JP2010169494A - Compression strength measurement method, and compression strength measuring instrument using the same - Google Patents

Compression strength measurement method, and compression strength measuring instrument using the same Download PDF

Info

Publication number
JP2010169494A
JP2010169494A JP2009011498A JP2009011498A JP2010169494A JP 2010169494 A JP2010169494 A JP 2010169494A JP 2009011498 A JP2009011498 A JP 2009011498A JP 2009011498 A JP2009011498 A JP 2009011498A JP 2010169494 A JP2010169494 A JP 2010169494A
Authority
JP
Japan
Prior art keywords
probe
vibration
compressive strength
wave
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009011498A
Other languages
Japanese (ja)
Inventor
Ming-Chung Liu
銘崇 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2009011498A priority Critical patent/JP2010169494A/en
Publication of JP2010169494A publication Critical patent/JP2010169494A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compression strength measuring method which enables the calculation of compression strength with accuracy. <P>SOLUTION: The compression strength measurement method includes a step (S100) for installing a transmission probe, at a predetermined position on the predetermined surface of a concrete structure becoming a measuring target; a step (S101) for installing a reception probe, at a first position separated from the predetermined position by a predetermined distance; a step (S102) for producing ultrasonic vibration by the transmission probe and detecting the wave, based on the vibration by the reception probe to measure a first time being a vibration arriving time; a step (S103) for installing the reception probe at a second position separated from the first position by a first distance; a step (S104) for producing the ultrasonic vibration by the transmission probe and detecting the wave, based on the vibration by the reception probe to measure a second time being a vibration arriving time; a step (S105) for calculating the propagation speed of the waves, based on the vibration from the first time, the second time and the first distance; a step (S106) for calculating the compression strength of the concrete structure from the propagation speed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、コンクリート構造物の圧縮強度を非破壊で測定するコンクリート構造物の圧縮強度測定方法及び圧縮強度測定装置に関するものである。   The present invention relates to a method for measuring the compressive strength of a concrete structure and a compressive strength measuring apparatus for measuring the compressive strength of the concrete structure in a nondestructive manner.

従来、コンクリート構造物の圧縮強度を非破壊で測定する方法としては、反発硬度法、超音波法、衝撃弾性波法などの手法が知られている。   Conventionally, methods such as a rebound hardness method, an ultrasonic method, and an impact elastic wave method are known as methods for measuring the compressive strength of a concrete structure in a nondestructive manner.

反発硬度法は、テストハンマーを用いてコンクリートの表面を打撃し、その反発硬度より圧縮強度を推定(測定)する方法である。この方法では、簡単ではあるが、表層部のコンクリートの圧縮強度しか測定できない。また打撃した箇所の表面状況に影響されやすく精度も問題がある。   The rebound hardness method is a method of striking the surface of concrete using a test hammer and estimating (measuring) the compressive strength from the rebound hardness. Although this method is simple, only the compressive strength of the concrete in the surface layer can be measured. In addition, there is a problem in accuracy because it is easily affected by the surface condition of the hit location.

また、超音波法は、コンクリートの圧縮強度が高いほど、弾性波の伝播速度が速くなるとの原理を利用した方法であり、この超音波法を実際のコンクリート構造物に適用する上では次の透過法、表面法の2つが知られている。   The ultrasonic method is based on the principle that the elastic wave propagation speed increases as the compressive strength of the concrete increases. In applying this ultrasonic method to an actual concrete structure, Two methods are known: the method and the surface method.

透過法は、図12に示すように、測定対象のコンクリートの一面側に設置した送信探触子から超音波パルスを発信し、この超音波パルスをコンクリート中に透過させて、超音波パルスが対向側に設置した受信探触子に到達するまでの所要時間と両探触子間の距離を測定して伝播速度を求め、この伝播速度から圧縮強度を推定する方法である。   In the transmission method, as shown in FIG. 12, an ultrasonic pulse is transmitted from a transmission probe installed on one surface side of the concrete to be measured, and this ultrasonic pulse is transmitted through the concrete so that the ultrasonic pulse is opposed to the surface. In this method, the propagation speed is obtained by measuring the time required to reach the receiving probe installed on the side and the distance between the two probes, and the compression strength is estimated from this propagation speed.

表面法は、図13に示すように、測定対象のコンクリートの一面側に、送信探触子及び受信探触子の双方を設置して、送信探触子で発信した超音波パルスを、受信探触子で受信することによって、測定を行う方法である。   In the surface method, as shown in FIG. 13, both a transmission probe and a reception probe are installed on one side of the concrete to be measured, and an ultrasonic pulse transmitted from the transmission probe is received by the reception probe. It is a method of measuring by receiving with a toucher.

衝撃弾性波法は、図14に示すように、ハンマーなどを用いて測定対象のコンクリート表面を打撃し、衝撃弾性波を発生させ、2つセンサを用いて、衝撃弾性波が通過する時間差とセンサ間の距離を用いて伝播速度を求め、この伝播速度からコンクリートの圧縮強度を推定する方法である。この衝撃弾性波法については、例えば特許文献1(特開2001−12933号公報)に開示されている。
特開2001−12933号公報
As shown in FIG. 14, the impact elastic wave method uses a hammer or the like to strike a concrete surface to be measured, generates an impact elastic wave, and uses two sensors to detect the time difference between the impact elastic wave and the sensor. This is a method of obtaining the propagation velocity using the distance between them and estimating the compressive strength of the concrete from this propagation velocity. This shock elastic wave method is disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-12933.
JP 2001-12933 A

超音波を用いた上記の透過法では、縦波の伝搬速度を正しく測定できるが、コンクリートの両端部に探触子を設置する必要があるため、使用できる場所が限定されている。   In the above transmission method using ultrasonic waves, the propagation speed of longitudinal waves can be measured correctly. However, since it is necessary to install probes at both ends of the concrete, the places where it can be used are limited.

また、超音波を用いた上記の表面法では、送受信探触子のコンクリートの設置面はある程度の広さを有しているために、当該設置面における発信位置と受信位置のピンポイント的な位置を特定することができず、測定により得られた伝播速度の精度が問題ある。また、一般的に測定においては、周波数が500kHzの超音波パルスを使用するが、この周波数の超音波パルスは減衰が大きいため送受信探触子間の距離を短くする必要があり、局部的な伝播速度しか測定することができず、そこから推定される圧縮強度はあくまで局所的な情報に基づくものとなってしまう。また、コンクリート表面から浅い位置、すなわちコンクリート表層部の伝播速度しか測定できず、測定により推定されるコンクリートの圧縮強度も表層部の情報に基づく圧縮強度でしかない。   Further, in the above surface method using ultrasonic waves, the concrete installation surface of the transmitter / receiver probe has a certain size, so that the transmission position and the reception position on the installation surface are pinpoint positions. Cannot be specified, and the accuracy of the propagation velocity obtained by measurement is problematic. In general, an ultrasonic pulse having a frequency of 500 kHz is used in the measurement. Since the ultrasonic pulse of this frequency has a large attenuation, it is necessary to shorten the distance between the transmitting and receiving probes, and the local propagation. Only the speed can be measured, and the compression strength estimated therefrom is based solely on local information. Further, only the propagation speed of the shallow position from the concrete surface, that is, the concrete surface layer portion can be measured, and the compressive strength of the concrete estimated by the measurement is only the compressive strength based on the information of the surface layer portion.

