JP2001027630A - Apparatus and method for measuring flaw height by ultrasonic wave - Google Patents

Apparatus and method for measuring flaw height by ultrasonic wave

Info

Publication number
JP2001027630A
JP2001027630A JP11198880A JP19888099A JP2001027630A JP 2001027630 A JP2001027630 A JP 2001027630A JP 11198880 A JP11198880 A JP 11198880A JP 19888099 A JP19888099 A JP 19888099A JP 2001027630 A JP2001027630 A JP 2001027630A
Authority
JP
Japan
Prior art keywords
defect
ultrasonic
reflected
ultrasonic wave
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11198880A
Other languages
Japanese (ja)
Other versions
JP3535417B2 (en
Inventor
Haruyuki Hanawa
晴行 塙
Kenji Tayama
賢治 田山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Original Assignee
Hitachi Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP19888099A priority Critical patent/JP3535417B2/en
Publication of JP2001027630A publication Critical patent/JP2001027630A/en
Application granted granted Critical
Publication of JP3535417B2 publication Critical patent/JP3535417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flaw height measuring apparatus for accurately and simply measuring the flaw height of an object to be inspected. SOLUTION: In an ultrasonic flaw height measuring apparatus, an angle-of-refraction selecting part 34 changes the angle of refraction of ultrasonic waves transmitted from an array probe 1 into an object to be inspected to select an angle of refraction high in reflected wave height valve from the waveform data reflected from the interior of the object to be inspected and a focal distance operation part 35 changes the focal distance of ultrasonic waves into the object to be inspected on the basis of the selected angle of refraction to operate the focal distance becoming high in reflected wave height value on the basis of the waveform data reflected from the interior of the object to be inspected and a flaw height calculation part 36 sets the operated focal distance to a starting point to change the focal depth and angle of refraction of ultrasonic waves continuously along the flaw surface of a flaw part and calculates flaw height from the difference between the ultrasonic beam distance corresponding to the angel of refraction becoming high in the reflected wave height value in the waveform data reflected from the flaw surface and the ultrasonic beam distance corresponding to the angle of refraction becoming high next.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非破壊検査技術の
一つである超音波探傷に係り、特に疲労割れ等の欠陥高
さを簡単に測定することが可能な超音波による欠陥高さ
測定装置及び欠陥高さ測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ultrasonic flaw detection which is one of non-destructive inspection techniques, and in particular, to measure defect height by ultrasonic waves which can easily measure the height of defects such as fatigue cracks. The present invention relates to an apparatus and a defect height measuring method.

【0002】[0002]

【従来の技術】配管や圧力容器等の溶接部の保守検査
は、斜角探触子を用いて超音波ビームを斜めに入射させ
て割れ状欠陥の有無の検査を行っている。この超音波探
傷試験で欠陥を検出した場合、その欠陥の長さと高さを
測定して、線形破壊力学による強度計算で強度評価を行
う。
2. Description of the Related Art In the maintenance inspection of welded parts such as pipes and pressure vessels, an ultrasonic beam is obliquely incident using an oblique probe to inspect for crack-like defects. When a defect is detected by this ultrasonic testing, the length and height of the defect are measured, and the strength is evaluated by strength calculation using linear fracture mechanics.

【0003】欠陥の高さを超音波探傷で測定する手法
は、非破壊検査協会編超音波探傷試験III(1989)70頁
に記載してあるようにいくつかの手法があるが、欠陥高
さを精度良く測定する方法の一つとして端部エコー法が
ある。
There are several methods for measuring the height of a defect by ultrasonic inspection, as described in Ultrasonic Inspection Test III (1989), page 70 of the Non-Destructive Testing Association. There is an edge echo method as one of the methods for measuring the distance with high accuracy.

【0004】特開平5-332999号公報に記載の超音波底面
開口欠陥測定方法では、探触子を欠陥の最大ピーク位置
に置き、最大ピークより前にあるピーク数を判定するこ
とにより、底面開口欠陥の上部端部エコーと底面側端部
エコーとを区分けして捉えることができ、最大ピークと
その前後の端部エコーのビーム路程の相互関係を幾何学
的な三角形として底面開口欠陥の傾斜角を算出して欠陥
高さを求めている。
In the ultrasonic bottom opening defect measuring method described in Japanese Patent Application Laid-Open No. 5-332999, a probe is placed at the maximum peak position of a defect, and the number of peaks located before the maximum peak is determined, whereby the bottom opening defect is determined. The top edge echo and the bottom edge echo of the defect can be separated and caught, and the correlation between the maximum peak and the beam path of the edge echo before and after the maximum peak is defined as a geometric triangle, and the inclination angle of the bottom opening defect Is calculated to obtain the defect height.

