JPH0394109A - Ultrasonic measuring device - Google Patents

Ultrasonic measuring device

Info

Publication number
JPH0394109A
JPH0394109A JP2070910A JP7091090A JPH0394109A JP H0394109 A JPH0394109 A JP H0394109A JP 2070910 A JP2070910 A JP 2070910A JP 7091090 A JP7091090 A JP 7091090A JP H0394109 A JPH0394109 A JP H0394109A
Authority
JP
Japan
Prior art keywords
ultrasonic
measurement
probe
circuit
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2070910A
Other languages
Japanese (ja)
Inventor
Yukiro Sugimoto
幸郎 杉元
Hiroshi Ichikawa
宏 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2070910A priority Critical patent/JPH0394109A/en
Publication of JPH0394109A publication Critical patent/JPH0394109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To reduce the influence of temperature and humidity exerted on an ultrasonic propagation path and to improve the measuring accuracy for a distance to an object body and its thickness by an ultrasonic wave by providing a reflecting body for shielding a part of an ultrasonic beam in a prescribed distance in front of a probe. CONSTITUTION:In a position of a prescribed distance LK in front of an ultrasonic probe 2, an ultrasonic reflecting body 7 is placed so as to shield a part of an ultrasonic beam. An ultrasonic wave US emitted from a transmitting probe 2T is reflected by an object body 6, and also, a part of the ultrasonic wave UK is reflected by the reflecting body 7 and received by a receiving probe 2R. The received ultrasonic wave passes through a receiving circuit 3 and processed by time detecting circuits (4S, 4K) and an ultrasonic propagation time is derived. Subsequently, an ultrasonic propagation time TS to the object body 6 and an ultrasonic propagation time TK to the reflecting body 7 are derived by the circuit 4S and the circuit 4K, respectively. The propagation time TS, TK derived by the circuit 4S, 4K is sent to a distance arithmetic circuit 5 and a value of a distance LS calculated, and since the distance LK between the probe 2 and the reflecting body 7 is constant, a result of measurement can be obtained without the influence of a sound velocity controlled by a temperature variation.

Description

【発明の詳細な説明】 「産業上の利用分野] この発明は,超音波を利用した距離測定や物体の形状測
定,寸法測定装置の改良に関するものである。例えば産
業分野で使用される各種素材の片面から空中を介して超
音波を照射し,素材面で反射されて帰ってくるまでのl
Ll7間から素材までの距離を知ることができる。した
がって,その2p@から素材の形状を測定したり,両面
から照射することによって厚さなどの寸法を測定するこ
とができる。また,谷杆部品の1?粍坩の測定にも利用
されている。
[Detailed Description of the Invention] "Industrial Application Field" This invention relates to distance measurement using ultrasonic waves, object shape measurement, and improvement of dimension measurement devices. For example, various materials used in the industrial field Ultrasonic waves are radiated through the air from one side of the material, and the length of time it takes to be reflected by the material surface and return
The distance between Ll7 and the material can be known. Therefore, the shape of the material can be measured from the 2p@, and dimensions such as thickness can be measured by irradiating from both sides. Also, 1 of the valley rod parts? It is also used to measure porosity.

r従来の技術] 超音波を金属などの固体中へ入射し,固体内部の欠陥の
有無を検査する技術は超音波探傷と呼ばれ,製品検査や
保守検査の有効な手段として広く利用されている。また
,この超音波を空中や液体中へ照射し,物体のイ了無を
検知したり物体までの距離を測定する装置もすでに実用
化されている。
rConventional technology] The technology of injecting ultrasonic waves into solids such as metals to inspect the presence or absence of defects inside the solid is called ultrasonic flaw detection, and is widely used as an effective means of product inspection and maintenance inspection. . Furthermore, devices that emit ultrasonic waves into the air or into liquids to detect the presence of objects or measure the distance to objects have already been put into practical use.

第7図は空中に存在する物体の有無や物体までの距離を
超音波によって検出する方法の説明図であり,(1)は
送信回路, (2T)は超音波送信探触子,(2R)は
超合波受信探触了,(3)は受仏1!』1路,(4)は
時間検出回路,(5)は距離演算回路,(6)は計測対
象物体であり,さらにU8は空中を伝搬する超音波, 
I.,..は超音波探触子と計測対象物体間の距離を示
している。いま送信回路(1)からの送信電気パルスを
受けて超音波送信探肘子(2丁)から窄中へ超音波U,
.が送出されると,超音波は計i1111対象物体(6
)の表面で反射して帰ってくる(1 +ljっできた超
音波は超音波受信探触了(2R)によって再び電気信号
に変換され,受信回弗(3)で所定の信号レベルまて増
幅された後,時間検出回路(4)で対象物体(6)まで
の超1′9波4t<搬時間′1゛5を検出,さらに距離
演算■路(5)で超音波伝搬時間と超音波音速とから距
離を演算し出力される。
Figure 7 is an explanatory diagram of a method for detecting the presence or absence of an object in the air and the distance to the object using ultrasonic waves. (1) is a transmitting circuit, (2T) is an ultrasonic transmitting probe, (2R) The supercombined wave reception probe is completed, and (3) is Buddha reception 1! ' 1 path, (4) is a time detection circuit, (5) is a distance calculation circuit, (6) is an object to be measured, and U8 is an ultrasonic wave propagating in the air,
I. 、. .. indicates the distance between the ultrasonic probe and the object to be measured. Now, in response to the transmitted electric pulse from the transmitting circuit (1), the ultrasonic wave U is sent from the ultrasonic transmitting probe (2 pieces) to the inside of the tube.
.. is transmitted, the ultrasonic waves reach a total of i1111 target objects (6
The ultrasonic waves reflected from the surface of After that, the time detection circuit (4) detects the ultra 1'9 wave 4t<travel time'1'5 to the target object (6), and the distance calculation circuit (5) calculates the ultrasonic propagation time and ultrasonic wave. The distance is calculated from the speed of sound and output.