また、上記した衝撃弾性波法においては、コンクリート表面をハンマー打撃することで、表面波のほかに、縦波も発生する、この縦波は、コンクリートの厚さ方向に多重反射する(図14)。またこのような多重反射した縦波は、表面波にモード変換したりもするので、結局、センサで検出した波は、単純な表面波ではなく、多重反射の縦波とモード変換した表面波が混在することになり、伝播速度の計算に使う初動時間のスタットポイントの判断は困難になることで、伝播速度の測定精度が悪くなり、それを伴ったコンクリートの圧縮強度の推定精度も低下する。   Further, in the above-described shock elastic wave method, by hitting the concrete surface with a hammer, in addition to the surface wave, longitudinal waves are also generated. This longitudinal wave is multiple-reflected in the thickness direction of the concrete (FIG. 14). . In addition, since such multiple reflected longitudinal waves may be mode-converted into surface waves, the wave detected by the sensor is not a simple surface wave. It becomes mixed, and it becomes difficult to determine the stat point of the initial movement time used for calculating the propagation speed, so the measurement accuracy of the propagation speed is deteriorated, and the accuracy of estimating the compressive strength of the concrete accompanying it is also lowered.

ハンマー打撃で発生する表面波(レイリー波)は、20kHz以下の低周波数であり、これを波長で換算すると、約100mm(表面波速度は2000m/sと仮定)以上となり、厚さ100mm以下のものは、測定困難になることがある。   The surface wave (Rayleigh wave) generated by hammering is a low frequency of 20 kHz or less, and when converted to wavelength, it is about 100 mm (surface wave velocity is assumed to be 2000 m / s) or more, and the thickness is 100 mm or less. May be difficult to measure.

厚さ方向の圧縮強度を計測するには、測定対象コンクリートの厚さに応じて表面波の波長を変更する必要がある。しかし、ハンマーなど打撃することは、周波数の制御がとても困難である。計測したい測定対象の厚さに相応しい衝撃弾性波を作るのは、簡単ではない。   In order to measure the compressive strength in the thickness direction, it is necessary to change the wavelength of the surface wave according to the thickness of the concrete to be measured. However, it is very difficult to control the frequency of hitting with a hammer. It is not easy to create a shock elastic wave suitable for the thickness of the object to be measured.

衝撃弾性波法においては、測定精度を上げるため複数回測定を行った結果を加算平均するのが一般であるが、人の手によって衝撃を与えるため、ハンマーの打つ速度、力、打つ場所などは一定とすることができず、波形、初動時間など関係性なく、データの有効性を判断するのは難しく、精度の保証も困難である。   In the shock elastic wave method, it is common to add and average the results of multiple measurements to improve measurement accuracy, but the impact, hammering speed, force, hitting location, etc. It cannot be fixed, it is difficult to judge the validity of the data, and the accuracy is difficult to guarantee, regardless of the waveform, initial movement time, and the like.

また、この衝撃弾性波法においても、受信用の振動センサの設置面にある程度の広さがあるため、ピンポイント的な受信点の特定を行うことができず、測定精度の点で問題がある。また衝撃弾性波法では、コンクリートの振動だけではなく測定環境周囲の音による振動も受信してしまう可能性があり、測定環境の制限がある。   Also in this shock elastic wave method, since the installation surface of the receiving vibration sensor has a certain extent, pinpoint reception points cannot be specified, and there is a problem in measurement accuracy. . In addition, in the shock elastic wave method, not only the vibration of the concrete but also the vibration due to the sound around the measurement environment may be received, which limits the measurement environment.

この発明は、上記課題を解決するものであって、請求項1に係る発明は、測定対象となるコンクリート構造物の所定面における所定位置に送信探触子を設置する工程と、前記所定面における前記所定位置から所定距離離れた第1位置に受信探触子を設置する工程と、前記送信探触子で超音波振動を発生させる工程と、前記受信探触子で前記振動に基づく波を検出し前記振動が到達する第1時間を測定する工程と、前記所定面における前記第1位置から第1距離離れた第2位置に前記受信探触子を設置する工程と、前記送信探触子で超音波振動を発生させる工程と、前記受信探触子で前記振動に基づく波を検出し前記振動が到達する第2時間を測定する工程と、前記第1時間と前記第2時間と前記第1距離とから前記振動に基づく波の伝搬速度を算出する工程と、前記伝搬速度から前記コンクリート構造物の圧縮強度を求める工程と、からなることを特徴とする圧縮強度測定方法である。   This invention solves the said subject, The invention which concerns on Claim 1 installs a transmission probe in the predetermined position in the predetermined surface of the concrete surface used as a measuring object, and in the said predetermined surface A step of installing a reception probe at a first position separated from the predetermined position by a predetermined distance; a step of generating ultrasonic vibration by the transmission probe; and a wave based on the vibration by the reception probe A step of measuring a first time when the vibration reaches, a step of installing the reception probe at a second position at a first distance from the first position on the predetermined plane, and the transmission probe. Generating ultrasonic vibration; detecting a wave based on the vibration with the receiving probe; measuring a second time when the vibration reaches; the first time; the second time; Wave propagation velocity based on vibration from distance A step of calculating, the step of determining the compressive strength of the concrete structure from the propagation velocity, a compressive strength measuring method characterized by comprising the.

また、請求項2に係る発明は、請求項1に記載の圧縮強度測定方法において、前記波が縦波であることを特徴とする。   The invention according to claim 2 is the compressive strength measuring method according to claim 1, wherein the wave is a longitudinal wave.

また、請求項3に係る発明は、請求項1に記載の圧縮強度測定方法において、前記波が表面波であることを特徴とする。   The invention according to claim 3 is the compressive strength measuring method according to claim 1, wherein the wave is a surface wave.

また、請求項4に係る発明は、測定対象となるコンクリート構造物の所定面における所定位置にモード変換部材付き送信探触子を設置する工程と、前記所定面における前記所定位置から所定距離離れた第1位置に受信探触子を設置する工程と、前記送信探触子で超音波振動を発生させる工程と、前記受信探触子で前記振動に基づく表面波を検出し前記振動
が到達する第1時間を測定する工程と、前記所定面における前記第1位置から第1距離離れた第2位置に前記受信探触子を設置する工程と、前記送信探触子で超音波振動を発生させる工程と、前記受信探触子で前記振動に基づく表面波を検出し前記振動が到達する第2時間を測定する工程と、前記第1時間と前記第2時間と前記第1距離とから前記振動に基づく表面波の伝搬速度を算出する工程と、前記伝搬速度から前記コンクリート構造物の圧縮強度を求める工程と、からなることを特徴とする圧縮強度測定方法である。
According to a fourth aspect of the present invention, there is provided a step of installing a transmission probe with a mode conversion member at a predetermined position on a predetermined surface of a concrete structure to be measured, and a predetermined distance away from the predetermined position on the predetermined surface. A step of installing a reception probe at a first position; a step of generating ultrasonic vibrations by the transmission probe; a surface wave based on the vibrations detected by the reception probe; A step of measuring one hour, a step of installing the reception probe at a second position at a first distance from the first position on the predetermined surface, and a step of generating ultrasonic vibrations by the transmission probe Detecting a surface wave based on the vibration with the receiving probe and measuring a second time when the vibration reaches, and the vibration from the first time, the second time, and the first distance. The surface wave propagation velocity based on A step, a step of determining the compressive strength of the concrete structure from the propagation velocity, a compressive strength measuring method characterized by comprising the.

また、請求項5に係る発明は、請求項1乃至請求項4のいずれかに記載の方法により圧縮強度を求めることを特徴とする圧縮強度測定装置である。   The invention according to claim 5 is a compressive strength measuring apparatus characterized in that the compressive strength is obtained by the method according to any one of claims 1 to 4.

本発明の圧縮強度測定方法及びその方法を用いた圧縮強度測定装置によれば、測定対象となるコンクリート構造物の一つの所定面に送信探触子と受信探触子の双方を設置して測定を行うために、所定面と対向する面に探触子を設置できないような場所での測定も行うことが可能となる。   According to the compressive strength measuring method and the compressive strength measuring apparatus using the method of the present invention, both a transmitting probe and a receiving probe are installed on one predetermined surface of a concrete structure to be measured. Therefore, it is possible to perform measurement in a place where the probe cannot be installed on the surface facing the predetermined surface.

