JP5268686B2 - Measuring apparatus and measuring method by electromagnetic ultrasonic method - Google Patents

Measuring apparatus and measuring method by electromagnetic ultrasonic method Download PDF

Info

Publication number
JP5268686B2
JP5268686B2 JP2009022658A JP2009022658A JP5268686B2 JP 5268686 B2 JP5268686 B2 JP 5268686B2 JP 2009022658 A JP2009022658 A JP 2009022658A JP 2009022658 A JP2009022658 A JP 2009022658A JP 5268686 B2 JP5268686 B2 JP 5268686B2
Authority
JP
Japan
Prior art keywords
electromagnetic ultrasonic
sensor
measured
sound velocity
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009022658A
Other languages
Japanese (ja)
Other versions
JP2010181174A (en
Inventor
利英 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009022658A priority Critical patent/JP5268686B2/en
Publication of JP2010181174A publication Critical patent/JP2010181174A/en
Application granted granted Critical
Publication of JP5268686B2 publication Critical patent/JP5268686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To introduce an ultrasonic wave to a material by an electromagnetic ultrasonic method without contact, simultaneously measure a sound velocity in the material and the thickness of the material with high accuracy, and measure a temperature (surface temperature or inner temperature) of the material from the measured sound velocity. <P>SOLUTION: The measuring device by an electromagnetic ultrasonic method includes: a transmission sensor T having a meander coil 4 capable of transmitting an ultrasonic wave to the inside of a material 2; two reception sensors R1, R2 disposed at positions with different distances from the transmission sensor T on the same plane to the transmission sensor T; an internal sound velocity measurement part 31 for measuring a sound velocity of the inside of the material 2 and the thickness of the material 2 based on the arrival times of the electromagnetic ultrasonic wave at the reception sensors R1, R2 and position information of the reception sensors R1, R2; and an internal temperature measurement part 32 for calculating the average temperature of the inside of the material 2 based on the internal sound velocity measured by the internal sound velocity measurement part 31. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、材料の非接触測定装置及び方法に関し、特に、熱間圧延ラインで高速移動中の鋼板の板厚や温度を非接触で測定する場合に好適な、電磁超音波法による測定装置及び方法に関する。   The present invention relates to a non-contact measuring apparatus and method for materials, and more particularly to a measuring apparatus using an electromagnetic ultrasonic method suitable for non-contact measurement of the thickness and temperature of a steel plate moving at high speed on a hot rolling line, and Regarding the method.

圧延板等の材料の厚さを測定するのに、超音波を用いた方法が多く用いられている。この方法は、材料に超音波を導入し、表面と裏面との間で往復反射する超音波エコーの時間間隔を測定し、その材料固有の音速を乗じることで板厚を測定するものである。この方法は、材料の片側からの測定により、材料の厚さを測定できるというメリットがある。
しかしながら、一般に市販されている超音波を用いて板厚を測定する測定器(超音波板厚計)は、圧電素子を水やグリセリンなどの接触媒質を介して材料表面に接触させる方法である。この手法は簡便で安価であるが、材料に接触しなければならない点で圧延中の板などのオンラインへの適用は困難である。
In order to measure the thickness of a material such as a rolled plate, a method using ultrasonic waves is often used. In this method, an ultrasonic wave is introduced into a material, a time interval of ultrasonic echoes reciprocally reflected between the front surface and the back surface is measured, and a plate thickness is measured by multiplying the sound speed specific to the material. This method has an advantage that the thickness of the material can be measured by measurement from one side of the material.
However, a commercially available measuring instrument (ultrasonic thickness meter) that measures the thickness using ultrasonic waves is a method in which a piezoelectric element is brought into contact with a material surface via a contact medium such as water or glycerin. This method is simple and inexpensive, but it is difficult to apply on-line such as a plate being rolled because it has to contact the material.

そこで、圧延板の板厚など測定には、レーザ励起又は電磁力励起による非接触超音波法が用いられる。
例えば、特開2001−194137号公報(特許文献1)には、レーザ超音波による音速と板厚との同時計測方法が開示されている。この特許文献1に開示された材料厚さの非接触測定方法は、被測定物の表面上の2つの位置PL、PSに相異なるタイミングでレーザビームを照射し、第1の位置に照射したレーザによって被測定物中に超音波縦波を発生させると共に、第2の位置に照射したレーザによって被測定物中に超音波横波を発生させ、超音波検出用のレーザ及び光学干渉計からなる非接触超音波検出器によって、これらの超音波を検出し、被測定物中の超音波縦波及び超音波横波の伝搬時間tL及びtSを測定し、予め求めておいたtL及びtSと被測定物中の超音波音速との関係式及び2つの位置PLとPSとの距離を用いて、tLとtSとから被測定物中の超音波音速を求め、この音速と測定した超音波伝搬時間から被測定物の厚さを算出することを特徴とする。
Therefore, a non-contact ultrasonic method using laser excitation or electromagnetic force excitation is used for measuring the thickness of the rolled sheet.
For example, Japanese Patent Laid-Open No. 2001-194137 (Patent Document 1) discloses a method for simultaneously measuring the sound speed and the plate thickness using laser ultrasonic waves. The material thickness non-contact measuring method disclosed in Patent Document 1 irradiates two positions P L and P S on the surface of the object to be measured at different timings and irradiates the first position. An ultrasonic longitudinal wave is generated in the object to be measured by the laser, and an ultrasonic transverse wave is generated in the object by the laser irradiated to the second position, and includes an ultrasonic detection laser and an optical interferometer. by a non-contact ultrasonic detector, it detects these ultrasound to measure the propagation time t L and t S of the ultrasonic longitudinal wave and ultrasonic shear wave of the object in, previously obtained t L and t Using the relational expression between S and the ultrasonic sound velocity in the object to be measured and the distance between the two positions P L and P S , the ultrasonic sound velocity in the object to be measured is obtained from t L and t S. The thickness of the object to be measured is calculated from the measured ultrasonic propagation time.

特開2001−194137号公報JP 2001-194137 A

しかしながら、特許文献1の技術を実際の現場に適用しようとした際には、上記したように、レーザ使用に伴うに難点(装置が大がかりになる、材料に少なからず損傷を残す等)が回避できない。また、工場内の雰囲気中にミストなどが存在する場合には、照射されたレーザが乱反射するなどの問題が発生し、実際の適用が困難であるという問題がしばしば発生する。
一方、材料の圧延工程においては、材料の温度で材質を制御しているが、材料の表面温度と内部温度とに差異が生じている場合もあり、表面温度と内部温度を同じ箇所で同時に計測したいという現場のニーズがある。特許文献1の技術はこの要求に応えるものとはなっていない。
However, when trying to apply the technique of Patent Document 1 to an actual site, as described above, it is impossible to avoid difficulties associated with the use of a laser (such as a large-scale apparatus and a considerable damage to the material). . Further, when mist or the like is present in the atmosphere in the factory, there is a problem that the irradiated laser is irregularly reflected and the problem that actual application is difficult is often caused.
On the other hand, in the material rolling process, the material temperature is controlled by the material temperature, but there may be a difference between the material surface temperature and the internal temperature, and the surface temperature and the internal temperature are measured simultaneously at the same location. There is a site need to do. The technique of Patent Document 1 does not meet this requirement.

