JPH01145529A - Ultrasonic measuring apparatus - Google Patents

Ultrasonic measuring apparatus

Info

Publication number
JPH01145529A
JPH01145529A JP62303363A JP30336387A JPH01145529A JP H01145529 A JPH01145529 A JP H01145529A JP 62303363 A JP62303363 A JP 62303363A JP 30336387 A JP30336387 A JP 30336387A JP H01145529 A JPH01145529 A JP H01145529A
Authority
JP
Japan
Prior art keywords
transducer
transmitting
receiving
vibrator
ultrasonic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62303363A
Other languages
Japanese (ja)
Inventor
Hiroyasu Nakamura
中村 弘康
Junichi Kajiwara
梶原 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP62303363A priority Critical patent/JPH01145529A/en
Publication of JPH01145529A publication Critical patent/JPH01145529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To precisely measure the propagation speed of an ultrasonic wave by removing the measuring error caused by the change of the circumferential temp., by providing a temp. compensating vibrator in the case of a probe apart from transmitting and receiving vibrators. CONSTITUTION:A temp. compensating vibrator 11 is provided in the case 3 of a probe P apart from vibrators 1, 2. The vibrator 11 is arranged in opposed relation to the surface 4a of test specimen 4 so as to provide a definite know interval to transmit and receive an ultrasonic wave with respect to the surface 4a. A transmitting part 12 applies transmission voltage to the vibrator 11 and a receiving part 13 receives signal voltage generated when the vibrator 11 receives the reflected wave from the surface 4a. A control part 14 is respectively connected to transmitting parts 6, 13 and receiving parts 6, 13, and the propagation time of the ultrasonic wave transmitted and received between the vibrators 1, 2 and that of the ultrasonic wave transmitted and received between the vibrator 11 and the surface 4a are separately operated to measure the propagation time of the ultrasonic wave propagating through the test specimen 4. By this method, the measuring error due to the change of circumferential temp. is compensated and the propagation speed of an ultrasonic wave can be precisely measured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超音波の伝搬速度を計測する超音波計測装置
に係わり、特に該伝搬速度を精密に計測するのに好適な
計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ultrasonic measuring device that measures the propagation speed of ultrasonic waves, and particularly to a measuring device suitable for precisely measuring the propagation speed.

[従来の技術] 非破壊試験に広く、かつ頻繁に使用されている超音波は
、その性質を利用して物体内部の欠陥探傷だけでなく各
種の用途に応用されている。これらの用途のうち被検体
内を伝搬する超音波の伝搬速度または伝搬時間を利用し
て測定するケースは多く、例えば具体的な例として鋼材
等の内部応力の測定、鋳鉄における黒鉛の球状化率の算
定、物体の厚さ測定等のほか、鋼材等の熱処理による焼
入れ深さの測定等がある。これら各測定においてその測
定精度を向上させるためには、超音波の伝搬速度または
伝搬時間を精度よく測定する必要がある。具体例として
前記焼入れ深さの測定の場合についてみると、焼入れ層
における超音波の伝搬速度は焼入れ深さが深くなるほど
遅くなる性質を有しており、伝搬速度を測定することに
より焼入れ深さを求めることができるが、焼入れ深さと
伝搬速度との相関は、一般に焼入れ深さ1m当りの伝搬
速度の変化が約1%と小さく、従って伝搬速度を精密に
計測しなければ伝搬速度の変化の捕捉はそれだけ粗くな
り、焼入れ深さを正確に測定することはできない。
[Prior Art] Ultrasonic waves, which are widely and frequently used in non-destructive testing, are applied not only to detecting defects inside objects but also to various other uses by utilizing their properties. Among these applications, measurements are often made using the propagation velocity or propagation time of ultrasonic waves propagating inside the specimen. Specific examples include measuring internal stress in steel materials, etc., and nodularity of graphite in cast iron. In addition to calculating the thickness of objects, measuring the thickness of objects, etc., it also measures the depth of quenching due to heat treatment of steel materials, etc. In order to improve the measurement accuracy in each of these measurements, it is necessary to accurately measure the propagation velocity or propagation time of ultrasonic waves. As a specific example, in the case of measuring the quenching depth, the propagation speed of ultrasonic waves in the quenching layer has the property of becoming slower as the quenching depth increases, and by measuring the propagation speed, the quenching depth can be determined. However, the correlation between quenching depth and propagation velocity is generally small, with a change in propagation velocity of about 1% per 1 m of quenching depth, and therefore it is difficult to capture changes in propagation velocity unless the propagation velocity is precisely measured. becomes coarser, making it impossible to accurately measure the hardening depth.

