JPH0749944B2 - Simultaneous measurement of material thickness and sound velocity - Google Patents

Simultaneous measurement of material thickness and sound velocity

Info

Publication number
JPH0749944B2
JPH0749944B2 JP4207212A JP20721292A JPH0749944B2 JP H0749944 B2 JPH0749944 B2 JP H0749944B2 JP 4207212 A JP4207212 A JP 4207212A JP 20721292 A JP20721292 A JP 20721292A JP H0749944 B2 JPH0749944 B2 JP H0749944B2
Authority
JP
Japan
Prior art keywords
thickness
sound velocity
measured
ultrasonic
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4207212A
Other languages
Japanese (ja)
Other versions
JPH06174455A (en
Inventor
中 一 司 山
藤 治 道 佐
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP4207212A priority Critical patent/JPH0749944B2/en
Publication of JPH06174455A publication Critical patent/JPH06174455A/en
Publication of JPH0749944B2 publication Critical patent/JPH0749944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生産プロセス管理、非
破壊検査、材料試験計測等のために有効な材料の厚さ及
び音速の同時測定法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for simultaneously measuring material thickness and sound velocity, which is effective for production process control, nondestructive inspection, material test measurement and the like.

【0002】[0002]

【従来の技術】金属の圧延やプラスティックシートの延
伸などの製造プロセスでは、製品の厚さを設計値に保つ
必要があるため、厚さの測定が重要である。超音波を用
いた厚さ測定は、簡便で精度の高い方法として多く用い
られている。しかし、この測定には音速の値が必要であ
り、しかも材質が変化すると音速値が変動するので、厚
さの測定値に誤差が生じるという問題点がある。逆に、
材料の品質管理のためには、音速を測定すると効果的で
あるが、一般には厚さを正確に測定しておく必要があ
り、厚さの測定誤差が音速測定の誤差となる。
2. Description of the Related Art In manufacturing processes such as rolling of metal and stretching of plastic sheets, it is necessary to keep the thickness of a product at a designed value, and therefore it is important to measure the thickness. Thickness measurement using ultrasonic waves is often used as a simple and highly accurate method. However, this measurement requires a value of sound velocity, and since the sound velocity value changes when the material changes, there is a problem that an error occurs in the measured value of thickness. vice versa,
For the quality control of the material, it is effective to measure the sound velocity, but generally it is necessary to measure the thickness accurately, and the thickness measurement error becomes the sound velocity measurement error.

【0003】上述したところを更に具体的に説明する
と、超音波で物体の音速を測る場合、物体の厚さDを別
にマイクロメータなどで計測し、この値と物体中の超音
波の往復伝搬時間の比から音速を計算するのが一般的で
ある。すなわち、超音波が物体中を板厚方向に往復する
時間Δtを測定し、音速vを、v=2D/Δtによって
計算する。逆に、物体中の音速が既知で、その物体の厚
さを求めたい場合は、市販の超音波厚さ計を用いればよ
い。この超音波厚さ計は、式D=vΔt/2によって厚
さDを計算するものである。すなわち、超音波厚さ計で
は音速値vを入力しなければならない。しかしながら、
一般には、物体の厚さを測定することも困難で、音速も
未知の場合があり、上述した方法ではこのような場合に
厚さを計測出来なかった。
To explain the above-mentioned point more concretely, when measuring the sound velocity of an object with ultrasonic waves, the thickness D of the object is measured separately with a micrometer, and this value and the round-trip propagation time of ultrasonic waves in the object are measured. It is common to calculate the speed of sound from the ratio of. That is, the time Δt during which the ultrasonic wave reciprocates in the plate thickness direction in the object is measured, and the sound velocity v is calculated by v = 2D / Δt. On the contrary, if the sound velocity in the object is known and the thickness of the object is desired to be obtained, a commercially available ultrasonic thickness gauge may be used. This ultrasonic thickness gauge calculates the thickness D by the formula D = vΔt / 2. That is, the sound velocity value v must be input in the ultrasonic thickness gauge. However,
In general, it is difficult to measure the thickness of an object, and the sound velocity may be unknown, and the thickness cannot be measured by the above method in such a case.