そこで、本発明は、上記課題を解決すべく、電磁超音波法により材料に非接触で超音波を入射して、音速と板厚とを同時に高精度で測定し、得られた音速から材料の温度(表面温度や内部温度)を計測することができる電磁超音波法による測定装置及び測定方法を提供することを目的とする。   Therefore, in order to solve the above-mentioned problem, the present invention makes it possible to measure the sound velocity and the plate thickness simultaneously with high accuracy by injecting ultrasonic waves into the material in a non-contact manner by the electromagnetic ultrasonic method. An object of the present invention is to provide a measuring apparatus and a measuring method by an electromagnetic ultrasonic method capable of measuring temperature (surface temperature and internal temperature).

上述の目的を達成するため、本発明においては以下の技術的手段を講じた。
本発明にかかる電磁超音波法による測定装置は、材料の内部に電磁超音波を送信可能なメアンダ型のコイルを備えた送信センサと、前記送信センサと同一平面上で且つ送信センサからの距離が異なる位置に配備された2つの受信センサと、各受信センサへの電磁超音波の到着時刻と各受信センサの位置情報とに基づいて、前記材料の内部の音速と材料厚さとを測定する内部音速測定部と、前記内部音速測定部で測定された内部の音速を基に、当該材料の内部の平均温度を算出する内部温度測定部と、を有することを特徴とする。
In order to achieve the above-described object, the present invention takes the following technical means.
The measuring apparatus by the electromagnetic ultrasonic method according to the present invention includes a transmission sensor having a meander-type coil capable of transmitting electromagnetic ultrasonic waves inside a material, and a distance from the transmission sensor on the same plane as the transmission sensor. Internal sound velocity for measuring the internal sound velocity and the material thickness of the material based on two reception sensors arranged at different positions, the arrival time of the electromagnetic ultrasonic wave at each reception sensor, and the position information of each reception sensor It has a measurement part and an internal temperature measurement part which calculates the average temperature inside the material based on the internal sound speed measured by the internal sound speed measurement part.

この装置によれば、2つの受信センサの位置情報と電磁超音波の到着時刻とから、2つの連立方程式を立てて演算を行うことで、材料内部の音速と板厚とを同時に高精度で得ることができ、得られた音速から材料の内部温度を知ることが可能となる。
本発明にかかる電磁超音波法による測定装置は、材料の表面を伝播する電磁超音波を送信可能なメアンダ型のコイルを備えた送信センサと、前記送信センサと同一平面上で且つ送信センサからの距離が異なる位置に配備された2つの受信センサと、各受信センサへの電磁超音波の到着時刻と各受信センサの位置情報とに基づいて、前記材料の表面の音速を測定する表面音速測定部と、前記表面音速測定部で測定された表面の音速を基に、当該材料の表面の平均温度を算出する表面温度測定部と、を有することを特徴とする。
According to this apparatus, by calculating two simultaneous equations from the position information of the two receiving sensors and the arrival time of the electromagnetic ultrasonic wave, the sound speed and the plate thickness inside the material can be simultaneously obtained with high accuracy. It is possible to know the internal temperature of the material from the obtained sound speed.
A measurement apparatus using an electromagnetic ultrasonic method according to the present invention includes a transmission sensor including a meander-type coil capable of transmitting electromagnetic ultrasonic waves propagating on the surface of a material, and the same plane as the transmission sensor and from the transmission sensor. Surface sound velocity measuring unit that measures the sound velocity of the surface of the material based on two reception sensors arranged at different positions, the arrival time of the electromagnetic ultrasonic wave at each reception sensor, and the position information of each reception sensor And a surface temperature measurement unit that calculates an average temperature of the surface of the material based on the sound velocity of the surface measured by the surface sound velocity measurement unit.

この装置によれば、2つの受信センサの位置情報と電磁超音波の到着時刻とから、2つの連立方程式を立てて演算を行うことで、材料表面の音速を高精度で得ることができ、得られた音速から材料の表面温度を知ることが可能となる。
好ましくは、前記内部音速測定部は、事前に測定された前記材料における温度と音速との関係を基に、材料の内部の平均温度を算出するとよい。前記表面音速測定部は、事前に測定された前記材料における温度と音速との関係を基に、材料の表面の平均温度を算出するとよい。
According to this apparatus, the sound speed of the material surface can be obtained with high accuracy by calculating two simultaneous equations from the positional information of the two receiving sensors and the arrival time of the electromagnetic ultrasonic wave. It becomes possible to know the surface temperature of the material from the obtained sound speed.
Preferably, the internal sound velocity measurement unit calculates an average temperature inside the material based on a relationship between the temperature and the sound velocity of the material measured in advance. The surface sound velocity measuring unit may calculate the average temperature of the surface of the material based on the relationship between the temperature of the material and the sound velocity measured in advance.