前記伝搬速度を計測する従来の計測装置の一般的な構成
例を第2図により説明する。図において1は送信用の振
動子、2は受信用の振動子で、振動子1,2はケース3
内に合成樹脂のくさびを介して相対させて配置されてお
り、振動子1,2およびケース3を主要部品として探触
子P0を構成している。4は被検体、4aは被検体4の
表面(探傷面)である。5は振動子1に送信電圧を印加
する送信部、6は振動子2の受波した信号電圧を受信す
る受信部、7は送信部5および受信部6に接続され振動
子1,2間に送受される超音波の伝搬時間を演算する制
御部である。上記構成において、振動子1に送信部5よ
り送信電圧を印加すると、振動子1より図示の方向へ超
音波が放射される。
A general configuration example of a conventional measuring device for measuring the propagation velocity will be explained with reference to FIG. 2. In the figure, 1 is a transmitting transducer, 2 is a receiving transducer, and transducers 1 and 2 are case 3.
The transducers 1 and 2 and the case 3 constitute the probe P0 as main components. 4 is the object to be inspected, and 4a is the surface (flaw detection surface) of the object 4 to be inspected. 5 is a transmitter that applies a transmission voltage to the vibrator 1; 6 is a receiver that receives the signal voltage received by the vibrator 2; 7 is connected to the transmitter 5 and the receiver 6, and is connected between the vibrators 1 and 2. This is a control unit that calculates the propagation time of transmitted and received ultrasonic waves. In the above configuration, when a transmission voltage is applied to the transducer 1 from the transmitter 5, an ultrasonic wave is emitted from the transducer 1 in the direction shown in the figure.

放射された超音波は、所定の角度で被検体4の表面4a
に達すると、縦波から横波にモード変換されて被検体4
内に入射され、被検体4の表層部を伝搬する。一定の距
離だけ伝搬したのち、再び横波から縦波にモード変換さ
れて表面4aより所定の角度で出射し振動子2に受波さ
れる。振動子2に受波された信号電圧は受信部6に送ら
れ、さらに制御部7に送られて振動子1,2間で送受し
た超音波の伝搬時間が計測される。この場合、振動子1
,2間で送受される超音波の伝搬距離は、探触子P。の
各部寸法から被検体4の表層部を伝搬する距離も含めて
既知であるから、上記伝搬時間に対応する伝搬速度が制
御部7において容易に演算される。
The emitted ultrasound waves strike the surface 4a of the subject 4 at a predetermined angle.
When the wave reaches the object 4, the mode is converted from longitudinal wave to transverse wave.
and propagates through the surface layer of the subject 4. After propagating a certain distance, the mode is converted from a transverse wave to a longitudinal wave again, and the wave is emitted from the surface 4a at a predetermined angle and received by the vibrator 2. The signal voltage received by the transducer 2 is sent to the receiving section 6, and further sent to the control section 7, where the propagation time of the ultrasonic waves transmitted and received between the transducers 1 and 2 is measured. In this case, vibrator 1
, the propagation distance of the ultrasonic waves transmitted and received between the probe P. Since the distance of propagation through the surface layer of the subject 4 is known from the dimensions of each part, the propagation speed corresponding to the propagation time is easily calculated by the control unit 7.