なお第7図においては,超音波送信探触子と超音波受信
探触子とが別々に分れている場合について述べたが,第
8図のZ5に示すように超音波送信振動子と受信振動子
とが一体になっているものもあり,その場合も動作は全
く同様である。
In Fig. 7, the case where the ultrasonic transmitting probe and the ultrasonic receiving probe are separated is described, but as shown in Z5 of Fig. 8, the ultrasonic transmitting transducer and the receiving probe are separated. Some devices are integrated with a vibrator, and the operation is exactly the same in that case.

以−1ユ説明した例において,空中の超音波速度を■9
,超音波探触子が超音波を送信した時刻から計測対象物
体で反射して帰ってくるまでの超音波伝搬時間をTqと
すると,超音波探触子(2)から計測対象物体(6)ま
での距離I,qは下式で求めることができる。
In the example explained below, the ultrasonic velocity in the air is
, if the ultrasonic propagation time from the time when the ultrasonic probe transmits the ultrasonic wave until it is reflected by the object to be measured and returns is Tq, then from the ultrasonic probe (2) to the object to be measured (6) The distances I and q can be calculated using the following formula.

LS−(VA−T8)/2     −−− (t)こ
のようにして求められた距離Lqの測定精度は上式から
も解るように超音波の速度■いの変動と,Mi音波の伝
搬時間′■゛8の計測誤差に左右されるこの内1伝搬I
I!7間′1′、の計Δl1目+’1度は迭f1;同縮
(1)や受信回路(3),時間検出lijI路(4),
距離演算回路(5)での信シ3゛処理で決まり+ hK
近の挾術においてはかなり高い精度を確保することがで
きる。一方,超音波の音速VAは超音波の伝搬経路てあ
る窄中の環境条件に大きく影響され,その中でも温度に
よる変動が最も起こりやすい。この超音波の音速■4の
温度特性は(2)式で与えられ,?「i離1,..のス
1測1t!7における超音波の伝搬縁路の温度が20℃
近辺である場合,その変動する割合は約0.18%/’
Cとなる。
LS-(VA-T8)/2 --- (t) As can be seen from the above equation, the measurement accuracy of the distance Lq obtained in this way depends on the fluctuation of the ultrasonic velocity and the propagation time of the Mi sound wave. ′■゛One of these depends on the measurement error of 8.
I! 7 interval '1', total Δl1th + '1 degree is 迭f1; same contraction (1), receiving circuit (3), time detection circuit (4),
Determined by the signal 3 processing in the distance calculation circuit (5) + hK
It is possible to ensure a fairly high degree of accuracy in the close-up technique. On the other hand, the sound velocity VA of ultrasonic waves is greatly influenced by the environmental conditions within the ultrasound propagation path, and among these, fluctuations due to temperature are most likely to occur. The temperature characteristics of this ultrasonic sound velocity ■4 are given by equation (2), ? ``The temperature of the ultrasonic propagation edge path at i distance 1,...s 1 measurement 1t!7 is 20℃
If it is close, the rate of change is approximately 0.18%/'
It becomes C.

v,=v.(1+1Vo3)”2   −−−−−−−
(2)ここで■。はO0Cにおける空中の超音波音速で
あり,Tは測定時の空中の温度(゜C)である。
v,=v. (1+1Vo3)”2 −−−−−−−
(2) Here ■. is the ultrasonic sound velocity in the air at O0C, and T is the temperature in the air (°C) at the time of measurement.

[発明が解決しようとする課題1 いま測定距離1, sが50mm程度の場合,温度′F
が20℃から21℃の間で1゜C変化したとすると音連
V Aは−1二記のように0.18%変動し,その結果
距離L5は50X 0. 001g= 0. 09mm
変化することになる。 一般的に,材料の厚さ測定にお
いては数十μm程度の粕度を要求されるため,1゜Cの
変化も許されないこ(7) とになる。特に計測対象が高温物体の場合は空中潟度へ
の影響か大きく,超音波による距離の測定では精度の確
保が困難となる。
[Problem to be solved by the invention 1 If the measurement distance 1, s is about 50 mm, the temperature 'F
If it changes by 1°C between 20°C and 21°C, the tone series VA changes by 0.18% as shown in -12, and as a result, the distance L5 becomes 50X 0. 001g=0. 09mm
It's going to change. Generally, when measuring the thickness of a material, a roughness of several tens of micrometers is required, so a change of even 1°C is not allowed (7). In particular, when the object to be measured is a high-temperature object, the effect on the degree of lagoon in the air is significant, making it difficult to ensure accuracy when measuring distance using ultrasonic waves.

以トは窄中での測定について述べたが,液体中において
も温度変化がある場合は超音波音速の変動を伴い,超音
波による高精度の距離の測定が難しくなることは同様で
ある。
The above description has been about measurement inside a liquid, but if there is a temperature change in a liquid, the ultrasonic sound speed will also fluctuate, making it difficult to measure distances with high precision using ultrasonic waves.

この発明はかかる課題を解決するためになされたもので
あり,超音波計測装置において空中または液体中での超
音波の速度■いを変動させる要因である温度や湿度など
の超音波伝搬経路における環境条件による影響を少なく
シ,超音波による対象物体までの21離やP′/.さの
測定粘度を向上させることにある。
This invention was made in order to solve this problem, and the present invention addresses the environment in the ultrasonic propagation path, such as temperature and humidity, which are factors that change the speed of ultrasonic waves in the air or in a liquid in an ultrasonic measuring device. The influence of the conditions is reduced, and the distance to the target object by ultrasonic waves is 21 and P'/. The objective is to improve the measured viscosity.

[課題を解決するための手段] この発明に係る超音波計測装置は,測定用超音波探触子
の前方の一定の距離において超音波ビームの一部分を遮
蔽するように超音波反射体を設けその測定用超音波探触
子と超音波反射体間で測定した超音波伝搬時間およびそ
の間の距離と,測定(8) 用超音波探触子と対象物体間で得られた超音波伝搬時間
とを使用して,測定用超音波探触子から対象物体までの
距離を算出するようにしたものである。
[Means for Solving the Problems] The ultrasonic measuring device according to the present invention includes an ultrasonic reflector that is provided so as to block a part of the ultrasonic beam at a certain distance in front of the measuring ultrasonic probe. The ultrasonic propagation time and distance measured between the measurement ultrasonic probe and the ultrasonic reflector, and the ultrasonic propagation time obtained between the measurement ultrasonic probe and the target object (8). The distance from the measurement ultrasonic probe to the target object can be calculated using this method.