さらに好ましくは、前記材料の表面を伝播する電磁超音波の各受信センサにおける到着時刻を基に、各受信センサの位置情報を補正する補正部を備えているとよい。
なお、本発明に係る測定装置の最も好ましい形態は、材料の内部に電磁超音波を送信可能なメアンダ型のコイルを備えた送信センサと、前記送信センサからの距離が異なる位置に配備された2つの受信センサとを有すると共に、前記送信センサと前記2つの受信センサとが、被測定材料の表面に沿った同一平面上に配備され、前記材料の表面を伝播する電磁超音波の各受信センサにおける到着時刻を基に、各受信センサの位置情報を補正する補正部と、前記各受信センサへの電磁超音波の到着時刻と前記補正部にて補正された各受信センサの位置情報とに基づいて、前記材料の内部の音速と材料厚さとを測定する内部音速測定部と、前記内部音速測定部で測定された内部の音速を基に、当該材料の内部の平均温度を算出する内部温度測定部と、が備えられていることを特徴とする。
また、本発明に係る測定装置の最も好ましい形態は、材料の表面を伝播する電磁超音波を送信可能なメアンダ型のコイルを備えた送信センサと、前記送信センサと被測定材料の表面に沿った同一平面上で且つ送信センサからの距離が異なる位置に配備された2つの受信センサと、前記材料の表面を伝播する電磁超音波の各受信センサにおける到着時刻を基に、各受信センサの位置情報を補正する補正部と、前記各受信センサへの電磁超音波の到着時刻と前記補正部にて補正された各受信センサの位置情報とに基づいて、前記材料の表面の音速を測定する表面音速測定部と、前記表面音速測定部で測定された表面の音速を基に、当該材料の表面の平均温度を算出する表面温度測定部と、を有することを特徴とする。
また、本発明にかかる電磁超音波法による測定方法は、メアンダ型のコイルを備えた送信センサから材料の内部に電磁超音波を送信し、送信された電磁超音波を、前記送信センサと同一平面上で且つ送信センサからの距離が異なる位置に配備された2つの受信センサで受信する電磁超音波法による測定方法であって、各受信センサへの電磁超音波の到着時刻と各受信センサの位置情報とに基づいて、前記材料の内部の音速と材料厚さとを測定し、測定された内部の音速を基に、前記材料の内部の平均温度を算出することを特徴とする。
More preferably, a correction unit that corrects positional information of each reception sensor based on the arrival time of each electromagnetic reception ultrasonic wave propagating on the surface of the material may be provided.
The most preferable form of the measuring apparatus according to the present invention is a transmission sensor provided with a meander-type coil capable of transmitting electromagnetic ultrasonic waves inside the material, and 2 disposed at a position where the distance from the transmission sensor is different. In each of the electromagnetic ultrasonic wave reception sensors, the transmission sensor and the two reception sensors are arranged on the same plane along the surface of the material to be measured and propagate through the surface of the material. Based on the correction unit that corrects the position information of each reception sensor based on the arrival time, the arrival time of the electromagnetic ultrasonic wave to each reception sensor, and the position information of each reception sensor corrected by the correction unit An internal sound speed measurement unit that measures the internal sound speed and the material thickness of the material, and an internal temperature measurement unit that calculates the average internal temperature of the material based on the internal sound speed measured by the internal sound speed measurement unit. When Wherein the is provided.
The most preferable form of the measuring apparatus according to the present invention is a transmission sensor including a meander-type coil capable of transmitting electromagnetic ultrasonic waves propagating on the surface of the material, and along the surfaces of the transmission sensor and the material to be measured. Position information of each receiving sensor based on arrival times of two receiving sensors arranged at different distances from the transmitting sensor on the same plane and electromagnetic ultrasonic waves propagating on the surface of the material And a surface sound velocity for measuring the sound velocity of the surface of the material based on the arrival time of the electromagnetic ultrasonic wave to each reception sensor and the position information of each reception sensor corrected by the correction portion. It has a measurement part and a surface temperature measurement part which calculates the average temperature of the surface of the material concerned based on the sound velocity of the surface measured by the surface sound speed measurement part.
Further, in the measurement method by the electromagnetic ultrasonic method according to the present invention, an electromagnetic ultrasonic wave is transmitted from the transmission sensor having a meander type coil to the inside of the material, and the transmitted electromagnetic ultrasonic wave is flush with the transmission sensor. A method of measurement by electromagnetic ultrasonic waves received by two reception sensors arranged at different positions from the transmission sensor above, the arrival time of the electromagnetic ultrasonic waves at each reception sensor and the position of each reception sensor Based on the information, a sound speed and a material thickness inside the material are measured, and an average temperature inside the material is calculated based on the measured sound speed inside.

この方法によれば、2つの受信センサの位置情報と電磁超音波の到着時刻とから、2つの連立方程式を立てて演算を行うことで、材料内部の音速と板厚とを同時に高精度で得ることができ、得られた音速から材料の内部温度を知ることが可能となる。
また、本発明にかかる電磁超音波法による測定方法は、メアンダ型のコイルを備えた送信センサから材料の表面を伝播する電磁超音波を送信し、送信された電磁超音波を、前記送信センサと同一平面上で且つ送信センサからの距離が異なる位置に配備された2つの受信センサで受信する電磁超音波法による測定方法であって、各受信センサへの電磁超音波の到着時刻と各受信センサの位置情報とに基づいて、前記材料の表面の音速を測定し、測定された表面の音速を基に、前記材料の表面の平均温度を算出することを特徴とする。
According to this method, the sound speed and the plate thickness inside the material can be obtained simultaneously and with high accuracy by calculating two simultaneous equations from the positional information of the two receiving sensors and the arrival time of the electromagnetic ultrasonic wave. It is possible to know the internal temperature of the material from the obtained sound speed.
Further, in the measurement method by the electromagnetic ultrasonic method according to the present invention, an electromagnetic ultrasonic wave propagating on the surface of a material is transmitted from a transmission sensor having a meander type coil, and the transmitted electromagnetic ultrasonic wave is transmitted to the transmission sensor. An electromagnetic ultrasonic wave measurement method for receiving by two reception sensors arranged at different positions on the same plane and at different distances from a transmission sensor, the arrival time of the electromagnetic ultrasonic wave at each reception sensor and each reception sensor The sound speed of the surface of the material is measured on the basis of the position information, and the average temperature of the surface of the material is calculated based on the measured sound speed of the surface.

この方法によれば、2つの受信センサの位置情報と電磁超音波の到着時刻とから、2つの連立方程式を立てて演算を行うことで、材料表面の音速を高精度で得ることができ、得られた音速から材料の表面温度を知ることが可能となる。
上述の方法では、事前に測定された前記材料における温度と音速との関係を基に、材料の内部又は表面の平均温度を算出するとよい。
さらに、前記材料の表面を伝播する電磁超音波の各受信センサにおける到着時刻を基に、各受信センサの位置情報を補正した上で、前記材料の内部の音速又は表面の音速を測定してもよい。
なお、本発明に係る測定方法の最も好ましい形態は、メアンダ型のコイルを備えた送信センサから材料の内部に電磁超音波を送信し、送信された電磁超音波を、前記送信センサと被測定材料の表面に沿った同一平面上で且つ送信センサからの距離が異なる位置に配備された2つの受信センサで受信する電磁超音波法による測定方法であって、前記材料の表面を伝播する電磁超音波の各受信センサにおける到着時刻を基に、各受信センサの位置情報を補正し、前記各受信センサへの電磁超音波の到着時刻と、前記補正後の各受信センサの位置情報とに基づいて、前記材料の内部の音速と材料厚さとを測定し、測定された内部の音速を基に、前記材料の内部の平均温度を算出することを特徴とする。
また、本発明に係る測定方法の最も好ましい形態は、メアンダ型のコイルを備えた送信センサから材料の表面を伝播する電磁超音波を送信し、送信された電磁超音波を、前記送信センサと被測定材料の表面に沿った同一平面上で且つ送信センサからの距離が異なる位置に配備された2つの受信センサで受信する電磁超音波法による測定方法であって、前記材料の表面を伝播する電磁超音波の各受信センサにおける到着時刻を基に、各受信センサの位置情報を補正し、前記各受信センサへの電磁超音波の到着時刻と、前記補正後の各受信センサの位置情報とに基づいて、前記材料の表面の音速測定し、測定された表面の音速を基に、前記材料の表面の平均温度を算出することを特徴とする。
According to this method, the sound speed of the material surface can be obtained with high accuracy by calculating two simultaneous equations from the position information of the two receiving sensors and the arrival time of the electromagnetic ultrasonic wave. It becomes possible to know the surface temperature of the material from the obtained sound speed.
In the above-described method, the average temperature inside or on the surface of the material may be calculated based on the relationship between the temperature of the material measured in advance and the speed of sound.
Furthermore, after correcting the positional information of each receiving sensor based on the arrival time of each electromagnetic receiving ultrasonic wave propagating on the surface of the material, the sound speed inside the material or the sound speed of the surface may be measured. Good.
The most preferable form of the measuring method according to the present invention is that an electromagnetic ultrasonic wave is transmitted from a transmission sensor having a meander type coil to the inside of the material, and the transmitted electromagnetic ultrasonic wave is transmitted between the transmission sensor and the material to be measured. A method of measurement by electromagnetic ultrasonic wave reception by two reception sensors arranged on the same plane along the surface of the sensor and at different distances from the transmission sensor, the electromagnetic ultrasonic wave propagating on the surface of the material Based on the arrival time at each reception sensor, the position information of each reception sensor is corrected, and based on the arrival time of the electromagnetic ultrasonic wave to each reception sensor and the position information of each reception sensor after the correction, A sound speed and a material thickness inside the material are measured, and an average temperature inside the material is calculated based on the measured sound speed inside.
In the most preferable form of the measuring method according to the present invention, an electromagnetic ultrasonic wave propagating on the surface of a material is transmitted from a transmission sensor provided with a meander type coil, and the transmitted electromagnetic ultrasonic wave is transmitted to the transmission sensor and the target. An electromagnetic ultrasonic wave measuring method for receiving by two receiving sensors arranged on the same plane along the surface of the measuring material and at different distances from the transmitting sensor, the electromagnetic wave propagating on the surface of the material Based on the arrival time of each ultrasonic wave at each reception sensor, the position information of each reception sensor is corrected. Based on the arrival time of the electromagnetic ultrasonic wave at each reception sensor and the position information of each reception sensor after the correction. Then, the sound speed of the surface of the material is measured, and the average temperature of the surface of the material is calculated based on the measured sound speed of the surface.