【0004】一方、蛍光X線や渦電流などを用いた厚さ
計もあるが、これらもX線スペクトルや電気伝導度など
の物性値が一定であることを前提にしており、この意味
では超音波厚さ計と同じ問題点がある。最も直接的な厚
さ測定法は、マイクロメータやダイヤルゲージのよう
な、接触プローブの変位から厚さを求める方式である。
しかし、これはヘッドの太さの領域での平均値であり、
厚さが場所によって異なる場合は音速測定と同一場所で
の厚さを求めるのが困難である。また、生産ラインや材
料試験中の動いている板への適用が容易でない。さら
に、非接触の厚さ計としては、光切断法などの光学的プ
ローブがあり、移動物体の測定にも適している。しか
し、光学計測は埃や液体の濁りの妨害を受け易く、生産
ラインなどの過酷な環境では使用できない。
On the other hand, there are thickness gauges using fluorescent X-rays and eddy currents, but these also assume that the physical properties such as X-ray spectrum and electric conductivity are constant, and in this sense, they are super It has the same problems as the sonic thickness gauge. The most direct thickness measurement method is a method for obtaining the thickness from the displacement of a contact probe, such as a micrometer or a dial gauge.
However, this is the average value in the area of head thickness,
When the thickness differs depending on the location, it is difficult to obtain the thickness at the same location as the sound velocity measurement. Also, it is not easy to apply to a moving plate during production test or material testing. Further, as a non-contact thickness gauge, there is an optical probe such as a light section method, which is suitable for measuring a moving object. However, optical measurement is easily affected by dust and turbidity of liquid, and cannot be used in a harsh environment such as a production line.

【0005】[0005]

【発明が解決しようとする課題】本発明の技術的課題
は、超音波を用いた簡便で精度の高い厚さ測定におい
て、材料の同一部分についてその厚さと音速を同時に測
定することを可能にした新しい方法を提供し、品質管理
の精度と信頼性を大幅に向上することにある。
SUMMARY OF THE INVENTION The technical problem of the present invention is that it is possible to simultaneously measure the thickness and the sound velocity of the same portion of a material in a simple and highly accurate thickness measurement using ultrasonic waves. It is to provide a new method and significantly improve the accuracy and reliability of quality control.

【0006】[0006]

【課題を解決するための手段、作用】上記課題を解決す
るための本発明の材料の厚さ及び音速の同時測定法は、
一対の超音波送信子と受信子を音速vC が既知の液体中
に対向させて配置し、その間に板状材料を挿入して送信
子から超音波を送信した場合の直接透過波V1 と、材料
中を1往復した往復波V2 との受信子への到達時刻の間
隔Δt、及び上記直接透過波V1 と材料を挿入しない場
合の液体透過波V3 との到達時刻の間隔△t’を計測
し、それらの時間間隔に基づいて、 v=vC (1+2Δt’/Δt) により材料中の超音波の音速vを求め、また、 D=vC (Δt/2+Δt’) により材料の厚さDを求めることを特徴とするものであ
る。
[Means for Solving the Problems] The method for simultaneously measuring the thickness and the sound velocity of the material of the present invention for solving the above problems is as follows.
A pair of ultrasonic transmitter and receiver are arranged so as to face each other in a liquid whose sound velocity v C is known, and a plate-like material is inserted between them to transmit a direct transmitted wave V 1 when ultrasonic waves are transmitted from the transmitter. , An interval Δt of arrival time of the round-trip wave V 2 that has made one round trip in the material to the receiver, and an interval Δt of arrival time of the direct transmission wave V 1 and the liquid transmission wave V 3 when the material is not inserted. 'Is measured, and based on those time intervals, the sound velocity v of the ultrasonic wave in the material is obtained by v = v C (1 + 2Δt' / Δt), and D = v C (Δt / 2 + Δt ') It is characterized in that the thickness D is obtained.