またこの発四の別の発明に係る超音波計測装置では,測
定用超音波探触子と計測対象物体間の空中または液体中
の超音波ビームの伝搬経路に温度検出器を設置し,」二
記の測定用超音波探触子と31測対象物体間で得られた
超音波伝搬時間と温度検出器で得られた空中または液体
中の温度を使用して,測定用超音波探触子から計測対象
物体までの距離を算出するようにしたものである。
In addition, in the ultrasonic measuring device according to another invention of this fourth invention, a temperature detector is installed in the propagation path of the ultrasonic beam in the air or in the liquid between the measuring ultrasonic probe and the object to be measured. 31 Using the ultrasonic propagation time obtained between the measurement ultrasonic probe and the object to be measured and the temperature in the air or liquid obtained by the temperature detector, This method calculates the distance to the object to be measured.

さらにまたこの発明の別の発明に係る超音波計測装置は
,超音波探触子内に測定用超音波振動子とは別に校正用
超音波振動子を持ち,その校正用超音波振動子の前方の
一定の距離において超音波ビームを遮蔽するように超音
波反射体を設け,校疋用超音波振動子と超音波反射体間
で測定した超音波伝搬時間およびその間の距離と,測定
用超音波振動子と対象物体間で得られた超音波伝搬時間
とを使用して,測定用超音波振動子から対象物体までの
距離を算出するようにしたものである。
Furthermore, an ultrasonic measuring device according to another aspect of the present invention has an ultrasonic transducer for calibration in addition to the ultrasonic transducer for measurement in the ultrasonic probe, and the ultrasonic transducer for calibration has a An ultrasonic reflector is provided to block the ultrasonic beam at a certain distance from The distance from the measuring ultrasonic transducer to the target object is calculated using the ultrasonic propagation time obtained between the transducer and the target object.

[作用] この発明においては.測定用超音波探触子の萌方の一定
距離の拉置に超音波ビームの一部分を遮蔽するように超
音波反射体が配置され,測定用超音波探触子で求めた超
音波伝搬時間から距離を算出する際に,測定用超音波探
触子と超音波反射体間で求めた超音波伝搬時間およびそ
の間の距離を使用することによって,超音波伝搬経路の
環境条件の変化が常に反映され,結果として測定値の精
度を向」二させることができるものである。
[Operation] In this invention. An ultrasonic reflector is placed at a certain distance from the measurement ultrasonic probe so as to block a portion of the ultrasonic beam, and the ultrasonic propagation time determined by the measurement ultrasonic probe is By using the ultrasonic propagation time and the distance between the measuring ultrasonic probe and the ultrasonic reflector when calculating the distance, changes in the environmental conditions of the ultrasonic propagation path are always reflected. As a result, the accuracy of measured values can be improved.

またこの発明の別の発明においては,測定用超音波探触
子と計測対象物体間の空中または液体中の超音波ビーム
の伝搬経路に温度検出器が配置され,測定用超音波探触
子で求めた超音波伝搬時間から距離を算出する際に,L
記の温度検出器で得られた温度を加味することによって
,超音波伝搬時間経路の環境温度の変化が常に反映され
,結果として測定値の精度を向上させることができるも
のである。
In another invention of the present invention, a temperature detector is disposed in the propagation path of the ultrasonic beam in the air or in a liquid between the measurement ultrasonic probe and the object to be measured, and the measurement ultrasonic probe When calculating the distance from the obtained ultrasonic propagation time, L
By taking into account the temperature obtained by the temperature detector described above, changes in the environmental temperature on the ultrasonic propagation time path are always reflected, and as a result, the accuracy of the measured value can be improved.

さらにこの発明の別の発明においては,校正用超音波振
動子の前方の一定距離の{i’/置に超音波ビ−l,を
遮敵するように超;:r1波反射体が設it”xされ測
定用超音波振Jψ了から求めた超音波伝搬時間から距離
を算出する際に,校正用超音波振動子と超音波反射体間
で求めた超音波伝搬時間およびその間の距離を使用する
ことによって,超音波伝搬経路の環境条件の変化が常に
反映され,結果として測定値の精度を向−1ニさせるこ
とができるものである。
Furthermore, in another invention of the present invention, an ultra;:r1 wave reflector is installed at a constant distance {i'/ position in front of the calibration ultrasonic transducer to block the ultrasonic beam l. When calculating the distance from the ultrasonic propagation time obtained from the measurement ultrasonic vibration Jφ, use the ultrasonic propagation time obtained between the calibration ultrasonic transducer and the ultrasonic reflector and the distance between them. By doing so, changes in the environmental conditions of the ultrasonic propagation path are always reflected, and as a result, the accuracy of the measured values can be improved by -1.

[実施例] 第1図はこの発明による−実施例を示したものであり,
本図において(1), (2T), (2R), (3
), (4), (5)(6)は第7図と同一のもの,
(7)は測定用超音波送信探触子(2丁)から出た超音
波ビームの一部を反射する超音波反則体,U8は測定用
の超音波送受信探触子(2T), (2R)と超音波反
射体(7)間の空中を伝搬する超音波,LKはその間の
距離である。
[Example] Figure 1 shows an example according to this invention.
In this figure, (1), (2T), (2R), (3
), (4), (5) and (6) are the same as in Figure 7,
(7) is an ultrasonic repellent that reflects a part of the ultrasonic beam emitted from the measurement ultrasonic transmission probes (2 units), U8 is the measurement ultrasonic transmission/reception probe (2T), (2R ) and the ultrasonic reflector (7), and LK is the distance between them.