本発明によると、電磁超音波法により材料に非接触で超音波を導入して、音速と板厚とを同時に高精度で測定し、得られた音速から材料の温度(表面温度や内部温度)を計測することができる。   According to the present invention, ultrasonic waves are introduced into a material in a non-contact manner by the electromagnetic ultrasonic method, and the sound velocity and the plate thickness are simultaneously measured with high accuracy, and the material temperature (surface temperature and internal temperature) is obtained from the obtained sound velocity. Can be measured.

本発明の実施形態に係る電磁超音波センサの模式図である。It is a schematic diagram of the electromagnetic ultrasonic sensor which concerns on embodiment of this invention. 送信センサの模式図である。It is a schematic diagram of a transmission sensor. 電磁超音波を被測定材料の内部に発射している状況を示した図である。It is the figure which showed the condition which is emitting the electromagnetic ultrasonic wave inside the to-be-measured material. 電磁超音波を被測定材料の表面に発射している状況を示した図である。It is the figure which showed the condition which is emitting the electromagnetic ultrasonic wave on the surface of to-be-measured material. 音速と温度との関係を示した図である。It is the figure which showed the relationship between a sound speed and temperature.

以下、本発明の実施形態を、図を基に説明する。
なお、以下の説明では、同一の部品には同一の符号を付してある。それらの名称及び機能も同じである。したがって、それらについての詳細な説明は繰返さない。
[第1実施形態]
図1は、本実施形態の測定装置(板厚・音速・温度測定装置)に好適な電磁超音波センサ1の模式的な側面図である。
図1に示す電磁超音波センサ1は、被測定材料2の内部や表面に電磁超音波を送信する送信センサTと、送信された電磁超音波を受信するための2つの受信センサRと、受信センサRで検出された信号を基に、被測定材料2の板厚や温度(表面温度、内部温度)を算出する測定部3から構成される。測定部3は、例えば、コンピュータ内のプログラムとして実現されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
[First Embodiment]
FIG. 1 is a schematic side view of an electromagnetic ultrasonic sensor 1 suitable for the measuring apparatus (plate thickness / sound speed / temperature measuring apparatus) of the present embodiment.
An electromagnetic ultrasonic sensor 1 shown in FIG. 1 includes a transmission sensor T that transmits electromagnetic ultrasonic waves to the inside or surface of a material 2 to be measured, two reception sensors R for receiving transmitted electromagnetic ultrasonic waves, and a reception Based on the signal detected by the sensor R, the measuring unit 3 is configured to calculate the thickness and temperature (surface temperature, internal temperature) of the material 2 to be measured. The measurement unit 3 is realized as a program in a computer, for example.

図2に示すように、送信センサTは、メアンダ型のコイル4(櫛形のコイル)と永久磁石5を有している。具体的には、熱間圧延された圧延材などの被測定材料2の表面上方に永久磁石5が、例えば、被測定材料側がN極、反被測定材料側がS極のように配備され、被測定材料2と永久磁石5との間であって被測定材料2の表面と平行に、メアンダ型のコイル4が配備されている。なお、メアンダ型のコイル4のターン数は一例であって、本発明がこの図のターン数のコイルに限定されるものではない。
このメアンダ型のコイル4に電流を流すことで、被測定材料2内に誘起される渦電流と磁界との相互作用により発生するローレンツ力が駆動源となって被測定材料2内に電磁超音波を発生させる。なお、図2(a)の丸印の中に点を備えた印は、紙面裏側から紙面表側への電流の流れを示す記号である。丸印の中に×を備えた印は、紙面表側から紙面裏側への電流の流れを示す記号である。
As shown in FIG. 2, the transmission sensor T includes a meander-type coil 4 (comb-shaped coil) and a permanent magnet 5. Specifically, a permanent magnet 5 is arranged above the surface of the material to be measured 2 such as a hot-rolled rolled material, for example, an N pole on the measured material side and an S pole on the counter-measured material side. A meander type coil 4 is disposed between the measurement material 2 and the permanent magnet 5 and in parallel with the surface of the material 2 to be measured. The number of turns of the meander type coil 4 is an example, and the present invention is not limited to the coil having the number of turns shown in this figure.
By passing a current through the meander type coil 4, the Lorentz force generated by the interaction between the eddy current induced in the material to be measured 2 and the magnetic field serves as a driving source, and electromagnetic ultrasonic waves are generated in the material to be measured 2. Is generated. 2A is a symbol indicating the flow of current from the back side of the paper to the front side of the paper. A mark with x in the circle is a symbol indicating a current flow from the front side to the back side.

メアンダ型のコイル4に印加する電流の周波数と、発生する電磁超音波の入射角度との関係は、式(1)の如くである。   The relationship between the frequency of the current applied to the meander-type coil 4 and the incident angle of the generated electromagnetic ultrasonic wave is as shown in Equation (1).

