947A (en) * 1987-09-11 1989-03-15 Toshiba Corp Ultrasonic wave flaw detector
JP2002214205A (en) * 2001-01-12 2002-07-31 Kawasaki Heavy Ind Ltd Ultrasonic flaw detector
JP2017003481A (en) * 2015-06-12 2017-01-05 富士重工業株式会社 Ultrasonic flaw detection system, ultrasonic flaw detection method, and aircraft structure
CN111855824A (en) * 2019-04-26 2020-10-30 通用电气公司 Ultrasonic apparatus and control method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169555A (en) * 1987-01-06 1988-07-13 Nippon Steel Corp Ultrasonic flaw detecting method for cast and forged body and thick wall steel with complicate internal defect
JPS6469947A (en) * 1987-09-11 1989-03-15 Toshiba Corp Ultrasonic wave flaw detector
JP2002214205A (en) * 2001-01-12 2002-07-31 Kawasaki Heavy Ind Ltd Ultrasonic flaw detector
JP4633268B2 (en) * 2001-01-12 2011-02-16 川崎重工業株式会社 Ultrasonic flaw detector
JP2017003481A (en) * 2015-06-12 2017-01-05 富士重工業株式会社 Ultrasonic flaw detection system, ultrasonic flaw detection method, and aircraft structure
US10180410B2 (en) 2015-06-12 2019-01-15 Subaru Corporation Ultrasonic test system, ultrasonic test method and aircraft structural object
CN111855824A (en) * 2019-04-26 2020-10-30 通用电气公司 Ultrasonic apparatus and control method thereof
CN111855824B (en) * 2019-04-26 2023-10-27 通用电气公司 Ultrasonic device and control method thereof

Similar Documents

Publication Publication Date Title
US3683680A (en) Ultrasonic flaw detection apparatus
US8150652B2 (en) Method and system for automatic wedge identification for an ultrasonic inspection system
RU2604562C2 (en) Method of resilient properties ultrasonic measurement
KR20070065934A (en) Apparatus and method for crack length evaluation by phased array ultrasonic
JPS61245055A (en) Ultrasonic flaw inspecting device
US3592052A (en) Ultrasonic crack depth measurement
JPS6321135B2 (en)
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JPS61160053A (en) Ultrasonic flaw detection test
US4603583A (en) Method for the ultrasonic testing of ferritic parts having a cladding
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
JP4112526B2 (en) Ultrasonic flaw detection method and apparatus
JP3782410B2 (en) Ultrasonic flaw detection method and apparatus using Rayleigh wave
SU815614A1 (en) Ultrasonic method of young&#39;s modulus measurement
JPH0545346A (en) Ultrasonic probe
Ossant et al. Airborne ultrasonic imaging system for parallelepipedic object localization
JPH08261992A (en) Ultrasonic flaw detector
JPH0394109A (en) Ultrasonic measuring device
SU1732177A1 (en) Method of determining ultrasound velocity temperature coefficient
JPH0749944B2 (en) Simultaneous measurement of material thickness and sound velocity
JP2612890B2 (en) Ultrasonic flaw detection method
SU1320742A1 (en) Method of ultrasonic shadow examination of articles and device for effecting same
JP2883051B2 (en) Ultrasonic critical angle flaw detector
JP3606146B2 (en) Ultrasonic flaw detection method and apparatus
JPH0729447Y2 (en) Ultrasonic measuring device