いま,測定用超音波送信探触子(2丁)には,前記(1
1) 第7図と同様に送信回路(1)からの電気パルスが供給
され超音波U5およびUKが発生する。空中を伝搬した
超音波U8は対象物体(6)で反射し,超音波Uえは,
対向して配置されている超音波反射体(7)で反射した
後,測定用超音波受信探触子(2R)で受信される。測
定用超音波受信探触子(2R)で受信された超音波は電
気信号に変換され,受信回路(3)へ送られた後,時間
検出回路(4)で処理され超a波伝]般時間が求められ
る。この発明においては,一.つの時間検出回路を具備
しており,第1の時間検出回路(4S)では対象物体(
6)との間の超音波伝搬時間Tsが,第2の時間検出回
路(4K)では超音波反射体(7)との間の超音波伝搬
時間TKが検出される。ここで,超音波送受信探触子(
2)と超音波反射体(7)との間の距離LKは既知の一
定値であるから,超音波UKの伝搬経路での音速VKは
次の(3)式によって求められる。
Currently, the measurement ultrasonic transmitting probes (2) have the above (1)
1) Similar to FIG. 7, electric pulses are supplied from the transmitting circuit (1) and ultrasonic waves U5 and UK are generated. The ultrasonic wave U8 propagated in the air is reflected by the target object (6), and the ultrasonic wave U8 is
After being reflected by the ultrasonic reflector (7) placed opposite to it, it is received by the measuring ultrasonic reception probe (2R). The ultrasonic waves received by the measuring ultrasonic receiving probe (2R) are converted into electrical signals, sent to the receiving circuit (3), processed by the time detection circuit (4), and processed by the ultrasonic wave transmission. Time is required. In this invention, 1. It is equipped with two time detection circuits, and the first time detection circuit (4S) detects the target object (
6), and the second time detection circuit (4K) detects the ultrasonic propagation time TK between the ultrasonic reflector (7) and the ultrasonic wave reflector (7). Here, the ultrasonic transmitting and receiving probe (
Since the distance LK between 2) and the ultrasonic reflector (7) is a known constant value, the sound velocity VK in the propagation path of the ultrasonic wave UK is determined by the following equation (3).

VK−2 LK/TK      ・・・・・・・・・
(3)−1二式で求めたV1は超音波U8の伝搬経路に
おける音速にほぼ等しいと考えられ,この値を(+)式
(I2) の■いの代わりとすることによって対象物体までの計測
i!1離が下式で算出される。
VK-2 LK/TK ・・・・・・・・・
(3)-1 It is thought that V1 obtained from the two equations is almost equal to the sound velocity in the propagation path of the ultrasonic wave U8, and by using this value in place of (+) in equation (I2), Measurement i! 1 distance is calculated by the following formula.

L.一(L.・T.)/′FK    ・・・・・・・
(4)したがって,時間検出回路(4S), (4K)
で求めた超音波伝搬時間T s, T Kを距離演算回
路(5)へ送りL記の(3), (4)式を使って釘i
離L.の41fjを知ることができる。(4)式におい
て+−Kは一定植で”I’ s,  I. Kは伝搬1
時間であり,温度変化に人き<A二右される音速などを
含まないため,常1: L’1度のa’5 L ’ 3
1’ Ill’l L’i果を得ることが可能となる。
L. 1 (L.・T.)/'FK ・・・・・・・・・
(4) Therefore, time detection circuit (4S), (4K)
The ultrasonic propagation times Ts and TK obtained in
Li L. You can know the 41fj. In equation (4), +-K is constant and “I' s, I.K is propagation 1
Since it is time and does not include the speed of sound, which depends on temperature changes, it is always 1: L'1 degree a'5 L' 3
1'Ill'lL'i result can be obtained.

以」二の第1図における実施例では,第3図と同様に超
音波送信探触子と超音波受信探触子とが別々に分かれて
いる場合について述べたが,両者は−・体になっている
こともあり,その場合も動作は全く同様である。
In the embodiment shown in Fig. 1 of 2 below, the case where the ultrasonic transmitting probe and the ultrasonic receiving probe are separated as in Fig. 3 was described, but both are connected to the body. In some cases, the operation is exactly the same.

第2図はこの発明による第1図の実施例における超音波
の受信波形と超音波伝搬時間との関係を示したもので,
図中(a)においてTは送信バルスUKは超音波反射体
(7)からの反射エコー,U8は対象物体(6)からの
反射エコーである。また図中(l))は反射エコーUK
を取り111すための検出ゲート,(c)は反射エコー
U9を取り出すための検出ゲートである。第1図の実施
例における時間検出回路(4K), (43)では,そ
れぞれ第2図の(b), (c)に示すような検出ゲー
トによって反射エコーを取り出し例えば送信パルスとの
間の時間を算出することで超音波伝搬時間TKおよび′
I′5を得ることができるなお第1図では,対象物体(
6)までの距離を測定するr段について説明したもので
あるが,測定川Mi r’+’波探触J’−を対象物体
(6)の両側に対向するように配置することによって,
対象物体(6)の厚さを測定する場合についても同様に
適用できるものである。
FIG. 2 shows the relationship between the received ultrasonic waveform and the ultrasonic propagation time in the embodiment of FIG. 1 according to the present invention.
In (a) of the figure, T is a transmission pulse UK is a reflected echo from the ultrasonic reflector (7), and U8 is a reflected echo from the target object (6). In addition, (l) in the figure is the reflected echo UK.
(c) is a detection gate for extracting the reflected echo U9. In the time detection circuits (4K) and (43) in the embodiment of FIG. 1, reflected echoes are extracted by detection gates as shown in FIG. By calculating the ultrasonic propagation time TK and ′
I'5 can be obtained. In Fig. 1, the target object (
6), by arranging the measurement river Mir'+' wave probe J'- to face both sides of the target object (6),
The same can be applied to the case of measuring the thickness of the target object (6).

第3図はこの発明による他の実施例を示したものであり
,本図において(1), (2T), (2R), (
3), (4),(5), (6)は第7図と同一のも
の,(8)は測定用超音波送信探触子(2T)から出た
超音波ビームの伝搬経路に配置された温度検出儒である
FIG. 3 shows another embodiment according to the present invention, in which (1), (2T), (2R), (
3), (4), (5), and (6) are the same as in Fig. 7, and (8) is placed in the propagation path of the ultrasound beam emitted from the measurement ultrasound transmission probe (2T). This is the temperature detection function.

