KR200299553Y1 - Laser Shearography For Inspection Of Pipeline - Google Patents

Laser Shearography For Inspection Of Pipeline Download PDF

Info

Publication number
KR200299553Y1
KR200299553Y1 KR20020028892U KR20020028892U KR200299553Y1 KR 200299553 Y1 KR200299553 Y1 KR 200299553Y1 KR 20020028892 U KR20020028892 U KR 20020028892U KR 20020028892 U KR20020028892 U KR 20020028892U KR 200299553 Y1 KR200299553 Y1 KR 200299553Y1
Authority
KR
South Korea
Prior art keywords
pressure vessel
shear interferometer
hose
inspection
gas inlet
Prior art date
Application number
KR20020028892U
Other languages
Korean (ko)
Inventor
장석원
Original Assignee
대우전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우전자주식회사 filed Critical 대우전자주식회사
Priority to KR20020028892U priority Critical patent/KR200299553Y1/en
Application granted granted Critical
Publication of KR200299553Y1 publication Critical patent/KR200299553Y1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9072Investigating the presence of flaws or contamination in a container or its contents with illumination or detection from inside the container
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

본 고안은 전자전단간섭계를 이용한 압력용기 내부결함 측정 장치에 관한 것으로서, 압력용기 내부결함 측정 장치의 정밀도를 최대화 함과 아울러 실시간 계측을 가능하게 한 것이다.The present invention relates to a pressure vessel internal defect measuring apparatus using an electronic shear interferometer, to maximize the accuracy of the pressure vessel internal defect measuring apparatus and to enable real-time measurement.

본 고안은 압력용기(1) 일측에 가스투입구(3)가 형성되고, 상기 가스투입구(3) 일단에 호스(5)가 연결되며, 상기 호스(5) 타단부에 가스공급기(7)가 연결되고, 상기 압력용기(1) 전방에 전자전단간섭계(10)가 설치되어 이루어지는 것이다.According to the present invention, a gas inlet 3 is formed at one side of the pressure container 1, a hose 5 is connected to one end of the gas inlet 3, and a gas supplier 7 is connected to the other end of the hose 5. The electromagnetic shear interferometer 10 is provided in front of the pressure vessel 1.

Description

전자전단간섭계를 이용한 압력용기 내부결함 측정 장치{Laser Shearography For Inspection Of Pipeline}Defect Measurement Device for Pressure Vessel Using Electronic Shear Interferometer {Laser Shearography For Inspection Of Pipeline}

본 고안은 전자전단간섭계를 이용한 압력용기 내부결함 측정 장치에 관한 것이다.The present invention relates to a pressure vessel internal defect measurement apparatus using an electronic shear interferometer.

일반적으로 알려진 바와 같이 내부결함검사는 육안검사, 방사선투과검사, 자기검사, 초음파검사, 누설검사 등이 있으며, 상기 방사선투과검사나 상기 초음파검사 같은 비파괴검사법은 피검사물을 파괴하지 않고 내부의 성질 및 결함을 찾아내는 것이다.As is generally known, internal defect inspection may include visual inspection, radiographic examination, magnetic examination, ultrasound examination, leakage examination, and the like. Finding the fault

상기한 종래의 비파괴검사법은 매우 다양하며, 그 중에서 경비도 적게 들고, 안전하며, 비교적 결함의 위치와 크기를 정확하게 잡아내는 초음파탐사법이 많이 이용되고 있다.The conventional non-destructive inspection method is very diverse, among them, low cost, safe, and the ultrasonic detection method that accurately captures the position and size of the defect is relatively used.