また、本発明の圧縮強度測定方法及びその方法を用いた圧縮強度測定装置によれば、第1位置で測定される第1時間と、第2位置で測定される第2時間の差分と、差分として正確に測定が可能な第1位置と第2位置との間の距離である第1距離とに基づいて、波の伝搬速度を算出し、この伝搬速度から圧縮強度を求めるので、精度高く圧縮強度を求めることが可能となる。   Further, according to the compressive strength measuring method and the compressive strength measuring device using the method of the present invention, the difference between the first time measured at the first position and the second time measured at the second position, and the difference The wave propagation velocity is calculated based on the first distance, which is the distance between the first position and the second position, which can be measured accurately, and the compression strength is obtained from this propagation velocity, so the compression is performed with high accuracy. The strength can be obtained.

また、受信探触子で超音波振動による表面波を検出する本発明の実施形態では、20kHzより高い表面波で測定を行うこととなるが、これは波長換算で約100mm以下に相当するので、厚さ100mm以下のコンクリート構造物の圧縮強度測定も実施可能となる。   Further, in the embodiment of the present invention in which the surface wave due to the ultrasonic vibration is detected by the receiving probe, the measurement is performed with the surface wave higher than 20 kHz, which corresponds to about 100 mm or less in terms of wavelength. It is also possible to measure the compressive strength of a concrete structure having a thickness of 100 mm or less.

また、受信探触子で超音波振動による波を検出する本発明の実施形態では、人手によるハンマー打撃などに比べて、コンクリート構造物に正確な振動を与えることができるので、測定精度も向上する。   In addition, in the embodiment of the present invention in which a wave due to ultrasonic vibration is detected by the receiving probe, it is possible to give an accurate vibration to the concrete structure as compared with a hammer hit by a human hand, so that the measurement accuracy is also improved. .

また、受信探触子で表面波を検出する本発明の実施形態では、表面波のエネルギーや振幅は縦波より大きいために、送受信探触子間の距離を比較的長く設定することができ、比較的広範囲での伝搬速度の測定を行うことができるので、広範囲の情報に基づく圧縮強度を求めることが可能となる。   Further, in the embodiment of the present invention in which the surface wave is detected by the receiving probe, since the energy and amplitude of the surface wave are larger than the longitudinal wave, the distance between the transmitting and receiving probes can be set relatively long, Since the propagation velocity can be measured in a relatively wide range, the compression strength based on a wide range of information can be obtained.

また、受信探触子で超音波振動による表面波を検出する本発明の実施形態では、測定環境周囲の音による振動も受信する可能性が低く、多様な測定環境に対応することができる。   In addition, in the embodiment of the present invention in which surface waves caused by ultrasonic vibrations are detected by the receiving probe, there is a low possibility of receiving vibrations caused by sounds around the measurement environment, and it is possible to deal with various measurement environments.

また、受信探触子で表面波を検出する本発明の実施形態では、コンクリート構造物表面から比較的深い位置の伝播速度を測定することができ、測定により推定されるコンクリートの圧縮強度は、比較的深い位置での情報に基づく圧縮強度を求めることが可能となる。   Further, in the embodiment of the present invention in which the surface wave is detected by the receiving probe, the propagation velocity at a relatively deep position from the surface of the concrete structure can be measured, and the compressive strength of the concrete estimated by the measurement is compared. It is possible to obtain the compressive strength based on information at a deep position.

また、厚さ方向の圧縮強度を測定するには、測定対象コンクリートの厚さに応じて表面波の波長を変更する必要があるが、受信探触子で超音波振動による表面波を検出する本発明の実施形態では、ハンマー打撃などに比べて、周波数の制御が容易かつ自在であるので、測定したいコンクリート構造物の厚さに相応しい周波数の波を用いて、適切な圧縮強度測定を実施することができる。   In order to measure the compressive strength in the thickness direction, it is necessary to change the wavelength of the surface wave according to the thickness of the concrete to be measured. In the embodiment of the invention, the frequency can be controlled more easily and freely than in the case of hammering or the like, and therefore, an appropriate compressive strength measurement is performed using a wave having a frequency suitable for the thickness of the concrete structure to be measured. Can do.

また、モード変換部材付き送信探触子で振動を発生させて、受信探触子で表面波を検出する本発明の実施形態では、コンクリートの厚さ方向での縦波の多重反射が発生することがないし、また、縦波から表面波へのモード変換も生じないので、伝播速度の測定精度が向上し、この伝播速度から求められる圧縮強度の推定精度も向上する。   Further, in the embodiment of the present invention in which vibration is generated by the transmission probe with a mode conversion member and surface waves are detected by the reception probe, multiple reflections of longitudinal waves in the thickness direction of the concrete occur. In addition, since mode conversion from longitudinal waves to surface waves does not occur, the measurement accuracy of the propagation velocity is improved, and the estimation accuracy of the compression strength obtained from this propagation velocity is also improved.

本発明によれば、送信探触子の超音波振動で、多波数の表面波超音波を印加することで、波のエネルギーが大きくすることができ、かつ、距離減衰も小さくすることができる。さらに、距離減衰よる周波数変化への影響が小さいため、より広範囲の測定が可能となる。また、本発明によれば、センサの配置、距離、数、入射周波数などのパラメーターを考慮し、画像化もできる測定装置を製作することで簡単に平面方向と厚さ方向の圧縮強度を一気に推定できる。   According to the present invention, it is possible to increase wave energy and reduce distance attenuation by applying multi-frequency surface wave ultrasonic waves by ultrasonic vibration of a transmission probe. Furthermore, since the influence on the frequency change due to the distance attenuation is small, a wider range of measurement is possible. In addition, according to the present invention, it is possible to easily estimate the compressive strength in the plane direction and the thickness direction at a stretch by manufacturing a measuring device that can also be imaged in consideration of parameters such as sensor arrangement, distance, number, and incident frequency. it can.

本発明の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図である。It is a figure which shows the outline of the structure for enforcing the compressive strength measuring method which concerns on embodiment of this invention. 本発明の実施形態に係る圧縮強度測定方法を実施する場合の工程例を示す図である。It is a figure which shows the example of a process in the case of enforcing the compressive strength measuring method which concerns on embodiment of this invention. コンクリート構造物における伝搬速度と圧縮強度との関係を示す図である。It is a figure which shows the relationship between the propagation speed and compressive strength in a concrete structure. 伝搬速度と圧縮強度との関係を求めるための第1の方法を示す図である。It is a figure which shows the 1st method for calculating | requiring the relationship between a propagation velocity and compressive strength. 伝搬速度と圧縮強度との関係を求めるための第2の方法を示す図である。It is a figure which shows the 2nd method for calculating | requiring the relationship between a propagation velocity and compressive strength. 本発明の他の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図である。It is a figure which shows the outline of the structure for enforcing the compressive strength measuring method which concerns on other embodiment of this invention. 本発明の他の実施形態に係る圧縮強度測定方法を実施する場合の工程例を示す図である。It is a figure which shows the process example in the case of enforcing the compressive strength measuring method which concerns on other embodiment of this invention. 本発明の他の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図である。It is a figure which shows the outline of the structure for enforcing the compressive strength measuring method which concerns on other embodiment of this invention. 本発明の他の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図である。It is a figure which shows the outline of the structure for enforcing the compressive strength measuring method which concerns on other embodiment of this invention. 本発明の他の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図である。It is a figure which shows the outline of the structure for enforcing the compressive strength measuring method which concerns on other embodiment of this invention. 本発明の圧縮強度測定方法によって測定を行った結果を示す図である。It is a figure which shows the result of having measured by the compressive strength measuring method of this invention. 従来の圧縮強度測定方法を実施するための構成の概略を示す図である。It is a figure which shows the outline of the structure for implementing the conventional compressive-strength measuring method. 従来の圧縮強度測定方法を実施するための構成の概略を示す図である。It is a figure which shows the outline of the structure for implementing the conventional compressive-strength measuring method. 従来の圧縮強度測定方法を実施するための構成の概略を示す図である。It is a figure which shows the outline of the structure for implementing the conventional compressive-strength measuring method.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図であり、図2は本発明の実施形態に係る圧縮強度測定方法を実施する場合の工程例を示す図である。図1において、10は圧縮強度を測定する対象となるコンクリート構造物を示しており、100はこのコンクリート構造物10に超音波振動を与える送信探触子であり、200はコンクリート構造物の超音波振動を検出する受信探触子である。本実施形態では、送信探触子100がコンクリート構造物10に与える振動は20kHzより高い超音波振動が用いられる。送信探触子100の振動の周波数としては20kHzより高ければ任意の周波数を用いることができるが、数10kHz〜数100kHzの周波数帯が発明を実現する上で現実的な周波数である。また、受信探触子200としては、数10kHz〜数100kHzの周波数帯の振動を受信するセンサであればどのようなものを用いてもよい。なお、上記のような送信探触子100及び受信探触子200としては、いずれも従来周知のものを利用することができる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of a configuration for carrying out a compressive strength measuring method according to an embodiment of the present invention, and FIG. 2 is a process example in the case of carrying out a compressive strength measuring method according to an embodiment of the present invention. FIG. In FIG. 1, 10 indicates a concrete structure to be measured for compressive strength, 100 is a transmission probe for applying ultrasonic vibration to the concrete structure 10, and 200 is an ultrasonic wave of the concrete structure. It is a receiving probe that detects vibration. In this embodiment, the ultrasonic vibration higher than 20 kHz is used as the vibration that the transmission probe 100 gives to the concrete structure 10. An arbitrary frequency can be used as the vibration frequency of the transmission probe 100 as long as it is higher than 20 kHz, but a frequency band of several tens of kHz to several hundreds of kHz is a realistic frequency for realizing the invention. The receiving probe 200 may be any sensor that receives vibrations in the frequency band of several tens of kHz to several hundreds of kHz. As the transmission probe 100 and the reception probe 200 as described above, those known in the art can be used.