いま,測定用超音波送信探触子(2T)には,前記第7
図と同様に送信回路(1)からの電気パルスが(I3) 供給され超音波U,が発生する。窄中を伝搬した超音波
U8は計測対象物体(6)で反射した後,測定用超音波
受信探触子(2R)で受信される。測定用超音波受信探
触子(2R)で受信された超音波は電気信号に変換され
,受信回路(3)へ送られた後,時間検出回路(4)で
処理され超音波伝搬時間′r5が求められる。
Now, the measurement ultrasonic transmitting probe (2T) has the seventh
As shown in the figure, electric pulses from the transmitting circuit (1) are supplied (I3) and an ultrasonic wave U is generated. The ultrasonic wave U8 propagated through the diaphragm is reflected by the object to be measured (6) and then received by the measurement ultrasonic receiving probe (2R). The ultrasonic wave received by the measuring ultrasonic receiving probe (2R) is converted into an electrical signal, sent to the receiving circuit (3), and then processed by the time detection circuit (4) to determine the ultrasonic propagation time 'r5. is required.

いま,(2)式を(1)式に代入するとド式が7B7ら
れる。
Now, substituting equation (2) into equation (1) yields equation 7B7.

L,q=V。・′l’ .( I l− ′I’ /2
73) ’ ”/2  ・・・・ (5)従って,時間
検出回路(4)で求めた超音波伝搬時間T8および温度
検出器(8)で求めた温度Tを距離演算回路(5)へ送
り,上記の(5)式を使って距離Lqの値を知ることが
できる。(5)式においてV。は−定値で′rsは伝搬
時間であり,温度変化に左右される音速などを含まない
ため,常にifJ度の高い計測結果を得ることが可能と
なる。
L, q=V.・'l'. (I l- 'I' /2
73) '''/2... (5) Therefore, the ultrasonic propagation time T8 obtained by the time detection circuit (4) and the temperature T obtained by the temperature detector (8) are sent to the distance calculation circuit (5). , the value of distance Lq can be found using the above equation (5). In equation (5), V is a - constant value and 'rs is the propagation time, which does not include the speed of sound that is affected by temperature changes. Therefore, it is possible to always obtain measurement results with a high ifJ degree.

以−1二の第3図における実施例では,第7因と同様に
超音波送信探触子と超音波受信探触子とが別々に分かれ
ている場合について述べたが,両省は(15) 一体になっていることもあり,その場合も動作は全く同
様である。
In the example shown in Figure 3 of 12 below, we have described the case where the ultrasonic transmitting probe and the ultrasonic receiving probe are separated, similar to the seventh factor, but both ministries (15) Sometimes they are integrated, and in that case the operation is exactly the same.

第4図はこの発明による第3図の実施例における超音波
の受信波形と超音波伝搬時間との関係を示したもので,
因中(a)においてTpは送信パルス,U..は計測対
象物体(6)からの反射エコーである。
FIG. 4 shows the relationship between the received ultrasonic waveform and the ultrasonic propagation time in the embodiment of FIG. 3 according to the present invention.
In (a), Tp is a transmission pulse, U. .. is a reflected echo from the object to be measured (6).

また図中(b)は反射エコーU8を取り出すための検出
ゲートである。第3図の実施例における時間検出回路(
4)では,第4因の(h)に示すような検出ゲートによ
って反射エコーを取り出し,例えば送信パルスとの間の
時間を算出することで超音波伝搬時間T8を得ることが
できる。
Further, (b) in the figure is a detection gate for taking out the reflected echo U8. The time detection circuit in the embodiment of FIG.
In 4), the ultrasonic propagation time T8 can be obtained by extracting the reflected echo by a detection gate as shown in the fourth factor (h) and calculating the time between it and the transmitted pulse, for example.

なお第3図では,計測対象物体(6)までの距離を測定
する手段について説明したものであるが,測定用超音波
探触子を計測対象物体(6)の両側に対向するように配
置することによって計測対象物体(6)の厚さを測定す
る場合についても同様に適用できるものである。
In addition, in Fig. 3, a means for measuring the distance to the object to be measured (6) is explained, and the measurement ultrasonic probes are placed so as to face both sides of the object to be measured (6). This can be similarly applied to the case of measuring the thickness of the object to be measured (6).

第5図はこの発明によるさらに他の実施例を示したもの
であり,本図において(1), (2), (3), 
(4),(l6) (51 (6)は第8図と同−のちの,(7)は校正用
超音波振動子ZXから出た超音波ビームを反射する超音
波反射体,U1は校正用の超音波振動子Z8と超音波反
射体(7)間の空中を伝搬する超音波,LKはその間の
距離である。
FIG. 5 shows still another embodiment of the present invention, in which (1), (2), (3),
(4), (l6) (51 (6) is the same as in Figure 8, (7) is an ultrasonic reflector that reflects the ultrasonic beam emitted from the calibration ultrasonic transducer ZX, and U1 is the calibration The ultrasonic wave propagating in the air between the ultrasonic transducer Z8 and the ultrasonic reflector (7), LK is the distance therebetween.

いま,測定用超音波振動子Zqには,前記第8図と同様
に送信回路(1)からの電気パルスが供給され超音波U
8が発生するが,校正用超音波振動子ZKにも送信回路
(1)からの電気パルスで超音波UKが発/IEする。
Now, the measuring ultrasonic transducer Zq is supplied with electric pulses from the transmitter circuit (1) as in FIG. 8 above, and the ultrasonic wave U
8 is generated, and ultrasonic waves UK/IE are also generated in the calibration ultrasonic transducer ZK by electric pulses from the transmitting circuit (1).