초음파탐사법이란, 초음파를 검사대상물에 쏘고, 검사대상물 속에서 전파되었다가 되돌아 나오는 초음파를 분석하는 기법을 의미한다. 최근에는 강교(鋼橋) 등의 용접부 검사에 많이 이용되고 있다. 여기서 주목할 것은 초음파를 발생시키고, 수신하는 탐촉자이다. 상기 탐촉자는 전기적인 펄스가 들어오면 탐촉자 내부의 압전소자가 펄스의 에너지를 받아 순간적으로 변형하면서, 일종의 높은 소리인 초음파를 발생하는 센서이다. 또한 초음파를 수신하는 경우엔, 음파에 의한 기계적인 진동을 전기적으로 변환시켜주어야 한다. 이러한 에너지 변환을 위해서 압전소자를 사용하고 있다. 압전소자는 전기적 신호를 받으면, 기계적 변형이 발생하고, 기계적 응력을 받으면, 전기적 신호를 발생시키는 재료이다.Ultrasonic detection refers to a technique that analyzes an ultrasonic wave that is emitted to an inspection object and propagated in the inspection object and then comes out. In recent years, it is used for the inspection of welded parts, such as a steel bridge. Of note here are transducers that generate and receive ultrasonic waves. The transducer is a sensor that generates an ultrasonic wave, which is a kind of high sound while the piezoelectric element inside the transducer is instantaneously deformed by receiving the pulse energy when an electrical pulse comes in. In addition, in the case of receiving ultrasonic waves, mechanical vibrations due to sound waves must be converted electrically. Piezoelectric elements are used for this energy conversion. The piezoelectric element is a material that generates an electrical signal when subjected to an electrical signal, and a mechanical deformation occurs.

초음파 탐촉자는 그 검사대상물의 두께나 재질에 따라 중심 주파수, 진동자의 크기 등을 달리 하여야 한다. 통상 초음파의 주파수는 2.25 MHz 또는 5 MHz 의 것들이 많이 사용된다. 특정한 주파수의 탐촉자를 만들기 위해선, 압전 진동자의 두께를 적당히 조절하여야 한다. 두꺼울수록 낮은 주파수가 되고, 얇을수록 높은 주파수가 된다.Ultrasonic transducers should vary the center frequency and the size of the vibrator according to the thickness or material of the inspection object. Usually, the frequency of ultrasonic waves is 2.25 MHz or 5 MHz. In order to make a transducer of a certain frequency, the thickness of the piezoelectric vibrator must be adjusted appropriately. The thicker the lower the frequency, the thinner the higher the frequency.

위와 같은 종래의 기술로 해결 못한 문제점으로, 전선 연결의 공정이 애로기술로 남아 있다.As a problem not solved by the conventional technology as described above, the process of connecting the wire remains a bottleneck technology.

즉, 압전소자가 그 기능을 발휘하기 위해선 압전소자 양단에 전선이 연결되어야 한다. 그런데 초음파 탐촉자에 삽입된 압전소자의 한 쪽면은 초음파를 송수신하는 면이므로 매우 평평하여야 하며, 아크릴 등의 수지가 덮고 있다. 따라서 그런 면에 전선을 붙인 상태로 조립하면, 전선 굵기만큼 오차를 갖게 되는 문제점이 있었다.That is, in order for the piezoelectric element to perform its function, a wire must be connected to both ends of the piezoelectric element. However, one side of the piezoelectric element inserted into the ultrasonic transducer should be very flat because it is a side for transmitting and receiving ultrasonic waves, and resin such as acrylic is covered. Therefore, when assembled in such a state that the wire is attached, there was a problem that the error is as much as the thickness of the wire.

물론, 압전소자가 두꺼울 경우엔, 송수신면에 붙은 전선 굵기의 오차가 무시될 수 있다. 그러나 압전소자가 고주파용인 두께 0.4 mm 정도에서는 전선의 굵기를 무시할 수 없다는 문제점이 있었다.Of course, when the piezoelectric element is thick, an error in the thickness of the wire attached to the transceiving surface can be ignored. However, when the piezoelectric element is about 0.4 mm thick for high frequency, there is a problem that the thickness of the wire cannot be ignored.