式(1)から明らかなように、メアンダ型のコイル4を用いれば、コイル巻き線の間隔と印加する電流の周波数から、電磁超音波の伝播角度(入射角度θ)が決定し斜角の電磁超音波や表面波を発生させることができる。そのため、後述するように、2つの異なる経路により電磁超音波を伝播させることが可能となる。なお、従来から用いられているレーストラック型(渦巻き型)コイルの場合では指向性が高く入射角度θを可変とすることができない。そのため、2つの異なる経路により電磁超音波を伝播させることが難しい。
受信センサRは、送信センサTと略同様の構成を有し、メアンダ型のコイル4と永久磁石5を有している。
As can be seen from equation (1), when the meander type coil 4 is used, the propagation angle (incident angle θ) of the electromagnetic ultrasonic wave is determined from the interval between the coil windings and the frequency of the applied current, and the oblique electromagnetic wave. Ultrasonic waves and surface waves can be generated. Therefore, as will be described later, electromagnetic ultrasonic waves can be propagated through two different paths. In the case of a racetrack type (spiral type) coil conventionally used, the directivity is high and the incident angle θ cannot be made variable. Therefore, it is difficult to propagate the electromagnetic ultrasonic waves through two different paths.
The reception sensor R has substantially the same configuration as the transmission sensor T, and has a meander type coil 4 and a permanent magnet 5.

被測定材料2に発射された電磁超音波は、被測定材料2の表面側から材料厚方向に進み、底面で反射して、再度表面へ戻ってくる。戻ってきた超音波は、上記原理の逆の現象を利用して受信される。
図1,図3は、式(1)に基づき入射角度θを変更した2つの電磁超音波が被測定材料2の底面で反射され、平面の直線上に配置された2つの受信センサR1,R2に受信されている様子を模式的に示したものである。このように、送信センサTに印加される電流の周波数を制御することで、内部に入射角θ(≠90°)をもって入射する電磁超音波を発生することができる。
The electromagnetic ultrasonic wave emitted to the material to be measured 2 proceeds in the material thickness direction from the surface side of the material to be measured 2, is reflected on the bottom surface, and returns to the surface again. The returned ultrasonic wave is received using a phenomenon opposite to the above principle.
FIGS. 1 and 3 show two reception sensors R1 and R2 arranged on a straight line on a plane where two electromagnetic ultrasonic waves whose incident angle θ is changed based on the equation (1) are reflected from the bottom surface of the material 2 to be measured. FIG. 6 schematically shows how the signal is received. In this way, by controlling the frequency of the current applied to the transmission sensor T, it is possible to generate electromagnetic ultrasonic waves that are incident at an incident angle θ (≠ 90 °).

このように、被測定材料2内に電磁超音波が発射された場合は、2つの受信センサR1,R2で受信された信号は、測定部3の内部音速測定部31及び内部温度測定部32へ送られる。内部音速測定部31は、各受信センサR1,R2への電磁超音波の到着時刻と各受信センサR1,R2の位置情報とに基づいて、材料2の内部の音速と材料厚さとを算出する。内部温度測定部32は、算出された内部の音速を基に、被測定材料2の内部の平均温度を算出する。
具体的には、各受信センサR1,R2への電磁超音波の到着時刻の差(t2−t1)と送信センサT〜受信センサR1,R2までの距離x1,x2とを用いて、内部平均音速Vinと板厚dとの関係を、以下の連立方程式から求めることができる。なお、位置情報は、本実施形態の場合、電磁超音波センサ1Tと各受信センサR1,R2との中心間距離としているが、それに限定されるものではない。
As described above, when electromagnetic ultrasonic waves are emitted into the material to be measured 2, the signals received by the two reception sensors R <b> 1 and R <b> 2 are transmitted to the internal sound velocity measurement unit 31 and the internal temperature measurement unit 32 of the measurement unit 3. Sent. The internal sound speed measurement unit 31 calculates the sound speed and material thickness inside the material 2 based on the arrival time of the electromagnetic ultrasonic waves at the reception sensors R1 and R2 and the position information of the reception sensors R1 and R2. The internal temperature measurement unit 32 calculates the average temperature inside the material to be measured 2 based on the calculated internal sound velocity.
Specifically, the internal average sound speed is calculated using the difference (t2−t1) in the arrival time of the electromagnetic ultrasonic waves to the reception sensors R1 and R2 and the distances x1 and x2 from the transmission sensor T to the reception sensors R1 and R2. the relationship between V in and the plate thickness d, can be obtained from the following simultaneous equations. In the present embodiment, the position information is the center-to-center distance between the electromagnetic ultrasonic sensor 1T and each of the reception sensors R1 and R2, but is not limited thereto.

まず、図3に示す電磁超音波の伝播経路に着目し三平方の定理を適用して、式(2),式(3)が導かれる。   First, paying attention to the propagation path of the electromagnetic ultrasonic wave shown in FIG. 3 and applying the square theorem, the equations (2) and (3) are derived.

これらの式(2),式(3)を変形して、式(4),式(5)が導かれる。   Equations (4) and (5) are derived by modifying these equations (2) and (3).

この式(4)及び式(5)から、板厚dと、材料の内部における平均的な音速Vinとを求めることができる。この処理は内部音速測定部31で行われる。
ところで、本実施形態の測定部3内には内部温度測定部32が設けられており、この第内部温度測定部32には、予め調べられた被測定材料2の「温度と音速との関係」が、式(6)やテーブルの形で格納されている。式(6)におけるα,βは定数である。
From the equations (4) and (5), the plate thickness d and the average sound velocity Vin in the material can be obtained. This process is performed by the internal sound speed measurement unit 31.
By the way, an internal temperature measurement unit 32 is provided in the measurement unit 3 of the present embodiment, and the “relationship between temperature and sound velocity” of the material 2 to be measured previously examined in the first internal temperature measurement unit 32. Are stored in the form of equation (6) or a table. Α and β in Equation (6) are constants.

図5は、式(6)をグラフ化したものであって、この式(6)などに、内部音速測定部31で得られた平均的な音速Vinを適用することで、被測定材料2内部の平均的な温度Tinが分かる。
以上のようにして、本実施形態に係る電磁超音波法による測定装置及び測定方法によると、材料の音速と同時に板厚を測定することが可能となる。また、材料内の音速が計測できると、材料内部の温度を計測できる。材料内部の温度が明らかになることは、圧延中の材料評価には好都合であり、圧延工程における温度制御・張力制御などに役立ちさらに品質向上に寄与することができる。
[第2実施形態]
次に、本発明の第2実施形態について説明を行う。
Figure 5 is a a graph of the equation (6), like the equation (6), by applying an average acoustic velocity V in the obtained internal sound speed measuring unit 31, the measured material 2 the average temperature T in the interior can be seen.
As described above, according to the measurement apparatus and measurement method using the electromagnetic ultrasonic method according to the present embodiment, it is possible to measure the plate thickness simultaneously with the sound velocity of the material. Moreover, if the speed of sound in a material can be measured, the temperature inside the material can be measured. Clarification of the temperature inside the material is advantageous for evaluating the material during rolling, and is useful for temperature control and tension control in the rolling process, and can further contribute to quality improvement.
[Second Embodiment]
Next, a second embodiment of the present invention will be described.