窄中を伝搬した超.゛゜?波U9は対象物体(6)で反
射し,超,′X1;.波Uxは対向して配置されている
超音波反射体(7)で反射した後,それぞれの超音波振
動子2..2Kで受信される。測定用および校正用超f
′i波振動子で受信された超1゜′1゛波は宙気信号に
変換され,受信回路(3)へ送られた後,時間検出回路
(4)で処理され超音波伝搬時間が求められる。この発
明においては,二つの時間検出回路を具備しており,第
1の時間検出回路(4S)ではでは対象物体(6)との
間の超音波伝搬時間T9が第2の時間検出回路(4K)
では超音波反射体(7)との間の超音波伝搬時間Tえが
検出される。ここで校正用超音波振動子zKと超音波反
射体(7)との間の距離LXは既知の一定値であるから
,超音波U8の伝搬経路での音速VKは前述の(3)式
によって求められる。
Ultrasonic waves propagated through the diastole.゛゜? The wave U9 is reflected by the target object (6) and becomes super,'X1;. After the waves Ux are reflected by the ultrasonic reflectors (7) arranged opposite to each other, the waves Ux are reflected by the ultrasonic transducers 2. .. Received at 2K. Ultra f for measurement and calibration
The ultra 1゜'1゛ wave received by the i-wave transducer is converted into an air signal, sent to the receiving circuit (3), and then processed by the time detection circuit (4) to determine the ultrasonic propagation time. It will be done. In this invention, two time detection circuits are provided, and the ultrasonic propagation time T9 between the first time detection circuit (4S) and the target object (6) is determined by the second time detection circuit (4K). )
Then, the ultrasonic propagation time T between the ultrasonic wave reflector (7) and the ultrasonic wave reflector (7) is detected. Here, since the distance LX between the calibration ultrasonic transducer zK and the ultrasonic reflector (7) is a known constant value, the sound velocity VK in the propagation path of the ultrasonic wave U8 is determined by the above equation (3). Desired.

(3)式で求めた■、は超音波Usの伝搬経路における
音速にほぼ等しいと考えられ,この値を(1)式のVA
の代わりとすることによって対象物体までの計測距離が
前述の(4)式で算出される。
It is considered that ■, obtained by equation (3), is approximately equal to the sound speed in the propagation path of the ultrasonic wave Us, and this value is calculated as VA in equation (1).
By substituting , the measured distance to the target object is calculated using the above-mentioned equation (4).

従って,時間検出回路(4S), (4K)で求めた超
音波伝搬時間T s, TKを距離演算回路(5)へ送
り,上記の(3), (4)式を使って距離I78の値
を知ることができる。(4)式においてLKは一定植で
ゴ5, ′l’、は伝搬時間であり,温度変化に大きく
左右される音速などを含まないため,常に精度の高い計
測結果を得ることが可能となる。
Therefore, the ultrasonic propagation times Ts and TK obtained by the time detection circuits (4S) and (4K) are sent to the distance calculation circuit (5), and the value of distance I78 is calculated using the above equations (3) and (4). You can know. In equation (4), LK is a constant value, 5 is the propagation time, and 'l' is the propagation time, which does not include the speed of sound, which is greatly affected by temperature changes, so it is possible to always obtain highly accurate measurement results. .

第6図はこの発明による第5図の実施例における超音波
の受信波形と超音波伝搬時間との関係を示したもので,
図中(a)においてTは送信パルス,UKは超音波反射
体(7)からの反射エコー,U5は対r17) (18) 象物体(6)からの反射エコーである。また図中(b)
は反射エコーUkを取り出すための検出ゲート(c)は
反射エコーU8を取り出すための検出ゲートである。第
1図の実施例における時間検出回路(4K)(4S)で
は,それぞれ第6図の(b), (C)に示すような検
出ゲートによって反射エコーを取り出し,例えば送信パ
ルスとの間の時間を算出することで超音波伝搬時間TX
およびTqを得ることができる。
FIG. 6 shows the relationship between the received ultrasonic waveform and the ultrasonic propagation time in the embodiment of FIG. 5 according to the present invention.
In (a) of the figure, T is the transmitted pulse, UK is the reflected echo from the ultrasonic reflector (7), and U5 is the reflected echo from the object (6). In addition, (b)
The detection gate (c) for taking out the reflected echo Uk is a detection gate for taking out the reflected echo U8. In the time detection circuits (4K) and (4S) in the embodiment of FIG. 1, reflected echoes are extracted by detection gates as shown in FIG. By calculating the ultrasonic propagation time TX
and Tq can be obtained.

なお第5図では,対象物体(6)までの距離を測定する
手段について説明したものであるが,超音波探触子(2
)を対象物体(6)の両側に対向するように配置するこ
とによって対象物体(6)の厚さを測定する場合につい
ても同様に適用できるものであるまた第5図では,測定
用超音波振動子Zsと校正用超j′?波振動子lKとが
J(通の送受信1111路に接統されているものとして
説明したが,両者は別々の送受信回路に接続されること
もあり,その場合も動作は全く同様である。
Although Fig. 5 explains the means for measuring the distance to the target object (6), the ultrasonic probe (2)
) can be similarly applied to the case of measuring the thickness of the target object (6) by arranging them so as to face both sides of the target object (6). Child Zs and super j′ for proofreading? Although the explanation has been made assuming that the wave transducer lK is connected to the transmitting/receiving circuit 1111 of the J (transmitting/receiving circuit), the two may be connected to separate transmitting/receiving circuits, and the operation is exactly the same in that case.