ところが上記計測において、計測装置の周囲温度は一定
とは限らず気温のほか測定者の手の温度等によりかなり
の変化をするのが通常であり、温度特性に留意した送信
部5.受信部6.制御部7を使用した場合であっても、
探触子P。の温度変化に対する特性が無視できない程度
に大きいことから、前記計測値に誤差を生ずる結果にな
る。−例として鋼材の超音波の音速の変化は10℃の温
度変化に対して約0.01%と無視できる程度に小さい
が、探触子P0内の音速はくさび形の合成樹脂を使用す
るため10℃の温度変化に対して約1%の超音波の音速
の変化を来し、計測誤差の主因となり伝搬速度を精密に
計測することができない問題点となっていた。
However, in the above measurement, the ambient temperature of the measuring device is not always constant and usually varies considerably depending on not only the air temperature but also the temperature of the measurer's hand. Receiving section 6. Even when using the control unit 7,
Probe P. Since the characteristics with respect to temperature changes are so large that they cannot be ignored, this results in an error in the measured value. -For example, the change in the sound speed of ultrasonic waves in steel is negligibly small, about 0.01% for a temperature change of 10°C, but the sound speed in the probe P0 is small because a wedge-shaped synthetic resin is used. A temperature change of 10° C. causes a change in the sound speed of an ultrasonic wave of about 1%, which is the main cause of measurement errors and poses a problem in that the propagation speed cannot be precisely measured.

[発明が解決しようとする問題点] 本発明は上記の問題点に鑑み、周囲温度の変化による計
測誤差を除去し、超音波の伝搬速度を精密に計測するこ
とができる超音波計測装置を提供することを目的とする
[Problems to be Solved by the Invention] In view of the above problems, the present invention provides an ultrasonic measurement device that can eliminate measurement errors due to changes in ambient temperature and accurately measure the propagation speed of ultrasonic waves. The purpose is to

[問題点を解決するための手段] ・ この目的を達成するため、本発明の超音波計測装置
は、同一のケース内に送信用の振動子と該振動子より放
射される超音波を被検体を介して受波する受信用の振動
子とを相対させて配置した探触子と、前記送信用の振動
子に送信電圧を印加する送信部と、前記受信用の振動子
の受波した信号電圧を受信する受信部と、前記送信部お
よび受信部に接続され前記送信用および受信用の両振動
子間で送受される超音波の伝搬時間を演算する制御部と
を備えた超音波計測装置において、前記探触子のケース
内に前記送信用および受信用の各振動子と別に該ケース
内で一定の間隔で超音波を送受する温度補償用の振動子
を内股し、該振動子の送受した超音波の伝搬時間を前記
送信用および受信用の面振動子の送受する超音波の伝搬
時間と区別して演算し、前記被検体を伝搬した伝搬時間
を計測する構成にしたことを特徴とする。
[Means for Solving the Problems] - In order to achieve this objective, the ultrasonic measuring device of the present invention includes a transmitting transducer and an ultrasonic wave emitted from the transducer in the same case. a probe disposed opposite to a receiving transducer that receives waves through the transmitting transducer; a transmitter that applies a transmission voltage to the transmitting transducer; and a signal received by the receiving transducer. An ultrasonic measuring device comprising: a receiving section that receives a voltage; and a control section that is connected to the transmitting section and the receiving section and calculates the propagation time of ultrasonic waves transmitted and received between the transmitting and receiving transducers. In addition to the transmitting and receiving transducers, a temperature-compensating transducer for transmitting and receiving ultrasonic waves at regular intervals is housed inside the case of the probe, and the transducer transmits and receives the transducer. The method is characterized in that the propagation time of the transmitted ultrasonic waves is calculated separately from the propagation time of the ultrasonic waves transmitted and received by the transmitting and receiving planar transducers, and the propagation time of the transmitted ultrasonic waves through the object is measured. .

[実施例] 以下本発明の実施例を第1図を参照して説明する。図中
第2図と同じ符号のものは同じものを示す。図において
11はケース3内に振動子1,2と別に内設された温度
補償用の振動子で、図示の場合は被検体4の表面4aに
対して既知の一定の間隔を設けて対向して配置され1表
面4aに対して超音波を送受する送受兼用の振動子とな
っている。
[Example] Hereinafter, an example of the present invention will be described with reference to FIG. In the figure, the same reference numerals as in FIG. 2 indicate the same thing. In the figure, reference numeral 11 denotes a temperature-compensating vibrator installed inside the case 3 separately from the vibrators 1 and 2. It serves as a transducer for transmitting and receiving ultrasonic waves to and from one surface 4a.