図1,図4に示すように、第2実施形態は、第1実施形態と同じ装置構成の送信センサT及び受信センサR1,R2を有しているものの、送信センサTに印加される電流の周波数を制御することで、被測定材料2の表面にのみ電磁超音波(入射角θ=90°)が発生・伝播するものとなっている。
被測定材料2の表面を電磁超音波が伝播・進行した場合、2つの受信センサR1,R2で受信された信号は、測定部3の表面音速測定部33及び表面温度測定部34へ送られる。表面音速測定部33は、各受信センサR1,R2への電磁超音波の到着時刻と各受信センサR1,R2の位置情報とに基づいて、前記材料の表面の音速を算出する。表面温度測定部34は、算出された音速を基に、被測定材料2の表面の平均温度を算出する。
As shown in FIGS. 1 and 4, the second embodiment includes the transmission sensor T and the reception sensors R <b> 1 and R <b> 2 having the same device configuration as the first embodiment, but the current applied to the transmission sensor T is as follows. By controlling the frequency, electromagnetic ultrasonic waves (incident angle θ = 90 °) are generated and propagated only on the surface of the material 2 to be measured.
When electromagnetic ultrasonic waves propagate and travel on the surface of the material to be measured 2, signals received by the two receiving sensors R 1 and R 2 are sent to the surface sound velocity measuring unit 33 and the surface temperature measuring unit 34 of the measuring unit 3. The surface sound velocity measurement unit 33 calculates the sound velocity of the surface of the material based on the arrival time of the electromagnetic ultrasonic waves at the reception sensors R1 and R2 and the position information of the reception sensors R1 and R2. The surface temperature measurement unit 34 calculates the average temperature of the surface of the material 2 to be measured based on the calculated sound speed.

具体的には、図4に示すように、送信センサTで発生した電磁波は、被測定材料2の表面のみを伝播するため、式(7)により、被測定材料2の表面における音速(表面平均音速)Vsufがわかるようになる。
ところで、表面温度測定部34には、予め調べられた被測定材料2の「温度と音速との関係」が式(6)’やテーブルの形で格納されている。この式(6)’などに、表面音速測定部33で得られた平均的な音速Vsufを適用することで、被測定材料2表面の平均的な温度Tsufが分かる。
Specifically, as shown in FIG. 4, since the electromagnetic wave generated by the transmission sensor T propagates only on the surface of the material to be measured 2, the sound velocity (surface average) on the surface of the material to be measured 2 is calculated by the equation (7). The speed of sound) V suf can be understood.
By the way, in the surface temperature measuring unit 34, the “relationship between temperature and sound velocity” of the material 2 to be measured, which has been examined in advance, is stored in the form of equation (6) ′ or table. By applying the average sound velocity V suf obtained by the surface sound velocity measuring unit 33 to this equation (6) ′, the average temperature T suf of the surface of the material 2 to be measured can be obtained.

このように、メアンダ型のコイル4を用いれば、コイル巻線の間隔と印加する電流の周波数から、電磁超音波の伝播角度(入射角度θ)を可変とでき、表面に伝播する表面波も発生させることができる。この表面波が伝播する速度を求めることで、表面温度を計測することができる。
なお、同じ電磁超音波センサ1を用い、第1実施形態によるやり方(例えば、電磁超音波の入射角θ=30°)で、被測定材料2の板厚と内部温度を計測し、その後、送信センサTに印加される電流の周波数などを変化させ、被測定材料2の表面にのみ電磁超音波を伝播させて(入射角θ=90°)、第2実施形態のやり方で表面温度を計測することもできる。
Thus, if the meander type coil 4 is used, the propagation angle (incidence angle θ) of the electromagnetic ultrasonic wave can be made variable from the interval between the coil windings and the frequency of the applied current, and the surface wave propagating to the surface is also generated. Can be made. The surface temperature can be measured by determining the speed at which this surface wave propagates.
In addition, using the same electromagnetic ultrasonic sensor 1, the thickness and internal temperature of the material 2 to be measured are measured by the method according to the first embodiment (for example, the incident angle θ of electromagnetic ultrasonic waves = 30 °), and then transmitted. The surface temperature is measured in the manner of the second embodiment by changing the frequency of the current applied to the sensor T and propagating electromagnetic ultrasonic waves only on the surface of the material 2 to be measured (incident angle θ = 90 °). You can also.

このやり方であれば、複数の送信センサT(内部へ進入する電磁超音波を発する送信センサTと、表面を進む電磁超音波を発する送信センサT)を設けることなく、被測定材料2の板厚と内部温度と表面温度とをほぼ同時に計測することが可能となり、圧延現場等に好適な測定装置となる。
[第3実施形態]
本実施形態では、第1実施形態、第2実施形態における電磁超音波センサ1をさらに高精度なものとする技術について説明する。
In this way, the thickness of the material 2 to be measured is provided without providing a plurality of transmission sensors T (a transmission sensor T that emits electromagnetic ultrasonic waves entering the inside and a transmission sensor T that emits electromagnetic ultrasonic waves that travels on the surface). It is possible to measure the internal temperature and the surface temperature almost simultaneously, and the measurement device is suitable for a rolling site or the like.
[Third Embodiment]
In the present embodiment, a technique for making the electromagnetic ultrasonic sensor 1 in the first embodiment and the second embodiment more accurate will be described.

すなわち、第1実施形態、第2実施形態における送信センサTは、所定の大きさ(例えば数cm大)を持っているため、どのポイントで電磁超音波が発生しているかを正確に決定することが困難である。しかしながら、第1実施形態、第2実施形態における電磁超音波センサ1では、その計測精度を上げるためには、「送信センサT」→「受信センサR1,R2」の距離、正確には、「送信センサTで電磁超音波が発生している点」→「受信センサR1,R2の受信点」の距離が明らかとなっている必要がある。ところが、送信センサTで電磁超音波が発生している点や、受信センサR1,R2の受信点を正確に知ることは困難であり、電磁超音波センサ1を設置した段階で明らかに判っているのは、センサの設置条件である2つの受信センサR1,R2の相対距離(x2−x1)だけである。   That is, since the transmission sensor T in the first and second embodiments has a predetermined size (for example, several centimeters large), it is possible to accurately determine at which point the electromagnetic ultrasonic wave is generated. Is difficult. However, in the electromagnetic ultrasonic sensor 1 in the first embodiment and the second embodiment, in order to increase the measurement accuracy, the distance of “transmission sensor T” → “reception sensors R1, R2”, more precisely, “transmission” It is necessary that the distance of “the point where the electromagnetic ultrasonic wave is generated by the sensor T” → “the reception point of the reception sensors R1 and R2” is clear. However, it is difficult to accurately know the point at which the transmission sensor T generates electromagnetic ultrasonic waves and the reception points of the reception sensors R1 and R2, and it is clearly known when the electromagnetic ultrasonic sensor 1 is installed. Is only the relative distance (x2-x1) between the two receiving sensors R1 and R2, which is the sensor installation condition.