[発明の効果] この発明においては,測定用超音波探触子と31(19
) 測対象物体間の空気の温度変動の影響を極力小さく押さ
えることができるため,窄中の超音波f?速などの変化
による測定稍度低下を防止する効果がある。
[Effect of the invention] In this invention, a measuring ultrasonic probe and 31 (19
) Since the influence of air temperature fluctuations between the objects to be measured can be kept to a minimum, the ultrasonic wave f? This has the effect of preventing a decrease in measurement accuracy due to changes in speed, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による実施例を示す図,第2図は第1
図の実施例における超音波エコーと超音波伝搬時間との
関係を説明するための図,第3図はこの発明による他の
実施例を示す因,第4口は第3図の実施例における超音
波エコーと超音波伝搬時11}jとの関係を説明するた
めの図,第5図はこの発明によるさらに他の実施例を示
す{沼,第6図は第5図の実施例における超音波エコー
と超音波伝搬時間との関係を説明するための図,第7図
および第8図は従来の技林1を説明するための図である
。 図において,(1)は送信1回路,(2]”)は超と?
波送信探触子, (2R)は超音波受信探触子,(3)
は受信回路(4)は時間検出回路,(5)はk’li離
演算rMI路,(6)は計測対象物体,(7)は超音波
反射体,(8)は温度検出器(20) ZKは校正用の超音波振動子,ZSは測定用の超旨・波
振動子である。 なお,図中同一符号は同一または相当部分を示す。
Fig. 1 is a diagram showing an embodiment according to the present invention, and Fig. 2 is a diagram showing an embodiment according to the invention.
A diagram for explaining the relationship between the ultrasonic echo and the ultrasonic propagation time in the embodiment shown in the figure, FIG. 3 shows another embodiment according to the present invention, and the fourth opening is the FIG. 5 is a diagram for explaining the relationship between the sound wave echo and the ultrasonic propagation time 11}j, and FIG. 5 shows still another embodiment according to the present invention. FIGS. 7 and 8 are diagrams for explaining the relationship between echoes and ultrasonic propagation times, and are diagrams for explaining the conventional technique 1. In the figure, (1) is one transmitter circuit, (2]") is super?
Wave transmitting probe, (2R) is ultrasonic receiving probe, (3)
is the receiving circuit (4) is the time detection circuit, (5) is the k'li separation calculation rMI path, (6) is the object to be measured, (7) is the ultrasonic reflector, and (8) is the temperature detector (20). ZK is an ultrasonic transducer for calibration, and ZS is an ultrasonic transducer for measurement. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)超音波を対象物体に向けて送信したり対象物体か
ら反射してきた超音波を受信するための1個または複数
個の測定用超音波探触子と、前記測定用超音波探触子の
前方の一定の距離において超音波ビームの一部分を遮蔽
するように設けられた超音波反射体と、前記測定用超音
波探触子に送信用電気パルスを供給する送信回路と前記
測定用超音波探触子から受信した電気信号を増幅する受
信回路と、前記受信回路から得られた信号により対象物
体から反射してきたエコーまでの超音波伝搬時間を取り
出す第1の時間検出回路と、前記受信回路から得られた
信号により前記の超音波反射体から反射してきたエコー
までの超音波伝搬時間を取り出す第2の時間検出回路と
、前記第1、第2の時間検出回路の出力信号を入力し、
前記測定用超音波探触子と超音波反射体間の距離および
超音波伝搬時間と前記の測定用超音波探触子と対象物体
間の超音波伝搬時間とを使用して、前記の測定用超音波
探触子から対象物体までの距離を算出する距離演算回路
とを具備したことを特徴とする超音波計測装置。
(1) One or more measurement ultrasonic probes for transmitting ultrasonic waves toward a target object and receiving ultrasonic waves reflected from the target object, and the measurement ultrasonic probe. an ultrasonic reflector provided to block a portion of the ultrasonic beam at a certain distance in front of the measuring ultrasonic probe; a transmitting circuit that supplies electric pulses for transmitting to the measuring ultrasonic probe; a receiving circuit that amplifies the electrical signal received from the probe; a first time detection circuit that extracts the ultrasonic propagation time from the signal obtained from the receiving circuit to the echo reflected from the target object; and the receiving circuit. a second time detection circuit that extracts the ultrasonic propagation time from the ultrasonic reflector to the echo reflected by the signal obtained from the ultrasonic reflector, and inputs the output signals of the first and second time detection circuits;
Using the distance and ultrasonic propagation time between the measurement ultrasonic probe and the ultrasonic reflector and the ultrasonic propagation time between the measurement ultrasonic probe and the target object, the measurement An ultrasonic measuring device comprising: a distance calculation circuit that calculates the distance from an ultrasonic probe to a target object.
(2)超音波を計測対象物体に向けて送信したり計測対
象物体から反射してきた超音波を受信するための1個ま
たは複数個の測定用超音波探触子と、前記測定用超音波
探触子と計測対象物体間の空中または液体中の超音波ビ
ームの伝搬経路に配置された温度検出器と、前記測定用
超音波探触子に送信用電気パルスを供給する送信回路と
、前記測定用超音波探触子から受信した電気信号を増幅
する受信回路と、前記受信回路から得られた信号により
計測対象物体から反射してきたエコーまでの超音波伝搬
時間を取り出す時間検出回路と、前記時間検出回路およ
び温度検出器の出力信号を入力し、前記温度検出器で得
られた温度と、前記の時間検出回路で得られた超音波伝
搬時間とを使用して、前記の測定用超音波探触子から計
測対象物体までの距離を算出する距離演算回路とを具備
したことを特徴とする超音波計測装置。
(2) one or more measurement ultrasonic probes for transmitting ultrasonic waves toward a measurement target object and receiving ultrasonic waves reflected from the measurement target object; a temperature detector disposed in the propagation path of the ultrasonic beam in the air or in the liquid between the probe and the object to be measured; a transmission circuit that supplies electric pulses for transmission to the measurement ultrasonic probe; a receiving circuit that amplifies the electric signal received from the ultrasonic probe for use in the ultrasonic probe; a time detecting circuit that extracts the ultrasonic propagation time from the signal obtained from the receiving circuit to the echo reflected from the object to be measured; By inputting the output signals of the detection circuit and the temperature detector, and using the temperature obtained by the temperature detector and the ultrasonic propagation time obtained by the time detection circuit, the measurement ultrasonic probe is An ultrasonic measurement device comprising: a distance calculation circuit that calculates a distance from a feeler to an object to be measured.
(3)超音波を対象物体に向けて送信し、かつ対象物体
から反射してきた超音波を受信するための測定用超音波
振動子と、前記測定用超音波振動子に隣接し同一のケー
ス内に収納された校正用超音波振動子と、前記校正用超
音波振動子の前方の一定の距離において校正用超音波振
動子が送信した超音波ビームを遮蔽するように設けられ
た超音波反射体と、前記測定用超音波振動子および校正
用超音波振動子に送信用電気パルスを供給する送信回路
と、前記測定用超音波振動子および校正用超音波振動子
から受信した電気信号を増幅する受信回路と、前記受信
回路から得られた信号により対象物体から反射してきた
エコーまでの超音波伝搬時間を取り出す第1の時間検出
回路と、前記受信回路から得られた信号により前記超音
波反射体から反射してきたエコーまでの超音波伝搬時間
を取り出す第2の時間検出回路と、前記第1、第2の時
間検出回路の出力信号を入力し、前記校正用超音波振動
子と超音波反射体間の距離および超音波伝搬時間と、前
記測定用超音波振動子と対象物体間の超音波伝搬時間と
を使用して、前記測定用超音波振動子から対象物体まで
の距離を算出する距離演算回路とを具備したことを特徴
とする超音波計測装置。
(3) A measurement ultrasonic transducer for transmitting ultrasonic waves toward a target object and receiving ultrasonic waves reflected from the target object, and a measurement ultrasonic transducer adjacent to and in the same case as the measurement ultrasonic transducer. a calibration ultrasonic transducer housed in the calibration ultrasonic transducer; and an ultrasonic reflector provided at a certain distance in front of the calibration ultrasonic transducer to block the ultrasonic beam transmitted by the calibration ultrasonic transducer. a transmission circuit that supplies electrical pulses for transmission to the measurement ultrasonic transducer and the calibration ultrasonic transducer, and amplifies the electrical signals received from the measurement ultrasonic transducer and the calibration ultrasonic transducer. a receiving circuit, a first time detection circuit that extracts the ultrasonic propagation time from the target object to the echo reflected from the target object using the signal obtained from the receiving circuit; A second time detection circuit extracts the ultrasonic propagation time from the echo to the reflected echo, and the output signals of the first and second time detection circuits are inputted to the calibration ultrasonic transducer and the ultrasonic reflector. Distance calculation for calculating the distance from the measuring ultrasonic transducer to the target object using the distance and ultrasonic propagation time between the measuring ultrasonic transducer and the target object. An ultrasonic measuring device characterized by comprising a circuit.
JP2070910A 1989-03-22 1990-03-20 Ultrasonic measuring device Pending JPH0394109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2070910A JPH0394109A (en) 1989-03-22 1990-03-20 Ultrasonic measuring device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP1-32408 1989-03-22
JP3240889 1989-03-22
JP1-68932 1989-06-13
JP1-69606 1989-06-14
JP2070910A JPH0394109A (en) 1989-03-22 1990-03-20 Ultrasonic measuring device