探触子Pは前記第2図に示す探触子P0に比べて振動子
11が追加されたものになっている。12は振動子11
に送信電圧を印加する送信部、13は振動子11が表面
4aからの反射波を受波した信号電圧を受信する受信部
、14は送信部5,12および受信部6.13にそれぞ
れ接続され、振動子1,2問および振動子11と表面4
8間とで送受される超音波の各伝搬時間を演算する制御
部である。
The probe P has a vibrator 11 added to the probe P0 shown in FIG. 2. 12 is the vibrator 11
13 is a receiving section that receives the signal voltage obtained by the vibrator 11 receiving the reflected wave from the surface 4a, and 14 is connected to the transmitting sections 5, 12 and the receiving section 6.13, respectively. , transducer 1 and 2 questions and transducer 11 and surface 4
This is a control unit that calculates each propagation time of ultrasonic waves transmitted and received between the two.

上記構成の実施例において、振動子1,2間の゛超音波
の伝搬時間は前記従来の第2図の説明と同様に計測され
る。すなわち被検体4の表面4aの超音波の入射点から
出射点までの被検体4の設定された既知の距離を伝搬す
る時間t1と、振動子1より放射された超音波が振動子
2に受波されるまでの探触子P内を伝搬する時間t、と
の合計された時間t0が計測される。
In the embodiment with the above configuration, the propagation time of the ultrasonic waves between the transducers 1 and 2 is measured in the same manner as described in the conventional art shown in FIG. That is, the time t1 for the ultrasonic wave to propagate a set known distance of the object 4 from the incident point to the emission point on the surface 4a of the object 4, and the ultrasonic wave emitted from the transducer 1 received by the transducer 2. The total time t0 including the time t for propagation within the probe P until being waved is measured.

一方、送信部12からの信号により振動子11から放射
された超音波は、被検体4の表面4aに達し、該表面4
aで反射した反射波が振動子11に受波され受信部13
を介して制御部14に送られる。制御部14では振動子
11と表面4aとの間で送受される超音波の伝搬時間t
、が計測される。計測された前記各伝搬時間のうち時間
t、およびt3は、ともに探触子P内を伝搬する時間で
あり次式のように表わすことができる。
On the other hand, the ultrasonic waves emitted from the transducer 11 in response to the signal from the transmitter 12 reach the surface 4a of the subject 4, and
The reflected wave reflected by a is received by the vibrator 11 and sent to the receiver 13
It is sent to the control unit 14 via. The control unit 14 determines the propagation time t of the ultrasonic waves transmitted and received between the transducer 11 and the surface 4a.
, is measured. Time t and t3 among the measured propagation times are both propagation times within the probe P, and can be expressed as in the following equation.

t2=kt3         ・・・・・・(1)こ
こでkは探触子Pの構造および寸法によって決まる定数
であって、計測時の周囲温度には無関係である。また制
御部14により計測される伝搬時間to” (t1+ 
jt)およびt、と、上記式(1)との関係から下式が
得られる。
t2=kt3 (1) Here, k is a constant determined by the structure and dimensions of the probe P, and is unrelated to the ambient temperature at the time of measurement. In addition, the propagation time to” (t1+
jt) and t, and the relationship with the above formula (1), the following formula is obtained.

t□=to−kt3       ・・・・・・(2)
従って式(2)により被検体4を伝搬する時間tiを、
周囲温度の変化による計測誤差を補償し該温度の影響を
受けることなく正確かつ容易に計測することができ、同
時に時間t工に対する伝搬速度が演算される。これは従
来、周囲温度を一定に保つための工夫、例えば一定温度
の水を入れた恒温水槽に被検体および探触子を浸漬して
計測するとか、恒温室を設けその室内で測定する等の煩
わしさから解放され、生産現場において周囲温度に関係
なく計測することができる効果をも有する。
t□=to-kt3 ・・・・・・(2)
Therefore, using equation (2), the propagation time ti through the object 4 is
Measurement errors due to changes in ambient temperature can be compensated for and measurements can be made accurately and easily without being affected by the temperature, and at the same time, the propagation velocity with respect to time t is calculated. Conventionally, this has been done through measures to keep the ambient temperature constant, such as immersing the subject and probe in a thermostatic water tank containing water at a constant temperature, or setting up a constant temperature room and performing measurements inside the room. It also has the effect of being freed from the hassle and allowing measurements to be taken regardless of the ambient temperature at the production site.