【0005】しかし、この方法では、超音波ビームの広
がりの範囲で欠陥先端部からの端部エコーを検出する反
射強度は微弱であり、また、欠陥先端部からの回析波は
欠陥先端部に入射する超音波の角度によっても反射強度
が変わる。一般に、欠陥先端部からの反射波は、欠陥の
最大エコーより20dB程度低い反射波として検出され
るために、端部エコーの検出性は低く、端部エコーを識
別するのに熟練を必要とする。
However, in this method, the reflection intensity for detecting the end echo from the defect tip in the range of the ultrasonic beam spread is weak, and the diffracted wave from the defect tip is applied to the defect tip. The reflection intensity also changes depending on the angle of the incident ultrasonic wave. Generally, the reflected wave from the tip of the defect is detected as a reflected wave that is lower than the maximum echo of the defect by about 20 dB, so that the detectability of the end echo is low, and skill is required to identify the end echo. .

【0006】反射強度の微弱を解決する方法としては、
非破壊検査協会編超音波探傷試験III(1989)77頁に記
載されているように、超音波のビームを集束させること
が有効である。しかし、一般には欠陥先端部からの回析
波である端部エコーの強度を大きくするために欠陥先端
部に焦点が合致するようにして探傷を行う必要がある
が、測定しようとする対象欠陥の深さがわからないため
に、適切な焦点深さを選定できず端部エコー強度が小さ
くて欠陥高さが測定できないという問題があった。
As a method for solving the weak reflection intensity,
Focusing an ultrasonic beam is effective as described in Ultrasonic Testing III (1989), page 77, edited by The Non-Destructive Testing Association. However, in general, it is necessary to carry out flaw detection so that the focal point coincides with the defect tip in order to increase the intensity of the edge echo, which is a diffraction wave from the tip of the defect. Since the depth is not known, there is a problem that an appropriate focal depth cannot be selected, the edge echo intensity is low, and the defect height cannot be measured.

【0007】一方、非破壊検査協会超音波探傷III(198
9)133頁に記載されているように、位相整合による電子
走査式の超音波探傷法もよく知られている。この方法で
は、任意の角度の超音波が発生させられること、および
任意の深さに超音波ビームを集束できることができる。
一般には、特定の微細な欠陥を検出することを目的とし
て、焦点距離を一定にして屈折角度を変えながら探傷を
行う方法で用いられている。この方法で欠陥の端部エコ
ーを得ることは、必ずしも欠陥の先端部で超音波ビーム
が集束されていないために、十分な効果を出すことがで
きない。
On the other hand, Non-Destructive Testing Association Ultrasonic Testing III (198
9) As described on page 133, an electronic scanning ultrasonic flaw detection method using phase matching is well known. In this way, ultrasound at any angle can be generated and the ultrasound beam can be focused to any depth.
Generally, in order to detect a specific minute defect, it is used in a method of performing flaw detection while changing the refraction angle while keeping the focal length constant. Obtaining the edge echo of the defect by this method cannot provide a sufficient effect because the ultrasonic beam is not always focused at the tip of the defect.

【0008】また、特開平9-33500号公報に記載されて
いるように、深さ方向の広い範囲に渡り同一の方位分解
能を有する制御方法も確立されている。しかし、本方法
は素子の共振周波数と同程度以上の高周波成分を抽出し
受信信号のビーム幅を細くし方位分解能を上げる方法で
あり、被検査物がICのような小型のものであれば有効
であるが、圧力容器あるいは配管等の鉄鋼材の場合には
検査すべき範囲が大きく、超音波の減衰が大きくなるた
めに端部エコーの検出方法には適用できない。
As described in Japanese Patent Application Laid-Open No. 9-33500, a control method having the same azimuth resolution over a wide range in the depth direction has been established. However, this method is a method of extracting a high-frequency component equal to or higher than the resonance frequency of the element, narrowing the beam width of the received signal and increasing the azimuth resolution, and is effective if the object to be inspected is a small one such as an IC. However, in the case of a steel material such as a pressure vessel or a pipe, the range to be inspected is large, and attenuation of ultrasonic waves is large, so that the method cannot be applied to a method for detecting an end echo.