【0007】図面を参照して更に具体的に説明すると、
図1において、超音波送信子と受信子は、それらの相対
的な位置が固定されて、音速vC の超音波伝搬液体中に
保持されているものとする。この送信子と受信子との間
に試料としての板状材料が無い状態で、先ず、送信子か
ら送信された超音波パルスを受信子で検出して記録して
おく。このパルスを図2におけるV3 とする。
More specifically, referring to the drawings,
In FIG. 1, it is assumed that the ultrasonic transmitter and the receiver have their relative positions fixed and are held in the ultrasonic wave propagating liquid at the sound velocity v C. In a state where there is no plate-shaped material as a sample between the transmitter and the receiver, first, the ultrasonic pulse transmitted from the transmitter is detected and recorded by the receiver. This pulse is V 3 in FIG.

【0008】次に、送信子と受信子との間に板状材料か
らなる試料を挿入して同様の測定を行い、送信子からの
直接透過波を図2におけるV1 とし、試料中を1往復し
た往復波を同V2 とする。このとき、試料中の音速vが
液体中の音速vC より大きければ、直接透過波V1 の到
達時刻はパルスV3 のそれより速くなる筈であり、その
時間差Δt’は、 Δt’=(D/vC −D/v) である。また、試料内部を1往復して2回反射してきた
往復波V2 は、直接透過波V1より時間差Δt=2D/
vだけ遅れることも容易に分かる。
Then, a sample made of a plate-shaped material is inserted between the transmitter and the receiver, and the same measurement is performed. The direct transmission wave from the transmitter is set to V 1 in FIG. The round-trip wave that makes a round trip is the same V 2 . At this time, if the sound velocity v in the sample is higher than the sound velocity v C in the liquid, the arrival time of the direct transmitted wave V 1 should be faster than that of the pulse V 3 , and the time difference Δt ′ is Δt ′ = ( D / v C −D / v). In addition, the round-trip wave V 2 that has reflected back and forth once inside the sample twice has a time difference Δt = 2D / from the directly transmitted wave V 1.
It is easy to see that it is delayed by v.

【0009】そして、これらの式は2つの未知数Dとv
を含むので、両式をDとvについて解くと、 v=vC (1+2Δt’/Δt) D=vC (Δt/2+Δt’) を得る。すなわち、超音波の送信子と受信子の間に試料
を挿入した場合と試料が無い場合の超音波伝搬時間の差
及び試料中の往復伝搬時間の計測に基づき、試料の厚さ
と音速が同時測定される。
Then, these equations yield two unknowns D and v.
Since both equations are solved for D and v, we obtain v = v C (1 + 2Δt ′ / Δt) D = v C (Δt / 2 + Δt ′). That is, the thickness of the sample and the sound velocity are simultaneously measured based on the difference in the ultrasonic wave propagation time when the sample is inserted between the transmitter and the receiver of the ultrasonic wave and when there is no sample and the round-trip propagation time in the sample. To be done.

【0010】一方、図3は、材料試験における測定に本
発明の方法を応用する場合を示している。この場合に
は、材料試験機に試料を保持させて荷重を負荷し、パル
ス発生器からの出力に基づいて超音波送信子において超
音波パルスを発生させ、それを受信用超音波レンズを介
してデジタルオシロスコープに入力、記録し、前述した
時間間隔Δt及び△t’を計測して、材料中の超音波の
音速及び材料の厚さの変化を求めるものである。
On the other hand, FIG. 3 shows a case where the method of the present invention is applied to measurement in a material test. In this case, hold the sample on the material testing machine, apply a load, generate an ultrasonic pulse in the ultrasonic transmitter based on the output from the pulse generator, and pass it through the receiving ultrasonic lens. It is input and recorded in a digital oscilloscope, and the time intervals Δt and Δt ′ described above are measured to determine the change in the sound velocity of ultrasonic waves in the material and the thickness of the material.

【0011】材料試験では、試料に荷重を負荷した場合
の変形によって試料の厚さや材質が時々刻々に変化す
る。厚さは場所によっても異なり、試験後にマイクロメ
ータで測っても、その変化の過程を知ることはできな
い。さらに、歪みの発生にともなって弾性率も逐次変化
するが、その変化を試験中に測定することは非常に困難
である。しかるに、上述した本発明の方法によれば、試
料の厚さ変化を簡易に測定することができる。また、弾
性率の変化に伴って試料中での音速が変化するので、音
速をも同時に計測できる本発明の方法は、この材料試験
における測定に極めて有用である。
In the material test, the thickness and material of the sample change momentarily due to deformation when a load is applied to the sample. The thickness varies depending on the place, and even if measured with a micrometer after the test, it is impossible to know the process of the change. Furthermore, the elastic modulus changes with the occurrence of strain, but it is very difficult to measure the change during the test. However, according to the method of the present invention described above, the change in thickness of the sample can be easily measured. Further, since the sound velocity in the sample changes with the change in elastic modulus, the method of the present invention that can measure the sound velocity at the same time is extremely useful for the measurement in this material test.