前記実施例においては振動子11を送受兼用としたが、
これを送信用と受信用とに分離し、探触子Pのケース3
内に相対させて配置する構成にしてもよい。この場合、
相対させる位置は任意で、既知の一定の間隔で超音波を
送受できる配置であればよいが、前記計測する時間t0
とt3との値が、明確に判別できるように異なる値にな
る配置にすることが好ましい。これは振動子11が送受
兼用の場合にも同様である。このような各振動子の配置
に対する配慮は、振動子1,2用の送信部5および受信
部6と、振動子11用の送信部12および受信部13と
が、本実施例の第1図に示すようにそれぞれ別に設けら
れている場合は、前記時間toy t3は分離して計測
されるためそれ程必要ではないが、送信部5および受信
部6を振動子11用として兼用させることが可能である
ため、その場合には時間t0とt3を区別して計測する
ために必要なものとなる。送信部5および受信部6を温
度補償用の振動子用として兼用させる場合は、送信部1
2および受信部13が不要となるからそれだけ装置が簡
単になる効果がある。
In the above embodiment, the vibrator 11 was used for both transmission and reception, but
Separate this into transmitter and receiver, case 3 of probe P.
The structure may be such that they are arranged facing each other inside. in this case,
The opposing positions may be arbitrary, as long as they can transmit and receive ultrasonic waves at known constant intervals, but the measuring time t0
It is preferable to arrange the values of t3 and t3 to be different values so that they can be clearly distinguished. This also applies when the vibrator 11 is used for both transmission and reception. In consideration of the arrangement of each transducer, the transmitting section 5 and receiving section 6 for the transducers 1 and 2, and the transmitting section 12 and receiving section 13 for the transducer 11 are arranged as shown in FIG. 1 of this embodiment. If they are provided separately as shown in the figure, the time toy t3 is measured separately, so it is not so necessary; Therefore, in that case, it is necessary to distinguish and measure times t0 and t3. When the transmitting section 5 and the receiving section 6 are used also as a vibrator for temperature compensation, the transmitting section 1
2 and the receiving section 13 are no longer required, which has the effect of simplifying the device.

なお、制御部14に計測された伝搬時間およびその速度
を表示する表示部、記録部等を内設しまたは外部接続す
るようにすれば、−層計測を容易に行うことが可能にな
る。
Note that if the control unit 14 is provided with a display unit, a recording unit, etc. that displays the measured propagation time and its speed, or is connected to the outside, it becomes possible to easily measure the negative layer.

上記した超音波の伝搬速度の精密な計測は、具体例とし
て挙げた前記焼入れ深さの測定に対しても適用すること
ができ、焼入れ深さを正確かつ容易に計測することがで
きるのは勿論である。
The precise measurement of the ultrasonic propagation speed described above can also be applied to the measurement of the hardening depth mentioned above as a specific example, and it goes without saying that the hardening depth can be measured accurately and easily. It is.