そこで、本実施形態では、表面波を利用しこの問題を解決する。つまり、本実施形態の電磁超音波センサ1は、材料の表面を伝播する電磁超音波の各受信センサR1,R2における到着時刻を基に、各受信センサR1,R2の位置情報を補正する補正部35を有している。
この補正部35では、表面波の音速を求めるために、センサ設置条件から明らかとなっている受信センサR1,R2の相対距離(x2−x1)と、計測された電磁超音波の到着時刻の差(t2−t1)とを基に、式(8)を用いて、表面波の音速Vsufを求めるようにしている。
Therefore, in this embodiment, this problem is solved using surface waves. That is, the electromagnetic ultrasonic sensor 1 of the present embodiment corrects the position information of each reception sensor R1, R2 based on the arrival time of the electromagnetic ultrasonic wave propagating on the surface of the material at each reception sensor R1, R2. 35.
In this correction unit 35, in order to obtain the sound velocity of the surface wave, the difference between the relative distance (x2−x1) between the reception sensors R1 and R2, which is apparent from the sensor installation conditions, and the arrival time of the measured electromagnetic ultrasonic wave Based on (t2-t1), the speed of sound V suf of the surface wave is obtained using the equation (8).

その後、得られた音速Vsufと、受信センサR1,R2までの電磁超音波伝播時間t1,t2とから、式(9),式(10)とを用いて、送信センサTと受信センサR1との距離x1及び送信センサTと受信センサR2との距離x2を求めることができる。
求めた距離x1,x2を用い、第1実施形態や第2実施形態に開示した処理を行うことで、材料の音速、板厚、温度をさらに高精度に計測することができる。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
Thereafter, from the obtained sound velocity V suf and electromagnetic ultrasonic wave propagation times t1 and t2 up to the reception sensors R1 and R2, the transmission sensor T and the reception sensor R1 are obtained using the equations (9) and (10). Distance x1 and the distance x2 between the transmission sensor T and the reception sensor R2.
By using the obtained distances x1 and x2 and performing the processing disclosed in the first embodiment and the second embodiment, the sound speed, thickness, and temperature of the material can be measured with higher accuracy.
It should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 電磁超音波センサ
2 被測定材料
3 測定部
4 メアンダ型のコイル
5 永久磁石
31 内部音速測定部
32 内部温度測定部
33 表面音速測定部
34 表面温度測定部
35 補正部
T 送信センサ
R,R1,R2 受信センサ
DESCRIPTION OF SYMBOLS 1 Electromagnetic ultrasonic sensor 2 Material to be measured 3 Measuring part 4 Meander type coil 5 Permanent magnet 31 Internal sound speed measuring part 32 Internal temperature measuring part 33 Surface sound speed measuring part 34 Surface temperature measuring part 35 Correction part T Transmission sensor R, R1, R2 receiving sensor

Claims (7)