図2を参照しつつ、本発明の実施形態に係る圧縮強度測定方法による圧縮強度の測定工程について説明する。なお、以下において説明する本発明の圧縮強度測定方法は当業者であれば圧縮強度測定装置として装置化することができるものであり、本発明はこのような装置までを包含するものである。   With reference to FIG. 2, the compressive strength measurement process by the compressive strength measuring method according to the embodiment of the present invention will be described. The compressive strength measuring method of the present invention described below can be implemented as a compressive strength measuring device by those skilled in the art, and the present invention includes such a device.

図2において、ステップS100では、コンクリート構造物10の所定の一面における位置Oに送信探触子100を設置する。   In FIG. 2, in step S <b> 100, the transmission probe 100 is installed at a position O on a predetermined surface of the concrete structure 10.

次に、ステップS101では、位置Oから所定距離離れた位置Aに受信探触子200を設置する。なお、この間の距離L0は測定することは可能であるが、送信探触子100と受信探触子200のコンクリート構造物10の設置面はある程度の広さを有しているために、当該設置面における発信位置と受信位置のピンポイント的な位置を特定することができず、測定により得られた伝播速度の精度が問題あるので、本発明においては距離L0を用いての伝搬速度の算出を行わない。   Next, in step S101, the receiving probe 200 is installed at a position A that is a predetermined distance away from the position O. Although the distance L0 between them can be measured, the installation surface of the concrete structure 10 of the transmission probe 100 and the reception probe 200 has a certain size, so that the installation is performed. Since the pinpoint position of the transmission position and the reception position on the surface cannot be specified, and the accuracy of the propagation speed obtained by the measurement is problematic, in the present invention, the propagation speed is calculated using the distance L0. Not performed.

次のステップS102で、送信探触子100で超音波振動を発生させて、この振動が受信探触子200に到達するまでの時間(t1)の測定を行う。なお、本実施形態では、受
信探触子200はコンクリート構造物10中を縦波として伝搬した波の到達時間(t1
を検出している。
In the next step S102, ultrasonic vibration is generated in the transmission probe 100, and the time (t 1 ) until this vibration reaches the reception probe 200 is measured. In the present embodiment, the reception probe 200 reaches the arrival time (t 1 ) of the wave propagated as a longitudinal wave in the concrete structure 10.
Is detected.

続くステップS103では、位置AからL1離れた位置Bに受信探触子200を設置する。   In the subsequent step S103, the reception probe 200 is installed at a position B that is L1 away from the position A.

そして、ステップS104で、送信探触子100で超音波振動を発生させて、この振動が受信探触子200に到達するまでの時間(t2)の測定を行う。このときも、受信探触
子200は縦波として伝搬した波の到達時間(t2)を検出を行う。
Then, in step S104, to generate ultrasonic vibration in the transmitting probe 100, to measure the time (t 2) until the vibration reaches the receiving probe 200. Also at this time, the reception probe 200 detects the arrival time (t 2 ) of the wave propagated as a longitudinal wave.

ステップS105では、縦波のコンクリート構造物10中の伝搬速度VをL1/(t2
−t1)により算出する。
In step S105, the propagation velocity V of the longitudinal wave in the concrete structure 10 is set to L1 / (t 2
-T 1) is calculated by.

そしてステップS106では、この伝搬速度Vから圧縮強度Fを推定する。この推定には図3に示す伝搬速度と圧縮強度の相関図を用いる。   In step S106, the compression strength F is estimated from the propagation velocity V. For this estimation, a correlation diagram between the propagation speed and the compression strength shown in FIG. 3 is used.

上記のような圧縮強度測定方法によれば、測定対象となるコンクリート構造物の一つの所定面に送信探触子100と受信探触子200の双方を設置して測定を行うために、所定面と対向する面に探触子を設置できないような場所での測定も行うことが可能となる。   According to the compressive strength measuring method as described above, in order to perform measurement by installing both the transmitting probe 100 and the receiving probe 200 on one predetermined surface of the concrete structure to be measured, the predetermined surface It is also possible to perform measurement at a place where a probe cannot be installed on the surface opposite to.

また、上記のような圧縮強度測定方法によれば、第1位置A測定される到達時間(t1
)と、第2位置Bで測定される到達時間(t2)の差分と、差分として正確に測定が可能
な第1位置Aと第2位置Bとの間の距離である距離L1とに基づいて、波の伝搬速度VをL1/(t2−t1)によって算出し、この伝搬速度Vから圧縮強度Fを求めるので、精度高く圧縮強度を求めることが可能となる。
Further, according to the compressive strength measuring method as described above, the arrival time (t 1) measured at the first position A is measured.
), The difference in arrival time (t 2 ) measured at the second position B, and the distance L1 that is the distance between the first position A and the second position B that can be accurately measured as the difference. Since the wave propagation velocity V is calculated by L1 / (t 2 -t 1 ) and the compression strength F is obtained from this propagation velocity V, the compression strength can be obtained with high accuracy.

また、受信探触子で表面波を検出する本発明の実施形態では、表面波のエネルギーや振幅は縦波より大きいために、送受信探触子間の距離を比較的長く設定することができ、比較的広範囲での播速度の測定を行うことができるので、広範囲の情報に基づく圧縮強度を求めることが可能となる。   Further, in the embodiment of the present invention in which the surface wave is detected by the receiving probe, since the energy and amplitude of the surface wave are larger than the longitudinal wave, the distance between the transmitting and receiving probes can be set relatively long, Since the sowing rate can be measured in a relatively wide range, the compression strength based on a wide range of information can be obtained.

また、上記のような圧縮強度測定方法では、送信探触子100がコンクリート構造物10に与える振動は20kHzより高い超音波振動が用いられるが、これは波長換算で約1
00mm以下に相当するので、厚さ100mm以下のコンクリート構造物の圧縮強度測定も実施可能となる。
Further, in the compressive strength measuring method as described above, the ultrasonic vibration higher than 20 kHz is used as the vibration that the transmission probe 100 gives to the concrete structure 10, which is about 1 in terms of wavelength.
Since it corresponds to 00 mm or less, it is possible to measure the compressive strength of a concrete structure having a thickness of 100 mm or less.