【0009】[0009]

【発明が解決しようとする課題】欠陥が存在した場合、
その欠陥の高さを求めるために行われる端部エコー法に
おいて、欠陥先端部から得られる散乱波が微弱であり、
この微弱な散乱波を発見し、特定するには熟練が必要で
ある。
When a defect exists,
In the edge echo method performed to determine the height of the defect, the scattered wave obtained from the tip of the defect is weak,
Skill is required to discover and identify these weak scattered waves.

【0010】欠陥先端部からの散乱波は、欠陥先端部に
入射する超音波ビームの角度により、受信可能なレベル
にある場合と、検出ができない程小さな場合がある。
The scattered wave from the tip of the defect may be at a receivable level or may be too small to be detected, depending on the angle of the ultrasonic beam incident on the tip of the defect.

【0011】また、超音波ビームを集束して欠陥先端部
からの反射強度を高くする方法もあるが、測定すべき欠
陥高さが判らないために、超音波ビームの焦点を設定で
きない問題がある。
There is also a method of focusing the ultrasonic beam to increase the reflection intensity from the tip of the defect, but there is a problem that the focal point of the ultrasonic beam cannot be set because the defect height to be measured is not known. .

【0012】本発明の目的は、被検査物の欠陥高さを精
度良く簡単に測定する超音波による欠陥高さ測定装置及
び欠陥高さ測定方法を提供することにある。
An object of the present invention is to provide a defect height measuring apparatus and a defect height measuring method using ultrasonic waves for easily and accurately measuring a defect height of an inspection object.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明における超音波による欠陥高さ測定装置の特
徴とするところは、アレイ探触子から発信される前記超
音波の被検査物内への屈折角度を連続的に変化させ、被
検査物内からの反射波高値が高い屈折角度を選定し、そ
の屈折角で超音波の被検査物内への焦点距離を連続的に
変化させて反射波高値が高くなる焦点距離を演算し、そ
の焦点距離を始点とし欠陥部の欠陥面に沿って超音波の
焦点深さと屈折角度を連続的に変化させて探傷し、反射
波高値が高くなる屈折角度に相当する超音波ビーム路程
と次に高くなる屈折角度に相当する超音波ビーム路程と
の路程差から欠陥高さを算出することにある。
In order to achieve the above object, a feature of the ultrasonic defect height measuring apparatus according to the present invention is that an object to be inspected by the ultrasonic wave transmitted from the array probe is used. The refraction angle into the specimen is continuously changed, the refraction angle at which the reflected wave height from the specimen is high is selected, and the focal length of the ultrasonic wave into the specimen is continuously changed at the refraction angle. Calculates the focal length at which the reflected peak value becomes higher, and uses the focal length as the starting point to continuously change the focal depth and refraction angle of the ultrasonic wave along the defect surface of the defect to detect flaws. An object of the present invention is to calculate a defect height from a path difference between an ultrasonic beam path corresponding to a certain refraction angle and an ultrasonic beam path corresponding to a next higher refraction angle.