[発明の効果] 以上述べたように本発明に係わる超音波計測装置は、探
触子のケース内に送信用および受信用の振動子とは別に
該ケース内で一定の間隔で超音波を送受する温度補償用
の振動子を内設し、該振動子の送受した超音波の伝搬時
間を、前記送信用および受信用の面振動子の送受する超
音波の伝搬時間と区別して演算し、被検体を伝搬した伝
搬時間を計測する構成にしたから、周囲温度の変化によ
る計測誤差を除去し、超音波の伝搬速度を精密に計測す
ることができる実用上顕著な効果を奏する。
[Effects of the Invention] As described above, the ultrasonic measuring device according to the present invention has transducers for transmitting and receiving in the case of the probe, and transmits and receives ultrasonic waves at regular intervals within the case. A temperature-compensating transducer is installed inside, and the propagation time of the ultrasonic waves transmitted and received by the transducer is calculated separately from the propagation time of the ultrasonic waves transmitted and received by the transmitting and receiving surface transducers. Since the configuration is configured to measure the propagation time of the specimen, measurement errors due to changes in ambient temperature can be removed, and the propagation speed of the ultrasonic wave can be precisely measured, which is a significant practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる超音波計測装置の一実施例を示
すブロック図である。 第2図は従来の装置の一般的な構成例を示すブロック図
である。 特許出願人  日立建機株式会社 代理人 弁理士  秋 本 正 実(外1名)= 7 =2 ツ 送イ窩店P 受 イ畠 老? & さ    2゜ 4a
FIG. 1 is a block diagram showing an embodiment of an ultrasonic measuring device according to the present invention. FIG. 2 is a block diagram showing a general configuration example of a conventional device. Patent Applicant Hitachi Construction Machinery Co., Ltd. Agent Patent Attorney Masami Akimoto (1 other person) = 7 = 2 Tsuyoshi Iwo Shop P Uke Ihata Roshi? & sa 2゜4a

Claims (1)

【特許請求の範囲】 1、同一のケース内に送信用の振動子と該振動子より放
射される超音波を被検体を介して受波する受信用の振動
子とを相対させて配置した探触子と、前記送信用の振動
子に送信電圧を印加する送信部と、前記受信用の振動子
の受波した信号電圧を受信する受信部と、前記送信部お
よび受信部に接続され前記送信用および受信用の両振動
子間で送受される超音波の伝搬時間を演算する制御部と
を備えた超音波計測装置において、前記探触子のケース
内に前記送信用および受信用の各振動子と別に該ケース
内で一定の間隔で超音波を送受する温度補償用の振動子
を内設し、該振動子の送受した超音波の伝搬時間を前記
送信用および受信用の両振動子の送受する超音波の伝搬
時間と区別して演算し、前記被検体を伝搬した伝搬時間
を計測する構成にしたことを特徴とする超音波計測装置
。 2、前記温度補償用の振動子を、送信用と受信用とに分
離し前記探触子のケース内に相対させて配置する構成に
した特許請求の範囲第1項記載の超音波計測装置。 3、前記各振動子を、温度補償用の振動子の送受した超
音波の伝搬時間と送信用および受信用の両振動子の送受
した超音波の伝搬時間とを、判別可能に値の異なる位置
に配置する構成にした特許請求の範囲第1項記載の超音
波計測装置。 4、前記送信部を、前記送信用および受信用の振動子用
と温度補償用の振動子用とを別個に設ける構成にした特
許請求の範囲第1項記載の超音波計測装置。 5、前記受信部を、前記送信用および受信用の振動子用
と温度補償用の振動子用とを別個に設ける構成にした特
許請求の範囲第1項記載の超音波計測装置。
[Claims] 1. A probe in which a transmitting transducer and a receiving transducer that receives ultrasonic waves emitted from the transducer through a subject are placed opposite each other in the same case. a transmitter that applies a transmission voltage to the transmitting transducer; a receiving section that receives the signal voltage received by the receiving transducer; and a transmitter that is connected to the transmitter and the receiver. In an ultrasonic measurement device comprising a control unit that calculates the propagation time of ultrasonic waves transmitted and received between both transducers for transmission and reception, each of the vibrations for transmission and reception is placed in the case of the probe. Separately from the transducer, a temperature-compensating transducer for transmitting and receiving ultrasonic waves at regular intervals is installed inside the case, and the propagation time of the ultrasonic waves transmitted and received by the transducer is determined by the transmission and reception transducers. An ultrasonic measuring device characterized in that the ultrasonic measuring device is configured to calculate the propagation time of ultrasonic waves transmitted and received separately and measure the propagation time of the ultrasonic waves propagating through the object. 2. The ultrasonic measuring device according to claim 1, wherein the temperature compensating vibrator is separated into a transmitting and receiving vibrator and disposed facing each other in the probe case. 3. Place each transducer at a position where the propagation time of the ultrasonic waves transmitted and received by the temperature compensation transducer and the propagation time of the ultrasonic waves transmitted and received by both the transmitting and receiving transducers can be determined. An ultrasonic measuring device according to claim 1, which is configured to be placed in a. 4. The ultrasonic measuring device according to claim 1, wherein the transmitter is configured to have separate transducers for the transmitting and receiving transducers and a temperature compensating transducer. 5. The ultrasonic measuring device according to claim 1, wherein the receiving section is configured to separately provide transducers for the transmitting and receiving transducers and a transducer for temperature compensation.
JP62303363A 1987-12-02 1987-12-02 Ultrasonic measuring apparatus Pending JPH01145529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62303363A JPH01145529A (en) 1987-12-02 1987-12-02 Ultrasonic measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62303363A JPH01145529A (en) 1987-12-02 1987-12-02 Ultrasonic measuring apparatus