また、上記のような圧縮強度測定方法では、送信探触子100で超音波振動を発生させるため、人手によるハンマー打撃などに比べて、コンクリート構造物に正確な振動を与えることができるので、測定精度も向上する。   Further, in the compressive strength measuring method as described above, since ultrasonic vibration is generated by the transmission probe 100, it is possible to give more accurate vibration to the concrete structure as compared with manual hammering. Accuracy is also improved.

ここで、伝搬速度と圧縮強度の相関図の導出方法について説明する。図3はコンクリート構造物における伝搬速度と圧縮強度との関係を示す図である。図3において、点で示されるものが伝搬速度と圧縮強度の実測値であり、これらの実測値の点に基づいてフィッティングを行ったものが図中の直線である。本発明に係る圧縮強度測定方法では、図3に示すような伝搬速度と圧縮強度の関係図を予め用意しておき、この関係図から圧縮強度を求めるものであるが、このような関係図を求める方法としては次に示す第1及び第2の2通りの方法がある。   Here, a method for deriving the correlation diagram between the propagation speed and the compression strength will be described. FIG. 3 is a diagram showing the relationship between the propagation speed and the compressive strength in a concrete structure. In FIG. 3, what is indicated by a point is an actual measurement value of the propagation velocity and compressive strength, and a line obtained by fitting based on the point of these actual measurement values is a straight line in the figure. In the compressive strength measuring method according to the present invention, a relationship diagram between the propagation speed and the compressive strength as shown in FIG. 3 is prepared in advance, and the compressive strength is obtained from this relationship diagram. There are the following two methods for obtaining.

図4は伝搬速度と圧縮強度との関係を求めるための第1の方法を示す図である。この方法では、ブロック形状のコンクリート構造物10と、このコンクリート構造物10と全く同じ条件(配合、骨材、養生法など)で作製されたテストピース10’を準備する。そして図4(A)に示すように、ブロック形状のコンクリート構造物を用いて本発明の方法により伝搬速度測定を求め、さらに図4(B)に示すように、当該コンクリート構造物と同条件で作製されたテストピース10’で破壊試験による圧縮強度測定を行い、圧縮強度値を求めて、これにより図3中の実測点を得るようにする。   FIG. 4 is a diagram showing a first method for obtaining the relationship between the propagation speed and the compressive strength. In this method, a block-shaped concrete structure 10 and a test piece 10 ′ prepared under exactly the same conditions (mixing, aggregate, curing method, etc.) as the concrete structure 10 are prepared. And as shown to FIG. 4 (A), a propagation velocity measurement is calculated | required by the method of this invention using a block-shaped concrete structure, and also as shown to FIG. 4 (B), on the same conditions as the said concrete structure. The test piece 10 ′ thus prepared is subjected to a compressive strength measurement by a destructive test to obtain a compressive strength value, thereby obtaining an actual measurement point in FIG.

一方、図5は伝搬速度と圧縮強度との関係を求めるための第2の方法を示す図である。この方法では、伝搬速度測定及び圧縮強度測定の両方に同じテストピース10を用いる。図5(A)に示すように、テストピース10の一面側に設置した送信探触子100から超音波パルスを発信し、この超音波パルスをコンクリート中に透過させて、超音波パルスが対向側に設置した受信探触子200に到達するまでの所要時間によって伝播速度を求め、さらに図5(B)に示すように、伝播速度測定で用いたテストピースと同じテストピースで破壊試験による圧縮強度測定を行い、圧縮強度値を求めて、これにより図3中の実測点を得るようにする。なお、図4、図5のいずれの場合でもテストピースとしては、10cm×20cmの円柱試験体を用いている。   On the other hand, FIG. 5 is a diagram showing a second method for obtaining the relationship between the propagation speed and the compressive strength. In this method, the same test piece 10 is used for both propagation velocity measurement and compression strength measurement. As shown in FIG. 5 (A), an ultrasonic pulse is transmitted from a transmission probe 100 installed on one side of the test piece 10, and the ultrasonic pulse is transmitted through the concrete so that the ultrasonic pulse is on the opposite side. The propagation speed is determined by the time required to reach the receiving probe 200 installed in the test piece. Further, as shown in FIG. 5B, the compressive strength obtained by the destructive test is the same as the test piece used in the propagation speed measurement. Measurement is performed to obtain a compressive strength value, thereby obtaining an actual measurement point in FIG. In either case of FIGS. 4 and 5, a 10 cm × 20 cm cylindrical test specimen is used as the test piece.

次に、本発明の他の実施形態について説明する。図6は本発明の他の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図であり、図7は本発明の他の実施形態に係る圧縮強度測定方法を実施する場合の工程例を示す図である。   Next, another embodiment of the present invention will be described. FIG. 6 is a diagram showing an outline of a configuration for carrying out a compressive strength measuring method according to another embodiment of the present invention, and FIG. 7 is a case of carrying out a compressive strength measuring method according to another embodiment of the present invention. It is a figure which shows the example of a process.

先の実施形態においては、測定のために受信探触子200を設置した位置をA、Bの2箇所としたが、本実施形態では、受信探触子200の設置位置をA、B、Cの3箇所としている。なお、この実施形態では、3箇所としているが、本発明の圧縮強度測定方法では4以上の受信探触子200の設置位置で測定を行うようにしてもよい。図6において、図1と同様の参照符号が付された構成については同様の構成を示しているので、説明を省略する。   In the previous embodiment, the positions where the receiving probe 200 is installed for measurement are two positions A and B, but in this embodiment, the installing positions of the receiving probe 200 are A, B, and C. There are three locations. In this embodiment, there are three locations. However, in the compressive strength measurement method of the present invention, the measurement may be performed at four or more installation positions of the receiving probe 200. In FIG. 6, the same reference numerals as those in FIG. 1 are assigned to the same reference numerals, and the description thereof is omitted.

図7を参照しつつ、本発明の実施形態に係る圧縮強度測定方法による圧縮強度の測定工程について説明する。図7において、ステップS200では、位置Oから所定距離離れた位置Aに受信探触子200を設置する。   With reference to FIG. 7, the measurement process of the compressive strength by the compressive strength measuring method according to the embodiment of the present invention will be described. In FIG. 7, in step S <b> 200, the reception probe 200 is installed at a position A that is a predetermined distance away from the position O.

続く、ステップS201では、位置Oから所定距離離れた位置Aに受信探触子200を設置する。   In step S201, the reception probe 200 is installed at a position A that is a predetermined distance away from the position O.

ステップS202では、送信探触子100で超音波振動を発生させて、この振動が受信探触子200に到達するまでの時間(t1)の測定を行う。なお、本実施形態では、受信
探触子200はコンクリート構造物10中を縦波として伝搬した波の到達時間(t1)を
検出している。
In step S202, ultrasonic vibration is generated in the transmission probe 100, and the time (t 1 ) until this vibration reaches the reception probe 200 is measured. In the present embodiment, the reception probe 200 detects the arrival time (t 1 ) of a wave that propagates through the concrete structure 10 as a longitudinal wave.

ステップS203では、位置AからL1離れた位置Bに受信探触子200を設置する。そして、ステップS204で、送信探触子100で超音波振動を発生させて、この振動が受信探触子200に到達するまでの時間(t2)の測定を行う。 In step S203, the receiving probe 200 is installed at a position B that is L1 away from the position A. In step S204, ultrasonic vibration is generated by the transmission probe 100, and the time (t 2 ) until this vibration reaches the reception probe 200 is measured.

ステップS205では、位置BからL2離れた位置Cに受信探触子200を設置する。そして、ステップS206で、送信探触子100で超音波振動を発生させて、この振動が受信探触子200に到達するまでの時間(t3)の測定を行う。 In step S205, the receiving probe 200 is installed at a position C that is L2 away from the position B. In step S206, ultrasonic vibration is generated by the transmission probe 100, and the time (t 3 ) until this vibration reaches the reception probe 200 is measured.