【0014】具体的には本発明は次に掲げる装置及び方
法を提供する。本発明は、被検査物に向け超音波を発信
し、前記被検査物から反射してきた前記超音波を受信す
るアレイ探触子と、前記アレイ探触子を制御して前記被
検査物の欠陥部を探傷し前記欠陥部の欠陥高さを測定す
る制御部とを有する超音波による欠陥高さ測定装置にお
いて、前記制御部は、前記アレイ探触子から発信される
前記超音波の被検査物内への屈折角度を連続的に変化さ
せ、前記被検査物内で反射した前記超音波の前記各屈折
角度に対応する波形データの中から前記超音波の反射波
高値が高い屈折角度を選定する屈折角度選定部と、前記
選定した屈折角度で前記アレイ探触子から発信される前
記超音波の被検査物内への焦点距離を連続的に変化さ
せ、前記被検査物内で反射した前記超音波の前記各焦点
距離に対応する波形データに基づき前記超音波の反射波
高値が高くなる焦点距離を演算する焦点距離演算部と、
前記演算した焦点距離を始点とし前記欠陥部の欠陥面に
沿って前記超音波の焦点深さと前記屈折角度を連続的に
変化させ、前記欠陥面で反射した前記超音波の前記各屈
折角度に対応する波形データの中の前記超音波の反射波
高値が高くなる屈折角度に相当する超音波ビーム路程と
次に高くなる屈折角度に相当する音波ビーム路程との路
程差から前記欠陥高さを算出する欠陥高さ算出部とを有
することを特徴とする超音波による欠陥高さ測定装置を
提供する。
Specifically, the present invention provides the following apparatus and method. The present invention provides an array probe that transmits ultrasonic waves toward an object to be inspected and receives the ultrasonic waves reflected from the object to be inspected, and a defect of the object to be inspected by controlling the array probe. A defect height measuring device using an ultrasonic wave having a control unit for detecting a defect and measuring a defect height of the defective part, wherein the control unit is configured to inspect the ultrasonic inspection object transmitted from the array probe. The angle of refraction of the ultrasonic wave is continuously changed, and the refraction angle at which the reflected wave height of the ultrasonic wave is high is selected from the waveform data corresponding to the respective refraction angles of the ultrasonic wave reflected in the inspection object. A refraction angle selection unit, continuously changing the focal length of the ultrasonic waves transmitted from the array probe into the inspection object at the selected refraction angle, and reflecting the ultrasonic waves reflected in the inspection object. Based on the waveform data corresponding to each focal length of the sound wave Serial and focal length calculating unit for calculating a focal length ultrasonic reflected wave height is high,
With the calculated focal length as a starting point, the focal depth of the ultrasonic wave and the refraction angle are continuously changed along the defect surface of the defect portion, and correspond to the respective refraction angles of the ultrasonic wave reflected on the defect surface. The defect height is calculated from the path difference between the ultrasonic beam path corresponding to the refraction angle at which the reflected wave height of the ultrasonic wave becomes higher and the sound beam path corresponding to the next higher refraction angle in the waveform data to be obtained. An ultrasonic defect height measuring device, comprising: a defect height calculating unit.

【0015】また、本発明は、アレイ探触子から被検査
物に向け超音波を発信し、前記被検査物から反射してき
た超音波の波形データに基づき前記被検査物の欠陥部を
探傷し前記欠陥部の欠陥高さを測定する超音波による欠
陥高さ測定方法において、前記アレイ探触子から発信さ
れる前記超音波の被検査物内への屈折角度を連続的に変
化させ、前記被検査物内で反射した前記超音波の前記各
屈折角度に対応する波形データの中から前記超音波の反
射波高値が高い屈折角度を選定し、次に前記選定した屈
折角度で前記アレイ探触子から発信される前記超音波の
被検査物内への焦点距離を連続的に変化させ、前記被検
査物内で反射した前記超音波の前記各焦点距離に対応す
る波形データに基づき前記超音波の反射波高値が高くな
る焦点距離を演算し、次に演算した焦点距離を始点とし
前記欠陥部の欠陥面に沿って前記超音波の焦点深さと前
記屈折角度を連続的に変化させ、前記欠陥面で反射した
前記超音波の前記各屈折角度に対応する波形データの中
の前記超音波の反射波高値が高くなる屈折角度に相当す
る超音波ビーム路程と次に高くなる屈折角度に相当する
超音波ビーム路程との路程差から前記欠陥高さを算出す
るすることを特徴とする超音波による欠陥高さ測定方法
を提供する。
Further, according to the present invention, an ultrasonic wave is transmitted from an array probe toward an object to be inspected, and a defect of the object to be inspected is inspected based on waveform data of the ultrasonic wave reflected from the object. In the defect height measuring method using ultrasonic waves for measuring the defect height of the defective portion, the angle of refraction of the ultrasonic waves emitted from the array probe into the object to be inspected is continuously changed, and From the waveform data corresponding to each of the refraction angles of the ultrasonic wave reflected in the inspection object, select a refraction angle at which the reflected wave peak value of the ultrasonic wave is high, and then select the array probe at the selected refraction angle. The focal length of the ultrasonic wave transmitted from the object to be inspected is continuously changed, and the ultrasonic wave is reflected based on the waveform data corresponding to each focal length of the ultrasonic wave reflected in the object. Calculates the focal length at which the reflected wave height increases The focal depth calculated next is used as a starting point, and the focal depth and the refraction angle of the ultrasonic wave are continuously changed along the defect surface of the defect portion, and the respective refraction angles of the ultrasonic wave reflected on the defect surface are calculated. The defect height is determined from the difference between the ultrasonic beam path corresponding to the refraction angle at which the reflected peak value of the ultrasonic wave becomes higher and the ultrasonic beam path corresponding to the next higher refraction angle in the waveform data corresponding to Is provided, and a method for measuring a defect height by ultrasonic waves is provided.