Publications (1)

Publication Number Publication Date
JPH01145529A true JPH01145529A (en) 1989-06-07

Family

ID=17920086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62303363A Pending JPH01145529A (en) 1987-12-02 1987-12-02 Ultrasonic measuring apparatus

Country Status (1)

Country Link
JP (1) JPH01145529A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185548A (en) * 2007-01-31 2008-08-14 Kochi Univ Of Technology Measuring system using ultrasonic probe having temperature compensation function and/or temperature measuring function and ultrasonic probe used in measuring system
JP2016130685A (en) * 2015-01-14 2016-07-21 東芝テック株式会社 Structure abnormality detection apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185548A (en) * 2007-01-31 2008-08-14 Kochi Univ Of Technology Measuring system using ultrasonic probe having temperature compensation function and/or temperature measuring function and ultrasonic probe used in measuring system
JP4500319B2 (en) * 2007-01-31 2010-07-14 公立大学法人高知工科大学 Measurement system using ultrasonic probe having temperature compensation function and / or temperature measurement function, and ultrasonic probe used in this measurement system
JP2016130685A (en) * 2015-01-14 2016-07-21 東芝テック株式会社 Structure abnormality detection apparatus

Similar Documents

Publication Publication Date Title
US5777230A (en) Delay line for an ultrasonic probe and method of using same
JP4938050B2 (en) Ultrasonic diagnostic evaluation system
EP0341969A3 (en) Ultrasonic densitometer device and method
JP3725515B2 (en) Nondestructive inspection equipment
SU917711A3 (en) Method of tuning ultrasonic apparatus
JPH0511895B2 (en)
JP2010169494A (en) Compression strength measurement method, and compression strength measuring instrument using the same
JPH01145529A (en) Ultrasonic measuring apparatus
JP2740872B2 (en) Method of measuring compressive strength of concrete using ultrasonic waves
JP2855800B2 (en) Fatigue damage measurement method
JP2001343365A (en) Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
Theobald et al. Acoustic emission transducers—development of a facility for traceable out-of-plane displacement calibration
JP2003149214A (en) Nondestructive inspecting method and its apparatus using ultrasonic sensor
JPH0387655A (en) Ultrasonic wave transfer speed measuring method in concrete plate
JPH0749944B2 (en) Simultaneous measurement of material thickness and sound velocity
JPH0729447Y2 (en) Ultrasonic measuring device
SU1732177A1 (en) Method of determining ultrasound velocity temperature coefficient
JP2824488B2 (en) Method of measuring plate thickness of concrete structure by ultrasonic pulse reflection method
RU2112235C1 (en) Method for measuring attenuation variables of elastic waves
JPH0194205A (en) Measurement of propagation distance of ultrasonic wave
SU1104408A1 (en) Method of determination of acoustic emission source coordinates
RU2655993C1 (en) Ultrasonic method of determination of internal mechanical stresses
Bertschat et al. Damage detection at a test bridge with nonlinear ultrasound
JPS5842919Y2 (en) stress measuring device
JPS62294926A (en) Measurement of stress by ultrasonic surface wave