여기서, 압전소자의 송수신면에 아크릴 수지가 덮고 있는 이유는 음파의 전달율을 향상시키기 위함이다. 즉, 검사 대상물과의 접촉 시 탐촉자와의 사이에 공기가 들어가면 반사가 일어나므로 일반적으로 물이나, 젤리 등을 이용하여 접촉 매질로 사용하는데, 이 접촉 매질과 밀도가 높은 압전소자가 맞닿으면 음향 반사율이 높아진다. 따라서 대부분의 초음파가 반사되어 버린다. 이렇게 되면 검사 대상물에 도착하는 초음파는 매우 약해진다. 따라서 정밀한 측정이 어려운 문제이 있었다.Here, the reason why the acrylic resin is covered on the transmission and reception surface of the piezoelectric element is to improve the transmission rate of sound waves. That is, when air enters between the probe and the object when it comes into contact with the test object, reflection occurs, so it is generally used as a contact medium using water or jelly. The reflectance becomes high. Therefore, most of the ultrasonic waves are reflected. In this case, the ultrasonic waves arriving at the test object become very weak. Therefore, precise measurement was difficult.

본 고안은 상기한 문제점을 시정하여, 압력용기 내부결함 측정 장치의 정밀도를 최대화 함과 아울러 실시간 계측을 가능하게 한 전자전단간섭계를 이용한 압력용기 내부결함 측정 장치를 제공하는데 있다.The present invention is to provide a pressure vessel internal defect measuring apparatus using an electronic shear interferometer to maximize the accuracy of the pressure vessel internal defect measuring device to enable the real-time measurement by correcting the above problems.

상기한 목적을 달성하기 위하여, 압력용기 일측에 형성되는 가스투입구와, 상기 가스투입구 일단에 연결되는 호스와, 상기 호스 타단부와 연결되는 가스공급기와, 상기 압력용기 전방에 설치되어 압력용기의 미소부분 결함을 측정하는 전자전단간섭계로 이루어지는 것이다.In order to achieve the above object, a gas inlet formed on one side of the pressure vessel, a hose connected to one end of the gas inlet, a gas supply connected to the other end of the hose, and installed in front of the pressure vessel, the minute of the pressure vessel It consists of an electronic shear interferometer for measuring partial defects.

도 1은 본 고안의 전자전단간섭계를 이용한 압력용기 내부결함 측정 장치를 나타낸 사시도,1 is a perspective view showing a pressure vessel internal defect measuring apparatus using an electronic shear interferometer of the present invention,

도 2는 본 고안의 전자전단간섭계의 정면도이다.2 is a front view of the electronic shear interferometer of the present invention.

<도면의 주요부분에 사용된 부호의 설명><Description of the code used in the main part of the drawing>

1 : 압력용기 3 : 가스투입구1: pressure vessel 3: gas inlet

5 : 호스 7 : 가스공급기5: hose 7: gas supply

10: 전자전단간섭계 13: 감지기10: Electronic Shear Interferometer 13: Sensor

15: 광원체15: light source

본 고안은 도 1 내지 도 2에 도시한 바와 같이, 압력용기(1) 일측에 가스투입구(3)가 형성되고, 상기 가스투입구(3) 일단에 호스(5)가 연결되며, 상기 호스(5) 타단부에 가스공급기(7)가 연결되고, 상기 압력용기(1) 전방에 전자전단간섭계(10)가 설치되는 것이다.1 and 2, the gas inlet 3 is formed at one side of the pressure vessel 1, the hose 5 is connected to one end of the gas inlet 3, and the hose 5 is provided. The gas supply 7 is connected to the other end, and the electromagnetic shear interferometer 10 is installed in front of the pressure vessel 1.

상기 전자전단간섭계(Laser Shearography)(10)는 프린지 이미지(fringe image)의 화질을 향상시키고, 복잡한 프린지 패턴의 판독을 가능하게 하며, 별도의 암실 작업을 배제하고, 구성을 보다 간소화시킬 수 있게 한 것이다.The laser shear interferometer 10 improves the image quality of a fringe image, enables the reading of complex fringe patterns, eliminates separate darkroom work, and further simplifies configuration. will be.