材料の内部に電磁超音波を送信可能なメアンダ型のコイルを備えた送信センサと、前記送信センサからの距離が異なる位置に配備された2つの受信センサとを有すると共に、前記送信センサと前記2つの受信センサとが、被測定材料の表面に沿った同一平面上に配備され、
前記材料の表面を伝播する電磁超音波の各受信センサにおける到着時刻を基に、各受信センサの位置情報を補正する補正部と、
前記各受信センサへの電磁超音波の到着時刻と前記補正部にて補正された各受信センサの位置情報とに基づいて、前記材料の内部の音速と材料厚さとを測定する内部音速測定部と、
前記内部音速測定部で測定された内部の音速を基に、当該材料の内部の平均温度を算出する内部温度測定部と、
が備えられていることを特徴とする電磁超音波法による測定装置。
A transmission sensor having a meander-type coil capable of transmitting electromagnetic ultrasonic waves inside the material; and two reception sensors arranged at different distances from the transmission sensor; and the transmission sensor and the 2 Two receiving sensors are arranged on the same plane along the surface of the material to be measured,
Based on the arrival time at each reception sensor of electromagnetic ultrasonic waves propagating on the surface of the material, a correction unit for correcting the position information of each reception sensor;
An internal sound speed measurement unit that measures the internal sound speed and the material thickness of the material based on the arrival time of the electromagnetic ultrasonic wave at each reception sensor and the position information of each reception sensor corrected by the correction unit; ,
Based on the internal sound speed measured by the internal sound speed measurement unit, an internal temperature measurement unit that calculates an average temperature inside the material, and
A measuring apparatus by an electromagnetic ultrasonic method, characterized in that
材料の表面を伝播する電磁超音波を送信可能なメアンダ型のコイルを備えた送信センサと、前記送信センサと被測定材料の表面に沿った同一平面上で且つ送信センサからの距離が異なる位置に配備された2つの受信センサと、
前記材料の表面を伝播する電磁超音波の各受信センサにおける到着時刻を基に、各受信センサの位置情報を補正する補正部と、
前記各受信センサへの電磁超音波の到着時刻と前記補正部にて補正された各受信センサの位置情報とに基づいて、前記材料の表面の音速を測定する表面音速測定部と、
前記表面音速測定部で測定された表面の音速を基に、当該材料の表面の平均温度を算出する表面温度測定部と、
を有することを特徴とする電磁超音波法による測定装置。
A transmission sensor having a meander-type coil capable of transmitting electromagnetic ultrasonic waves propagating on the surface of the material, and on the same plane along the surface of the material to be measured and the transmission sensor, and at different positions from the transmission sensor. Two deployed receiving sensors;
Based on the arrival time at each reception sensor of electromagnetic ultrasonic waves propagating on the surface of the material, a correction unit for correcting the position information of each reception sensor;
Based on the arrival time of electromagnetic ultrasonic waves to each reception sensor and the position information of each reception sensor corrected by the correction unit, a surface sound speed measurement unit that measures the sound speed of the surface of the material,
Based on the sound velocity of the surface measured by the surface sound velocity measuring unit, a surface temperature measuring unit that calculates the average temperature of the surface of the material,
A measuring apparatus using an electromagnetic ultrasonic method characterized by comprising:
前記内部音速測定部は、事前に測定された前記材料における温度と音速との関係を基に、材料の内部の平均温度を算出することを特徴とする請求項1に記載の電磁超音波法による測定装置。   2. The electromagnetic ultrasonic wave measurement method according to claim 1, wherein the internal sound velocity measurement unit calculates an average temperature inside the material based on a relationship between the temperature and the sound velocity of the material measured in advance. measuring device. 前記表面音速測定部は、事前に測定された前記材料における温度と音速との関係を基に、材料の表面の平均温度を算出することを特徴とする請求項2に記載の電磁超音波法による測定装置。   3. The electromagnetic ultrasonic method according to claim 2, wherein the surface sound velocity measuring unit calculates an average temperature of the surface of the material based on a relationship between the temperature and the sound velocity of the material measured in advance. measuring device. メアンダ型のコイルを備えた送信センサから材料の内部に電磁超音波を送信し、送信された電磁超音波を、前記送信センサと被測定材料の表面に沿った同一平面上で且つ送信センサからの距離が異なる位置に配備された2つの受信センサで受信する電磁超音波法による測定方法であって、
前記材料の表面を伝播する電磁超音波の各受信センサにおける到着時刻を基に、各受信センサの位置情報を補正し
前記各受信センサへの電磁超音波の到着時刻と、前記補正後の各受信センサの位置情報とに基づいて、前記材料の内部の音速と材料厚さとを測定し、
測定された内部の音速を基に、前記材料の内部の平均温度を算出することを特徴とする電磁超音波法による測定方法。
Electromagnetic ultrasonic waves are transmitted from the transmission sensor having the meander type coil to the inside of the material, and the transmitted electromagnetic ultrasonic waves are on the same plane along the surface of the transmission sensor and the material to be measured and from the transmission sensor. A measurement method by an electromagnetic ultrasonic wave method that is received by two reception sensors arranged at different positions,
Based on the arrival time at each receiving sensor of electromagnetic ultrasonic waves propagating on the surface of the material, the position information of each receiving sensor is corrected ,
Based on the arrival time of the electromagnetic ultrasonic wave to each receiving sensor and the positional information of each receiving sensor after the correction, the sound velocity and the material thickness inside the material are measured,
A measurement method by an electromagnetic ultrasonic method, wherein an average temperature inside the material is calculated based on the measured internal sound velocity.
メアンダ型のコイルを備えた送信センサから材料の表面を伝播する電磁超音波を送信し、送信された電磁超音波を、前記送信センサと被測定材料の表面に沿った同一平面上で且つ送信センサからの距離が異なる位置に配備された2つの受信センサで受信する電磁超音波法による測定方法であって、
前記材料の表面を伝播する電磁超音波の各受信センサにおける到着時刻を基に、各受信センサの位置情報を補正し
前記各受信センサへの電磁超音波の到着時刻と、前記補正後の各受信センサの位置情報とに基づいて、前記材料の表面の音速測定し、
測定された表面の音速を基に、前記材料の表面の平均温度を算出することを特徴とする電磁超音波法による測定方法。
An electromagnetic ultrasonic wave propagating on the surface of the material is transmitted from a transmission sensor having a meander-type coil, and the transmitted electromagnetic ultrasonic wave is transmitted on the same plane along the surface of the material to be measured with the transmission sensor. A measurement method by an electromagnetic ultrasonic method for receiving by two receiving sensors arranged at different positions from
Based on the arrival time at each receiving sensor of electromagnetic ultrasonic waves propagating on the surface of the material, the position information of each receiving sensor is corrected ,
Based on the arrival time of the electromagnetic ultrasonic wave to each receiving sensor and the positional information of each receiving sensor after the correction , the sound speed of the surface of the material is measured,
A measurement method by an electromagnetic ultrasonic method, wherein an average temperature of the surface of the material is calculated based on the measured sound velocity of the surface.
事前に測定された前記材料における温度と音速との関係を基に、材料の内部又は表面の平均温度を算出することを特徴とする請求項5又は6に記載の電磁超音波法による測定装置。
7. The measurement apparatus according to claim 5, wherein an average temperature inside or on the surface of the material is calculated based on a relationship between temperature and sound velocity in the material measured in advance.
JP2009022658A 2009-02-03 2009-02-03 Measuring apparatus and measuring method by electromagnetic ultrasonic method Active JP5268686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009022658A JP5268686B2 (en) 2009-02-03 2009-02-03 Measuring apparatus and measuring method by electromagnetic ultrasonic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022658A JP5268686B2 (en) 2009-02-03 2009-02-03 Measuring apparatus and measuring method by electromagnetic ultrasonic method

Publications (2)

Publication Number Publication Date
JP2010181174A JP2010181174A (en) 2010-08-19
JP5268686B2 true JP5268686B2 (en) 2013-08-21

Family

ID=42762841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022658A Active JP5268686B2 (en) 2009-02-03 2009-02-03 Measuring apparatus and measuring method by electromagnetic ultrasonic method

Country Status (1)

Country Link
JP (1) JP5268686B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO2755812T3 (en) 2013-03-12 2018-06-30
JP7151609B2 (en) * 2019-04-24 2022-10-12 日本電信電話株式会社 Internal temperature measurement device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288728A (en) * 1992-04-07 1993-11-02 Toshiba Corp Measuring apparatus for ultrasonic wave sound speed
JPH0777465A (en) * 1993-09-08 1995-03-20 Sumitomo Metal Ind Ltd Measuring method for surface layer average temperature and thickness direction temperature distribution
JP3004984B1 (en) * 1999-02-16 2000-01-31 核燃料サイクル開発機構 Ultrasonic temperature measurement device

Also Published As

Publication number Publication date
JP2010181174A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP6362533B2 (en) Residual stress evaluation method and residual stress evaluation apparatus
EP3561449A1 (en) Apparatus for measuring crystal grain size of steel sheet
KR20210006107A (en) Damage detection method using lamb wave signal energy
JP2001194137A (en) Non-contact measuring method and apparatus for material thickness
JP2010096703A (en) Measuring device with use of electromagnetic ultrasonic wave method, and measuring method
JP2009270824A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP5268686B2 (en) Measuring apparatus and measuring method by electromagnetic ultrasonic method
JP2010169494A (en) Compression strength measurement method, and compression strength measuring instrument using the same
JP2014077708A (en) Inspection device and inspection method
JP2007271407A (en) Method and device for measuring crack depth
JP5672725B2 (en) SH wave generation method and ultrasonic measurement method
JP2009236620A (en) Ultrasonic flaw detection method
JP6733650B2 (en) Ultrasonic flaw detection method, ultrasonic flaw detection equipment, steel production equipment row, and steel production method
JP6529853B2 (en) Residual stress evaluation method
JP4682921B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2009244076A (en) Method and system of detecting alteration state of heterogeneous substance in medium using electromagnetic wave radar
JP2007309794A (en) Apparatus and method for measuring plate thickness
JP2005070017A (en) Ultrasonic flaw detection method using vertical and horizontal diffracted waves and apparatus therefor
JP4429810B2 (en) Ultrasonic flaw detection method
WO2017123112A1 (en) Ultrasonic testing of continuously cast workpiece
JP3821035B2 (en) Material thickness measurement method
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus
RU2622459C1 (en) Method of ultrasonic inspection of articles
JP6619282B2 (en) Non-destructive inspection device for steel and non-destructive inspection method for steel
JP2001004353A (en) Method for measuring diameter of reinforcing bar ultrasonically

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5268686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150