【0012】[0012]

【実施例】図4に、ステンレス鋼や、ポリエチレンなど
で、厚さが既知(マイクロメータで測定)の板状材料に
ついて、その既知の厚さと、図1により説明した本発明
の方法によって計測した厚さを比較した結果を示す。同
図からわかるように、本発明の方法による測定の結果
は、厚さ0.3mmから15mmにわたる様々な材質の板に
ついて、音速の相違にもかかわらず精度よく測定されて
いる。また、図5においては、本発明の方法で各種材料
について測定した音速と、それらの材料における音速の
文献値とを比較している。この場合も、両者の値はよく
一致している。そして、以上の結果から本発明の有用性
がわかる。
EXAMPLE FIG. 4 shows a plate-shaped material of known thickness (measured by a micrometer) such as stainless steel or polyethylene, which is measured by the known thickness and the method of the present invention described with reference to FIG. The result of having compared thickness is shown. As can be seen from the figure, the results of the measurement according to the method of the present invention are accurately measured with respect to plates of various materials having a thickness of 0.3 mm to 15 mm, regardless of the difference in sound velocity. Further, in FIG. 5, the sound speeds measured for various materials by the method of the present invention are compared with the literature values of the sound speeds of those materials. Also in this case, the values of both are in good agreement. The above results show the usefulness of the present invention.

【0013】また、図3によって説明したような方法
で、低温で引っ張り変形中の試料厚さの変化と音速の変
化を同時に計測した。図6にはSUS304の試料を−
70℃で引っ張り変形させた場合の厚さを示し、図7に
は同じく音速及びエコー振幅比(V1 /V2 )を示して
いる。
Further, the change in the sample thickness and the change in the sound velocity during tensile deformation at low temperature were simultaneously measured by the method as described with reference to FIG. The sample of SUS304 is shown in FIG.
FIG. 7 shows the thickness in the case of tensile deformation at 70 ° C., and FIG. 7 also shows the sound velocity and the echo amplitude ratio (V 1 / V 2 ).

【0014】これらの測定においては、荷重を20kgか
ら600kgまで段階的に増加させ、各段階で一定に制御
し、伸びが一定になってから計測した。試料の厚さは、
荷重増加に伴って減少し、音速も同様に低下した。さら
に、エコー比も低下し、減衰が減少したことを伺わせ
た。これらは、試験後取り出した試料を室温で厚さ測定
及び通常の方法での音速減衰測定を行い、600kgでの
値とほぼ同じであることを確認した。特に、減衰は低温
での試験によって顕著に減少することが、周波数70MH
z での測定から確認された。この変化はマルテンサイト
変態によるものであることを、着磁性の変化からも確認
した。
In these measurements, the load was increased stepwise from 20 kg to 600 kg, the load was controlled to be constant at each step, and the measurement was performed after the elongation became constant. The sample thickness is
It decreased with increasing load, and the sound velocity also decreased. Furthermore, it was suggested that the echo ratio also decreased and the attenuation decreased. The thickness of these samples taken out after the test was measured at room temperature and the sound velocity attenuation was measured by a usual method, and it was confirmed that they were almost the same as the values at 600 kg. In particular, it can be seen that the attenuation is significantly reduced by the test at low temperature.
Confirmed from measurement at z. It was also confirmed from the change in magnetizability that this change was due to martensitic transformation.

【0015】[0015]

【発明の効果】以上に詳述した本発明の方法によれば、
以下に列挙するような効果を期待することができる。 1.本発明によれば、音速も厚さも未知の板材や薄膜に
ついて、音速と厚さが同時かつ独立に計測できるので、
これらの材料の品質管理や非破壊検査に有効である。
According to the method of the present invention detailed above,
The effects listed below can be expected. 1. According to the present invention, for a plate material or a thin film whose sound velocity and thickness are unknown, since the sound velocity and the thickness can be measured simultaneously and independently,
It is effective for quality control and non-destructive inspection of these materials.