ステップS207では、位置A及び位置Bのデータに基づく伝搬速度V1をL1/(t2−t1)により算出し、ステップS208では、位置B及び位置Cのデータに基づくコン
クリート構造物10中の波の伝搬速度V2をL2/(t3−t2)により算出し、ステップ
S209で、伝搬速度の平均値VをV=(V1+V2)/2により算出する。
In step S207, the propagation velocity V 1 based on the data of the position A and the position B is calculated by L1 / (t 2 -t 1) , in step S208, in the concrete structure 10 based on the data of the position B and the position C The wave propagation velocity V 2 is calculated by L2 / (t 3 -t 2 ), and the average value V of the propagation velocity is calculated by V = (V 1 + V 2 ) / 2 in step S209.

ステップS210では、この伝搬速度Vから圧縮強度Fを推定する。この推定には図3に示す伝搬速度と圧縮強度の相関図を用いる。   In step S210, the compression strength F is estimated from the propagation velocity V. For this estimation, a correlation diagram between the propagation speed and the compression strength shown in FIG. 3 is used.

以上のような実施形態によれば、先の実施形態と同様の効果に加えて、受信探触子200を複数位置に設置し複数回データを取得するので、より精度の高い圧縮強度を求めることができる、という効果を奏するものである。   According to the embodiment as described above, in addition to the same effect as the previous embodiment, the receiving probe 200 is installed at a plurality of positions and data is acquired a plurality of times, so that a more accurate compression strength is obtained. It has the effect of being able to.

次に、本発明の他の実施形態について説明する。図8は本発明の他の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図である。図1及び図2で説明した実施形態では、受信探触子200が縦波を検出して縦波の伝搬速度を求めるようにしていたが、図8に示す実施形態では、受信探触子200は表面波の検出を行い表面波の伝搬速度を求めるようにしている。なお、本実施形態の圧縮強度測定方法でも、図2で説明した工程と同様の工程によって圧縮強度を求めるものである。伝搬速度を求める際に、本実施形態のように表面波を用いることで、先の実施形態と同様の効果の他に以下のような効果を奏することができるものである。   Next, another embodiment of the present invention will be described. FIG. 8 is a diagram showing an outline of a configuration for carrying out a compressive strength measuring method according to another embodiment of the present invention. In the embodiment described with reference to FIGS. 1 and 2, the reception probe 200 detects the longitudinal wave and obtains the propagation speed of the longitudinal wave. However, in the embodiment shown in FIG. Detects surface waves and determines the propagation speed of surface waves. In the compressive strength measurement method of the present embodiment, the compressive strength is obtained by the same process as that described with reference to FIG. When determining the propagation velocity, the following effects can be obtained in addition to the effects similar to those of the previous embodiment by using the surface wave as in the present embodiment.

まず、周波数500kHzの表面波のエネルギーや振幅は縦波より大きいために、表面波を用いる圧縮強度測定方法によれば、送信探触子100及び受信探触子200の間の距離を比較的長く設定することができ、比較的広範囲での伝搬速度の測定を行うことができるので、広範囲の情報に基づく圧縮強度を求めることが可能となる。   First, since the energy and amplitude of a surface wave with a frequency of 500 kHz are larger than the longitudinal wave, according to the compression strength measurement method using the surface wave, the distance between the transmission probe 100 and the reception probe 200 is relatively long. Since the propagation velocity can be measured in a relatively wide range, the compression strength based on a wide range of information can be obtained.

また、受信探触子200で超音波振動による表面波を検出する本発明の実施形態では、測定環境周囲の音による振動も受信する可能性が低く、多様な測定環境に対応することができる。   In addition, in the embodiment of the present invention in which the reception probe 200 detects surface waves due to ultrasonic vibrations, there is a low possibility of receiving vibrations due to sounds around the measurement environment, and it is possible to deal with various measurement environments.

また、受信探触子200で表面波を検出する本発明の実施形態では、コンクリート構造物10表面から比較的深い位置の伝播速度を測定することができ、測定により推定されるコンクリートの圧縮強度は、比較的深い位置での情報に基づく圧縮強度を求めることが可能となる。   In the embodiment of the present invention in which the reception probe 200 detects surface waves, the propagation velocity at a relatively deep position from the surface of the concrete structure 10 can be measured, and the compressive strength of the concrete estimated by the measurement is It is possible to obtain the compression strength based on information at a relatively deep position.

さらに、厚さ方向の圧縮強度を測定するには、測定対象コンクリートの厚さに応じて表
面波の波長を変更する必要があるが、受信探触子200で超音波振動による表面波を検出する本発明の実施形態では、ハンマー打撃などに比べて、周波数の制御が容易かつ自在であるので、測定したいコンクリート構造物の厚さに相応しい周波数の波を用いて、適切な圧縮強度測定を実施することができる。
Furthermore, in order to measure the compressive strength in the thickness direction, it is necessary to change the wavelength of the surface wave in accordance with the thickness of the concrete to be measured, but the reception probe 200 detects the surface wave due to ultrasonic vibration. In the embodiment of the present invention, the frequency can be controlled more easily and freely than in the case of hammering or the like, so that an appropriate compressive strength measurement is performed using a wave having a frequency suitable for the thickness of the concrete structure to be measured. be able to.

なお、本発明によれば、送信探触子100の超音波振動で、多波数の表面波超音波を印加することで、波のエネルギーが大きくすることができ、かつ、距離減衰も小さくすることができる。さらに、距離減衰よる周波数変化への影響が小さいため、より広範囲の測定が可能となる。また、本発明によれば、センサの配置、距離、数、入射周波数などのパラメーターを考慮し、画像化もできる測定装置を製作することで簡単に平面方向と厚さ方向の圧縮強度を一気に推定できる。   According to the present invention, the wave energy can be increased and the distance attenuation can be reduced by applying surface wave ultrasonic waves having a high wave number with the ultrasonic vibration of the transmission probe 100. Can do. Furthermore, since the influence on the frequency change due to the distance attenuation is small, a wider range of measurement is possible. In addition, according to the present invention, it is possible to easily estimate the compressive strength in the plane direction and the thickness direction at a stretch by manufacturing a measuring device that can also be imaged in consideration of parameters such as sensor arrangement, distance, number, and incident frequency. it can.

次に、本発明の他の実施形態について説明する。図9は本発明の他の実施形態に係る圧縮強度測定方法を実施するための構成の概略を示す図である。図9において、送信探触子100の101は送信探触子の本体部、102はモード変換部材を示しており、受信探触子200の201は受信探触子の本体部、202はモード変換部材を示している。   Next, another embodiment of the present invention will be described. FIG. 9 is a diagram showing an outline of a configuration for carrying out a compressive strength measuring method according to another embodiment of the present invention. In FIG. 9, 101 of the transmission probe 100 indicates the main body of the transmission probe, 102 indicates the mode conversion member, 201 of the reception probe 200 indicates the main body of the reception probe, and 202 indicates the mode conversion. The member is shown.