Publications (1)

Publication Number Publication Date
JPH0394109A true JPH0394109A (en) 1991-04-18

Family

ID=26370974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2070910A Pending JPH0394109A (en) 1989-03-22 1990-03-20 Ultrasonic measuring device

Country Status (1)

Country Link
JP (1) JPH0394109A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179902A (en) * 2004-12-22 2006-07-06 Asml Netherlands Bv Ultrasonic distance sensor
JP2009288164A (en) * 2008-05-30 2009-12-10 Toshiba Corp Vibration monitoring device and monitoring method
WO2020157931A1 (en) * 2019-01-31 2020-08-06 オリンパス株式会社 Ultrasonic observation device, method for operating ultrasonic observation device, and program for operating ultrasonic observation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199520A (en) * 1984-10-19 1986-05-17 Kawasaki Steel Corp Method and device for measuring roll profile
JPS6347609A (en) * 1986-08-14 1988-02-29 Matsushita Electric Ind Co Ltd Shape inspection apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199520A (en) * 1984-10-19 1986-05-17 Kawasaki Steel Corp Method and device for measuring roll profile
JPS6347609A (en) * 1986-08-14 1988-02-29 Matsushita Electric Ind Co Ltd Shape inspection apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179902A (en) * 2004-12-22 2006-07-06 Asml Netherlands Bv Ultrasonic distance sensor
JP2010021569A (en) * 2004-12-22 2010-01-28 Asml Netherlands Bv Ultrasonic distance sensor
JP4485463B2 (en) * 2004-12-22 2010-06-23 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and element manufacturing method
JP2009288164A (en) * 2008-05-30 2009-12-10 Toshiba Corp Vibration monitoring device and monitoring method
WO2020157931A1 (en) * 2019-01-31 2020-08-06 オリンパス株式会社 Ultrasonic observation device, method for operating ultrasonic observation device, and program for operating ultrasonic observation device
JPWO2020157931A1 (en) * 2019-01-31 2021-10-21 オリンパス株式会社 Ultrasonic observation device, operation method of ultrasonic observation device and operation program of ultrasonic observation device

Similar Documents

Publication Publication Date Title
US3302453A (en) Method of inspection utilizing ultrasonic energy
KR870009229A (en) Nondestructive Testing Method of Boiler Tube Using Ultrasonic Wave
US5661241A (en) Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
Osumi et al. Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method
US3599478A (en) Self-calibrating ultrasonic thickness-measuring apparatus
US3651687A (en) Ultrasonic micrometer
JPH0394109A (en) Ultrasonic measuring device
JP2001208729A (en) Defect detector
CN112484836B (en) Ultrasonic probe device and workpiece sound velocity measurement method
JP2001343365A (en) Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
KR100966543B1 (en) Ultrasonic evaluation system for internal deposit layer in a pipe
JPS61160053A (en) Ultrasonic flaw detection test
JPS61245055A (en) Ultrasonic flaw inspecting device
RU2791670C1 (en) Method for checking quality of acoustic contact between ultrasonic transducer and ceramic product during ultrasonic flaw detection
JPH0729447Y2 (en) Ultrasonic measuring device
SU1345063A1 (en) Method of determining depth and velocity of propagation of ultrasonic waves in articles
JPH0749944B2 (en) Simultaneous measurement of material thickness and sound velocity
JPH0666620A (en) Ultrasonic level indicator
JPH0365608A (en) Method and apparatus for measuring thickness of scale in piping
KR200299553Y1 (en) Laser Shearography For Inspection Of Pipeline
JPS606858A (en) Measuring method of sonic velocity and attenuation of surface acoustic wave
SU727989A1 (en) Ultrasonic method of checking dimensions of an object and monitoring its displacements
JPH02216409A (en) Ultrasonic measuring instrument
RU2244270C1 (en) Device for measuring sound speed in liquid environment
JPH03289560A (en) Incident-angle adjusting method in measurement using surface wave