【0016】2.本発明の方法では、1回の超音波パル
スの送信受信で測定に必要な信号を入手できると同時
に、必要な演算が極めて簡単であるため、極めて迅速に
測定できる。この時間は、最近のデジタル信号処理技術
によれば、1ミリ秒以下にすることも出来る。そのた
め、この特徴を利用すると、材料が破壊する瞬間の形状
と音速の変化を関連づけて計測することも可能になり、
材料の破壊特性の研究にとって有力な武器になる。
2. According to the method of the present invention, a signal required for measurement can be obtained by transmitting and receiving one ultrasonic pulse at the same time, and at the same time, necessary calculation is extremely simple, so that measurement can be performed very quickly. This time can be less than 1 millisecond according to recent digital signal processing technology. Therefore, by using this feature, it becomes possible to measure the shape of the material at the moment of destruction and the change in sound velocity in association with each other.
It will be a powerful weapon for studying the fracture properties of materials.

【0017】3.本発明の方法を実現する装置は、通常
の超音波非破壊検査に用いる送信受信回路、デジタルメ
モリまたは時間間隔計測器、並びに簡単な演算装置のみ
でよいため、コストも低くできる。従って、工場のライ
ンにおいて検査に簡便に使用でき、生産品質の維持管理
に有用である。
3. The apparatus for realizing the method of the present invention can be reduced in cost because it only requires a transmission / reception circuit, a digital memory or a time interval measuring device, and a simple arithmetic unit used for a normal ultrasonic nondestructive inspection. Therefore, it can be easily used for inspection in a factory line and is useful for maintenance of production quality.

【0018】4.先に詳述したように、市販の超音波厚
さ計では音速値の入力を必要とし、蛍光X線、渦電流な
どを用いる厚さ計でも、それぞれの機器固有の物性値の
入力を前提とするのに対し、本発明ではそれらの必要が
無い。また、接触式プローブや光学的プローブでは、物
性値の設定なしに厚さの絶対測定ができるが、移動物体
や非清浄環境での適用が困難であるのに対し、超音波を
用いる本発明の方法では各種環境での測定に比較的容易
に適用することができる。
4. As described in detail above, a commercially available ultrasonic thickness meter requires input of sound velocity values, and thickness meters using fluorescent X-rays, eddy currents, etc. are also premised on input of physical property values unique to each device. However, the present invention does not require them. Further, in the contact type probe and the optical probe, the absolute thickness can be measured without setting the physical property values, but it is difficult to apply the method to a moving object or a non-clean environment. The method can be applied relatively easily to measurements in various environments.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法についての説明図である。FIG. 1 is an explanatory diagram of a method of the present invention.

【図2】本発明の測定法において得られる信号について
の説明図である。
FIG. 2 is an explanatory diagram of signals obtained by the measuring method of the present invention.

【図3】材料試験における測定に本発明の方法を応用す
る場合についての説明図である。
FIG. 3 is an explanatory diagram of a case where the method of the present invention is applied to measurement in a material test.

【図4】厚さが既知の試料の厚さと本発明の方法で計測
した厚さを比較した結果を示すグラフである。
FIG. 4 is a graph showing the results of comparison between the thickness of a sample having a known thickness and the thickness measured by the method of the present invention.

【図5】本発明の方法で測定した音速と音速の文献値と
を比較するグラフである。
FIG. 5 is a graph comparing the sound velocity measured by the method of the present invention with the literature value of the sound velocity.

【図6】材料試験において低温で引っ張り変形中の試料
厚さを測定した結果を示すグラフである。
FIG. 6 is a graph showing the results of measuring the sample thickness during tensile deformation at low temperature in a material test.