여기서, 상기 전자전단간섭계(10)는 중심에 형성되어 특정 영상 신호를 획득함으로써 압력용기의 변동이 검출되게 하는 감지기(CCD)(13)와, 상기 감지기(13)의 주위에 형성되어 광원인 레이저 빔이 조사되는 광원체(15)로 구성된다.Here, the electronic shear interferometer (10) is formed in the center of the sensor (CCD) 13 to detect the variation of the pressure vessel by acquiring a specific image signal, and a laser formed around the sensor 13 as a light source It consists of the light source body 15 to which a beam is irradiated.

상기와 같이 구성된 상태에서, 작업자는 압력용기(1)를 고정한 후, 전원 스위치(미도시)를 누른다. 그리고 상기 전원 스위치에 의해 제어부(미도시)는 제어신호를 발생하며, 상기 제어신호에 의해 상기 전자전단간섭계(10)의 광원체(15)는 레이저 빔을 상기 압력용기(1)로 조사한다.In the state configured as described above, the worker presses the power switch (not shown) after fixing the pressure vessel (1). The control unit (not shown) generates a control signal by the power switch, and the light source body 15 of the electronic shear interferometer 10 irradiates a laser beam to the pressure vessel 1 by the control signal.

그리고, 작업자는 가스유입 스위치(미도시)를 누른다. 그리고 상기 가스유입 스위치에 의해 제어부는 제어신호를 발생시키며, 상기 제어신호는 상기 가스공급기(7)의 가스를 분출시킨다. 분출된 상기 가스는 상기 호스(5)를 통해 상기 압력용기(1)의 가스투입구(3)로 투입된다. 그리고 투입된 가스에 의해 상기 압력용기(1)가 압력하중을 받으며 팽창되어 면외방향으로 변형이 발생되게 된다.Then, the operator pushes the gas inlet switch (not shown). The control unit generates a control signal by the gas inflow switch, and the control signal ejects the gas of the gas supplier 7. The ejected gas is introduced into the gas inlet 3 of the pressure vessel 1 through the hose 5. In addition, the pressure vessel 1 is expanded while receiving the pressure load by the injected gas, so that deformation occurs in the out-of-plane direction.

여기서, 상기 전자전단간섭계(10)의 광원체(15)는 레이저 빔을 조사함으로써 측정영역의 상기 압력용기(1) 변형 상황을 감지기(13)로 전달시키는 것이고, 상기 감지기(13)는 상기 광원체(15)에서 조사된 레이저 빔을 토대로 간섭 스펙클을 형성하여 도시하지 않은 제어기로 해당 신호를 인가시키는 것이다. 상기 제어기는 인가된 특정 신호를 기존의 저장된 데이터 등과 비교ㆍ분석함으로써 변형 정도 및 내부 결함을 판별하는 것이다.Here, the light source body 15 of the electromagnetic shear interferometer 10 transmits the deformation state of the pressure vessel 1 in the measurement area to the detector 13 by irradiating a laser beam, and the detector 13 is the light source. The interference speckle is formed on the basis of the laser beam irradiated from the sieve 15 and the signal is applied to a controller (not shown). The controller determines the degree of deformation and the internal defect by comparing and analyzing the applied specific signal with existing stored data and the like.

이상과 같은 본 고안은 압력용기 전방에 전자전단간섭계를 설치함으로써 상기 압력용기의 변형 정도를 측정할 때 여러지점의 변형 정도를 간단하게 비접촉으로 계측할 수 있음과 아울러 내부 결함을 정밀하게 측정할 수 있고, 실시간 가시화된 정보를 얻을 수 있다.The present invention as described above, by installing the electronic shear interferometer in front of the pressure vessel can measure the deformation degree of the various points simply by non-contact when measuring the degree of deformation of the pressure vessel and can accurately measure the internal defects. And real-time visualized information can be obtained.

그리고 변형 결과로 얻어진 간섭무늬 형태로 결함의 방향을 알 수 있다.And the direction of the defect can be seen in the form of the interference fringe obtained as a result of the deformation.