本実施形態においては、送信探触子100の送信探触子本体部101にモード変換部材102を設けることによって、コンクリート構造物10に付与する振動を垂直方向から与えるのではなく、図示するようなモード変換部材102を介してコンクリート構造物10に振動を斜角で入射させるようにしている。なお、このモード変換部材102としては、ゴムなどの弾性材料や粘度などの粘性材料が用いられる。このようなモード変換部材102を用い、かつ振動の入射角度を、縦波臨界角と横波臨界角より大きく設定すれば、送信探触子本体部101の振動を表面波の形態でコンクリート構造物10に付与することが可能となる。このとき、理論的にはコンクリート構造物10中には縦波と横波が発生することがないので、送信探触子本体部101からの振動は効率的にコンクリート構造物10に表面波として入力されることとなる。   In the present embodiment, by providing the transmission probe main body 101 of the transmission probe 100 with the mode conversion member 102, the vibration applied to the concrete structure 10 is not applied from the vertical direction, but as illustrated. Vibration is incident on the concrete structure 10 through the mode conversion member 102 at an oblique angle. As the mode conversion member 102, an elastic material such as rubber or a viscous material such as viscosity is used. If such a mode conversion member 102 is used and the incident angle of vibration is set to be larger than the longitudinal wave critical angle and the transverse wave critical angle, the vibration of the transmission probe main body 101 in the form of surface waves is applied to the concrete structure 10. Can be granted. At this time, theoretically, no longitudinal wave and transverse wave are generated in the concrete structure 10, so that vibration from the transmission probe main body 101 is efficiently input to the concrete structure 10 as surface waves. The Rukoto.

また、受信探触子200にもモード変換部材202が設けられており、これによれば表面波を効率的に受信探触子本体部201に入力することが可能となる。なお、受信探触子200側にモード変換部材202を設けることは必須の構成ではなく、これまで説明した実施形態と同様の受信探触子200を用いることもできる。図10は、先の実施形態と同様の受信探触子200を用いた構成の概略を示す図である。   The receiving probe 200 is also provided with a mode conversion member 202. According to this, a surface wave can be efficiently input to the receiving probe main body 201. Note that it is not essential to provide the mode conversion member 202 on the reception probe 200 side, and the reception probe 200 similar to the embodiment described so far can also be used. FIG. 10 is a diagram showing an outline of a configuration using a reception probe 200 similar to that of the previous embodiment.

図9に示す実施形態でも、図2で説明した工程と同様の工程によって圧縮強度を求めるものである。伝搬速度を求める際に、本実施形態のようにモード変換部材102が設けられた送信探触子100を用いることで、これまで説明した実施形態と同様の効果の他に、コンクリートの厚さ方向での縦波による多重反射が発生することがないし、また、縦波から表面波へのモード変換も生じないので、伝播速度の測定精度が向上し、この伝播速度から求められる圧縮強度の推定精度も向上する。   In the embodiment shown in FIG. 9 as well, the compressive strength is obtained by a process similar to the process described in FIG. When obtaining the propagation velocity, by using the transmission probe 100 provided with the mode conversion member 102 as in the present embodiment, in addition to the same effects as the embodiments described so far, the thickness direction of the concrete In this case, multiple reflections due to longitudinal waves do not occur, and mode conversion from longitudinal waves to surface waves does not occur. Therefore, the measurement accuracy of propagation velocity is improved, and the compression strength estimation accuracy obtained from this propagation velocity is improved. Will also improve.

次に、本発明の実施例について説明する。図11は本発明の圧縮強度測定方法によって測定を行った結果を示す図である。図1で説明した実施形態、図8で説明した実施形態、図9で説明した実施形態の3つの方法により、それぞれ伝搬速度を求めた。また、それぞれの伝搬速度を、透過法で測定した縦波の伝搬速度(4424m/s)を基準として、どの程度の差異が生じたかを求めた。送信探触子100と位置Aの間の距離L0は、200mmとした。実施例を測定するための系においては、従来の表面法による測定では、結果を得ることができなかったが、本実施形態による方法によれば、いずれの実施形態でも高い感度と、精度で測定結果を得ることができ、本発明の有効性が実証された。   Next, examples of the present invention will be described. FIG. 11 is a diagram showing the results of measurement by the compressive strength measuring method of the present invention. The propagation speed was obtained by the three methods of the embodiment described in FIG. 1, the embodiment described in FIG. 8, and the embodiment described in FIG. Further, the degree of difference in each propagation speed was determined based on the longitudinal wave propagation speed (4424 m / s) measured by the transmission method. The distance L0 between the transmission probe 100 and the position A was 200 mm. In the system for measuring the examples, the measurement by the conventional surface method could not obtain a result, but according to the method according to the present embodiment, measurement was performed with high sensitivity and accuracy in any of the embodiments. Results were obtained and the effectiveness of the present invention was demonstrated.

なお、以上、種々の実施形態について説明したが、任意の実施形態を適宜組み合わせて構成される実施形態についても本発明の範疇となるものである。   Although various embodiments have been described above, embodiments configured by appropriately combining arbitrary embodiments also fall within the scope of the present invention.

10・・・コンクリート構造物、100・・・送信探触子、101・・・送信探触子本体部、102・・・モード変換部材、200・・・受信探触子、201・・・受信探触子の本体部、202・・・モード変換部材 DESCRIPTION OF SYMBOLS 10 ... Concrete structure, 100 ... Transmission probe, 101 ... Transmission probe main-body part, 102 ... Mode conversion member, 200 ... Reception probe, 201 ... Reception Probe body, 202... Mode conversion member

Claims (5)

測定対象となるコンクリート構造物の所定面における所定位置に送信探触子を設置する工程と、
前記所定面における前記所定位置から所定距離離れた第1位置に受信探触子を設置する工程と、
前記送信探触子で超音波振動を発生させる工程と、
前記受信探触子で前記振動に基づく波を検出し前記振動が到達する第1時間を測定する工程と、
前記所定面における前記第1位置から第1距離離れた第2位置に前記受信探触子を設置する工程と、
前記送信探触子で超音波振動を発生させる工程と、
前記受信探触子で前記振動に基づく波を検出し前記振動が到達する第2時間を測定する工程と、
前記第1時間と前記第2時間と前記第1距離とから前記振動に基づく波の伝搬速度を算出する工程と、
前記伝搬速度から前記コンクリート構造物の圧縮強度を求める工程と、からなることを特徴とする圧縮強度測定方法。
Installing a transmitting probe at a predetermined position on a predetermined surface of a concrete structure to be measured;
Installing a receiving probe at a first position at a predetermined distance away from the predetermined position on the predetermined surface;
Generating ultrasonic vibrations in the transmission probe;
Detecting a wave based on the vibration with the receiving probe and measuring a first time that the vibration reaches;
Installing the reception probe at a second position separated by a first distance from the first position on the predetermined surface;
Generating ultrasonic vibrations in the transmission probe;
Detecting a wave based on the vibration with the reception probe and measuring a second time for the vibration to reach;
Calculating a wave propagation velocity based on the vibration from the first time, the second time, and the first distance;
And a step of obtaining a compressive strength of the concrete structure from the propagation speed.
前記波が縦波であることを特徴とする請求項1に記載の圧縮強度測定方法。 The compressive strength measuring method according to claim 1, wherein the wave is a longitudinal wave. 前記波が表面波であることを特徴とする請求項1に記載の圧縮強度測定方法。 The compressive strength measuring method according to claim 1, wherein the wave is a surface wave. 測定対象となるコンクリート構造物の所定面における所定位置にモード変換部材付き送信探触子を設置する工程と、
前記所定面における前記所定位置から所定距離離れた第1位置に受信探触子を設置する工程と、
前記送信探触子で超音波振動を発生させる工程と、
前記受信探触子で前記振動に基づく表面波を検出し前記振動が到達する第1時間を測定する工程と、
前記所定面における前記第1位置から第1距離離れた第2位置に前記受信探触子を設置する工程と、
前記送信探触子で超音波振動を発生させる工程と、
前記受信探触子で前記振動に基づく表面波を検出し前記振動が到達する第2時間を測定する工程と、
前記第1時間と前記第2時間と前記第1距離とから前記振動に基づく表面波の伝搬速度を算出する工程と、
前記伝搬速度から前記コンクリート構造物の圧縮強度を求める工程と、からなることを特徴とする圧縮強度測定方法。
A step of installing a transmission probe with a mode conversion member at a predetermined position on a predetermined surface of a concrete structure to be measured;
Installing a receiving probe at a first position at a predetermined distance away from the predetermined position on the predetermined surface;
Generating ultrasonic vibrations in the transmission probe;
Detecting a surface wave based on the vibration with the receiving probe and measuring a first time that the vibration reaches;
Installing the reception probe at a second position separated by a first distance from the first position on the predetermined surface;
Generating ultrasonic vibrations in the transmission probe;
Detecting a surface wave based on the vibration with the receiving probe and measuring a second time for the vibration to reach;
Calculating a propagation speed of a surface wave based on the vibration from the first time, the second time, and the first distance;
And a step of obtaining a compressive strength of the concrete structure from the propagation speed.
請求項1乃至請求項4のいずれかに記載の方法により圧縮強度を求めることを特徴とする圧縮強度測定装置。 A compressive strength measuring device, wherein the compressive strength is obtained by the method according to any one of claims 1 to 4.
JP2009011498A 2009-01-22 2009-01-22 Compression strength measurement method, and compression strength measuring instrument using the same Pending JP2010169494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009011498A JP2010169494A (en) 2009-01-22 2009-01-22 Compression strength measurement method, and compression strength measuring instrument using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009011498A JP2010169494A (en) 2009-01-22 2009-01-22 Compression strength measurement method, and compression strength measuring instrument using the same