【図7】同じく音速及びエコー振幅比を測定した結果を
示すグラフである。
FIG. 7 is a graph showing the results of measuring the sound velocity and the echo amplitude ratio.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一対の超音波送信子と受信子を音速が既知
の液体中に対向させて配置し、その間に板状材料を挿入
して送信子から超音波を送信した場合の直接透過波と、
材料中を1往復した往復波との受信子への到達時刻の間
隔Δt、及び上記直接透過波と材料を挿入しない場合の
液体透過波との到達時刻の間隔△t’を計測し、それら
の時間間隔に基づいて材料中の超音波の音速及び材料の
厚さを求めることを特徴とする材料の厚さ及び音速の同
時測定法。
1. A direct transmitted wave when a pair of ultrasonic transmitters and receivers are arranged so as to face each other in a liquid whose sound velocity is known, and a plate-like material is inserted between them to transmit ultrasonic waves from the transmitters. When,
An interval Δt between arrival times at the receiver and a reciprocating wave traveling back and forth through the material, and an interval Δt ′ between arrival times between the direct transmission wave and the liquid transmission wave when the material is not inserted are measured. A method for simultaneous measurement of material thickness and sound velocity, characterized in that the sound velocity of ultrasonic waves in the material and the thickness of the material are obtained based on time intervals.
JP4207212A 1992-07-10 1992-07-10 Simultaneous measurement of material thickness and sound velocity Expired - Lifetime JPH0749944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4207212A JPH0749944B2 (en) 1992-07-10 1992-07-10 Simultaneous measurement of material thickness and sound velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4207212A JPH0749944B2 (en) 1992-07-10 1992-07-10 Simultaneous measurement of material thickness and sound velocity

Publications (2)

Publication Number Publication Date
JPH06174455A JPH06174455A (en) 1994-06-24
JPH0749944B2 true JPH0749944B2 (en) 1995-05-31

Family

ID=16536099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4207212A Expired - Lifetime JPH0749944B2 (en) 1992-07-10 1992-07-10 Simultaneous measurement of material thickness and sound velocity

Country Status (1)

Country Link
JP (1) JPH0749944B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69119936T2 (en) * 1990-02-28 1996-11-14 Victor Company Of Japan Data compression facility
US7426865B2 (en) * 2005-11-22 2008-09-23 General Electric Company Method for ultrasonic elastic modulus calculation and imaging
FR2999714B1 (en) * 2012-12-17 2016-01-15 Snecma PROCESS FOR CHARACTERIZING A PIECE OF COMPOSITE MATERIAL
CN106092003B (en) * 2016-08-09 2018-09-21 浙江大学 Multiple layer polymer tubular body thickness non-destructive measuring method

Also Published As

Publication number Publication date
JPH06174455A (en) 1994-06-24

Similar Documents

Publication Publication Date Title
US6122968A (en) Delay line for an ultrasonic probe and method of using same
US4305294A (en) Ultrasonic apparatus and method for measuring wall thickness
AU597636B2 (en) Measurement of residual stresses in material
US4432234A (en) Determination of plastic anisotropy in sheet material
US3587297A (en) Apparatus for precise stress measurement
JPH0749944B2 (en) Simultaneous measurement of material thickness and sound velocity
JPH0353137A (en) Stress measuring method
JPS61254849A (en) Stress measuring method
KR100258747B1 (en) Apparatus and method for measuring the thickness of solid material and the ultrasonic velocity
JPH03279856A (en) Ultrasonic material testing device
JPS61245055A (en) Ultrasonic flaw inspecting device
JPH0729447Y2 (en) Ultrasonic measuring device
JPH06258297A (en) Ultrasonic material testing device and material testing method by using ultrasonic wave
JPS5842919Y2 (en) stress measuring device
JP2773535B2 (en) Ultrasonic applied measuring device
JPS61274256A (en) Ultrasonic measurement for elastic constant of solid
JPH02296147A (en) Method and apparatus for measuring acoustic anisotropy
JPS6326340B2 (en)
JPH0394109A (en) Ultrasonic measuring device
JP3079912B2 (en) Metal material inspection equipment
JPH01145529A (en) Ultrasonic measuring apparatus
JPS62116206A (en) Ultrasonic dimension measuring apparatus
Keprt et al. Progress in primary calibration of acoustic emission sensors
RU2018815C1 (en) Ultrasonic method for measuring internal mechanical stresses
JPS62130308A (en) Ultrasonic size measuring instrument

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term