Claims (1)

압력용기(1) 일측에 형성되는 가스투입구(3)와,A gas inlet (3) formed at one side of the pressure vessel (1), 상기 가스투입구(3) 일단에 연결되는 호스(5)와,A hose 5 connected to one end of the gas inlet 3, 상기 호스(5) 타단부와 연결되는 가스공급기(7)와,A gas supplier 7 connected to the other end of the hose 5, 상기 압력용기(1) 전방에 설치되어 압력용기(1)의 미소부분 결함을 측정하는 전자전단간섭계(10)로 이루어지는 것을 특징으로 하는 전자전단간섭계를 이용한 압력용기 내부결함 측정 장치.Apparatus for measuring internal defects of a pressure vessel using an electronic shear interferometer (10), characterized in that it consists of an electronic shear interferometer (10) which is installed in front of the pressure vessel (1) to measure the microscopic defects of the pressure vessel (1).
KR20020028892U 2002-09-26 2002-09-26 Laser Shearography For Inspection Of Pipeline KR200299553Y1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20020028892U KR200299553Y1 (en) 2002-09-26 2002-09-26 Laser Shearography For Inspection Of Pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20020028892U KR200299553Y1 (en) 2002-09-26 2002-09-26 Laser Shearography For Inspection Of Pipeline

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020020058534A Division KR20040026901A (en) 2002-09-26 2002-09-26 Laser Shearography For Inspection Of Pipeline

Publications (1)

Publication Number Publication Date
KR200299553Y1 true KR200299553Y1 (en) 2002-12-31

Family

ID=41347720

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20020028892U KR200299553Y1 (en) 2002-09-26 2002-09-26 Laser Shearography For Inspection Of Pipeline

Country Status (1)

Country Link
KR (1) KR200299553Y1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059159A2 (en) * 2007-11-02 2009-05-07 King Kegan Y Pressure tank fault detector and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059159A2 (en) * 2007-11-02 2009-05-07 King Kegan Y Pressure tank fault detector and method
WO2009059159A3 (en) * 2007-11-02 2009-08-06 Kegan Y King Pressure tank fault detector and method
US8134372B2 (en) 2007-11-02 2012-03-13 King Kegan Y Pressure tank fault detector and method

Similar Documents

Publication Publication Date Title
EP3069132B1 (en) Structural bond inspection
US10352911B2 (en) Airborne ultrasound testing system for a test object
US5661241A (en) Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
US20060215174A1 (en) System and method to inspect components having non-parallel surfaces
JP2015537220A (en) Sensor device and residual stress measurement system provided with the sensor device
CN108871640A (en) Residual stress nondestructive detection system and method based on transient grating Laser thermo-elastic generated surface acoustic waves
US10578586B2 (en) Weld analysis using Lamb waves and a neural network
WO2009126886A1 (en) Nondestructive testing apparatus and method
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
US20130088724A1 (en) Method and apparatus for the inspection of sandwich structures using laser-induced resonant frequencies
Osumi et al. Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method
KR101698746B1 (en) Phased Array Ultrasonic Testing Device And Testing Method Using Thereof
JP2008014868A (en) Method for measuring attached material, and apparatus for measuring the attached material
JP2001027630A (en) Apparatus and method for measuring flaw height by ultrasonic wave
KR200299553Y1 (en) Laser Shearography For Inspection Of Pipeline
CA2012374C (en) Ultrasonic crack sizing method
JP2011529170A (en) Improved ultrasonic non-destructive inspection using coupling check
JP2001208729A (en) Defect detector
KR20040026901A (en) Laser Shearography For Inspection Of Pipeline
JP2001343365A (en) Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
US5046363A (en) Apparatus for rapid non-destructive measurement of die attach quality in packaged integrated circuits
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JPH0348153A (en) Decision of strength of ceramic junction
WO2016172178A1 (en) Gating methods for use in weld inspection systems
JP4112526B2 (en) Ultrasonic flaw detection method and apparatus

Legal Events

Date Code Title Description
U107 Dual application of utility model
REGI Registration of establishment
T201 Request for technology evaluation of utility model
LAPS Lapse due to unpaid annual fee
T601 Decision on revocation of utility model registration