Publications (1)

Publication Number Publication Date
JP2010169494A true JP2010169494A (en) 2010-08-05

Family

ID=42701791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009011498A Pending JP2010169494A (en) 2009-01-22 2009-01-22 Compression strength measurement method, and compression strength measuring instrument using the same

Country Status (1)

Country Link
JP (1) JP2010169494A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153924A (en) * 2010-01-27 2011-08-11 Taiheiyo Cement Corp Method for estimating compression strength of concrete cured body
KR101680206B1 (en) * 2014-10-08 2016-11-28 (주)레이나 Nondestructive compressive-strength measurement apparatus of solidified radioactive materials in drums and signal processing method thereof
CN110987611A (en) * 2019-10-21 2020-04-10 武汉大学 Method for nondestructively measuring active and passive restraint force of FRP (fiber reinforced Plastic) restraint concrete column based on ultrasonic waves
CN111006946A (en) * 2019-10-21 2020-04-14 武汉大学 Method for ultrasonic nondestructive detection of nonuniform sleeve restraining force of square steel tube concrete column
CN112147228A (en) * 2020-09-28 2020-12-29 廊坊市阳光建设工程质量检测有限公司 Method for establishing strength measurement curve for detecting concrete strength by using rebound ultrasonic angle measurement comprehensive method
US20230160855A1 (en) * 2021-11-19 2023-05-25 Fdh Infrastructure Services, Llc Systems and Methods For Estimating Concrete Strength Using Surface Wave Speed

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313859A (en) * 1989-06-13 1991-01-22 Shimizu Corp Method for measuring compressive strength of concrete using ultrasonic wave
JPH09280848A (en) * 1996-04-10 1997-10-31 Shizuoka Oki Denki Kk Surface thickness judging method of multi-ply material and device therefor
JP2002181677A (en) * 2000-12-13 2002-06-26 Mitsui Constr Co Ltd Nondestructive compressive strength testing method, stress estimating method and test device for concrete
JP2004037411A (en) * 2002-07-08 2004-02-05 Sumitomo Mitsui Construction Co Ltd Nondestructive compressive concrete strength measuring method and system
JP2004150945A (en) * 2002-10-30 2004-05-27 Central Giken:Kk Nondestructive measuring instrument and method for dynamic characteristic of concrete by surface wave
JP2008268102A (en) * 2007-04-24 2008-11-06 Sumitomo Mitsui Construction Co Ltd Elastic wave propagation velocity measuring device and system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313859A (en) * 1989-06-13 1991-01-22 Shimizu Corp Method for measuring compressive strength of concrete using ultrasonic wave
JPH09280848A (en) * 1996-04-10 1997-10-31 Shizuoka Oki Denki Kk Surface thickness judging method of multi-ply material and device therefor
JP2002181677A (en) * 2000-12-13 2002-06-26 Mitsui Constr Co Ltd Nondestructive compressive strength testing method, stress estimating method and test device for concrete
JP2004037411A (en) * 2002-07-08 2004-02-05 Sumitomo Mitsui Construction Co Ltd Nondestructive compressive concrete strength measuring method and system
JP2004150945A (en) * 2002-10-30 2004-05-27 Central Giken:Kk Nondestructive measuring instrument and method for dynamic characteristic of concrete by surface wave
JP2008268102A (en) * 2007-04-24 2008-11-06 Sumitomo Mitsui Construction Co Ltd Elastic wave propagation velocity measuring device and system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153924A (en) * 2010-01-27 2011-08-11 Taiheiyo Cement Corp Method for estimating compression strength of concrete cured body
KR101680206B1 (en) * 2014-10-08 2016-11-28 (주)레이나 Nondestructive compressive-strength measurement apparatus of solidified radioactive materials in drums and signal processing method thereof
CN110987611A (en) * 2019-10-21 2020-04-10 武汉大学 Method for nondestructively measuring active and passive restraint force of FRP (fiber reinforced Plastic) restraint concrete column based on ultrasonic waves
CN111006946A (en) * 2019-10-21 2020-04-14 武汉大学 Method for ultrasonic nondestructive detection of nonuniform sleeve restraining force of square steel tube concrete column
CN110987611B (en) * 2019-10-21 2020-11-17 武汉大学 Method for nondestructively measuring active and passive restraint force of FRP (fiber reinforced Plastic) restraint concrete column based on ultrasonic waves
CN112147228A (en) * 2020-09-28 2020-12-29 廊坊市阳光建设工程质量检测有限公司 Method for establishing strength measurement curve for detecting concrete strength by using rebound ultrasonic angle measurement comprehensive method
US20230160855A1 (en) * 2021-11-19 2023-05-25 Fdh Infrastructure Services, Llc Systems and Methods For Estimating Concrete Strength Using Surface Wave Speed

Similar Documents

Publication Publication Date Title
US6941231B2 (en) Acoustic method for estimating mechanical properties of a material and apparatus therefor
US6360609B1 (en) Method and system for interpreting and utilizing multimode dispersive acoustic guided waves
JP2010169494A (en) Compression strength measurement method, and compression strength measuring instrument using the same
JP2017078699A (en) Residual stress evaluation method
RU2604562C2 (en) Method of resilient properties ultrasonic measurement
KR101027069B1 (en) Evaluation method for bonding state of shotcrete
JP5450177B2 (en) Nondestructive inspection method and nondestructive inspection device for grout filling degree
JP2014196996A (en) Liquid detection method and liquid detection device
US9518959B2 (en) Structural health monitoring system and method
Veidt et al. Flexural waves transmitted by rectangular piezoceramic transducers
JP5841027B2 (en) Inspection apparatus and inspection method
JP5614608B2 (en) Depth measurement method of concrete surface cracks by ultrasonic.
JP6989925B2 (en) Stress measurement method for concrete structures and stress measurement system for concrete structures
US20110261653A1 (en) Object probing device, object probing program, and object probing method
JP2015021749A (en) Inspection device and inspection method
JP5268686B2 (en) Measuring apparatus and measuring method by electromagnetic ultrasonic method
Mhamdi et al. A comparison between time-of-arrival and novel phased array approaches to estimate acoustic emission source locations in a steel plate
JP2020056639A (en) Pressure measuring device
KR101415359B1 (en) System and method for estimating circumferential thickness of pipe
JP2022062898A (en) Method for detecting state of damage to structure
JP6861969B2 (en) Elastic wave transmission / reception probe, measuring device and measuring method using this
RU2422718C1 (en) Procedure for determination of contact place of pipeline with protective jacket in system of main crossing over road
JP2004163227A (en) Method for measuring neutralized thickness of concrete
JP2017032478A (en) Residual stress evaluation method
Kachanov et al. Use of the impact-echo method for analyzing the integrity of driven reinforced concrete piles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110623

A977 Report on retrieval

Effective date: 20121101

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20121107

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130306