【0016】[0016]

【発明の実施の形態】以下、本発明の一実施の形態例に
係る超音波による欠陥高さ測定装置及び欠陥高さ測定方
法を、図を用いて説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a defect height measuring apparatus and a defect height measuring method using ultrasonic waves according to an embodiment of the present invention.

【0017】図1は、本発明の一実施の形態例に係る超
音波による欠陥高さ測定装置の機能構成を示す。
FIG. 1 shows a functional configuration of a defect height measuring apparatus using ultrasonic waves according to an embodiment of the present invention.

【0018】本欠陥高さ測定装置は、複数の超音波振動
子を配列したアレイ探触子1と、アレイ探触子を機械的
に走査するスキャナ2と、アレイ探触子1及びスキャナ
2を制御して被検査物を探傷し欠陥高さを測定する制御
部3と、探傷結果をディスプレイ等に表示する表示部4
とで構成されている。
This defect height measuring apparatus includes an array probe 1 having a plurality of ultrasonic transducers arranged therein, a scanner 2 for mechanically scanning the array probe, and an array probe 1 and a scanner 2. A control unit 3 for controlling and flaw-detecting the inspection object to measure a defect height;
It is composed of

【0019】制御部3は、スキャナ2の動作を制御する
スキャナ制御部31と、アレイ探触子1の超音波送受信
を制御する電子走査部32と、該電子走査部32で制御
した超音波受信波形を収録するデータ収録部33と、ス
キャナ2を停止した状態でアレイ探触子1から発信され
る超音波の被検査物内への屈折角度を連続的に変化さ
せ、被検査物内で反射した超音波の各屈折角度に対応す
る波形データの中からエコーが高い、すなわち超音波の
反射波高値が高い屈折角度を選定する屈折角度選定部3
4と、選定した屈折角でアレイ探触子1から発信される
超音波の被検査物内への焦点距離を連続的に変化させ、
被検査物内で反射した超音波の各焦点距離に対応する波
形データに基づき超音波の反射波高値が高くなる焦点距
離を演算する焦点距離演算部35と、演算した焦点距離
を始点とし欠陥部の欠陥面に沿って超音波の焦点深さと
屈折角度を連続的に変化させ、欠陥面で反射した超音波
の各屈折角度に対応する波形データの中の超音波の反射
波高値が高くなる屈折角度に相当する超音波ビーム路程
と次に高くなる屈折角度に相当する超音波ビーム路程と
の路程差から欠陥高さを算出する欠陥高さ算出部36と
で構成されている。
The control section 3 includes a scanner control section 31 for controlling the operation of the scanner 2, an electronic scanning section 32 for controlling the transmission and reception of ultrasonic waves of the array probe 1, and an ultrasonic reception section controlled by the electronic scanning section 32. The data recording unit 33 for recording the waveform and the angle of refraction of the ultrasonic waves transmitted from the array probe 1 into the test object while the scanner 2 is stopped are continuously changed, and reflected within the test object. Refraction angle selecting unit 3 for selecting a refraction angle having a high echo from the waveform data corresponding to each of the refraction angles of the ultrasonic waves, that is, the reflection wave height value of the ultrasonic wave is high.
4 and continuously changing the focal length of the ultrasonic wave transmitted from the array probe 1 into the inspection object at the selected refraction angle,
A focal length calculating unit 35 for calculating a focal length at which the reflected wave height of the ultrasonic wave is increased based on waveform data corresponding to each focal length of the ultrasonic wave reflected in the inspection object; and a defect unit starting from the calculated focal length. The focal depth and refraction angle of the ultrasonic wave are continuously changed along the defect surface, and the refraction that the reflected wave height of the ultrasonic wave in the waveform data corresponding to each refraction angle of the ultrasonic wave reflected on the defect surface becomes high The defect height calculator 36 calculates a defect height from a path difference between an ultrasonic beam path corresponding to an angle and an ultrasonic beam path corresponding to the next higher refraction angle.

【0020】スキャナ制御部31、電子走査部32、デ
ータ収録部33、屈折角度選定部34、焦点距離演算部
35、欠陥高さ算出部36は、それぞれメモリに記憶さ
れたプログラムとプロセッサを有する欠陥高さ測定装置
内蔵のコンピュータで実現できる。
The scanner control unit 31, the electronic scanning unit 32, the data recording unit 33, the refraction angle selection unit 34, the focal length calculation unit 35, and the defect height calculation unit 36 each include a program stored in a memory and a defect having a processor. It can be realized by a computer with a built-in height measuring device.

【0021】図11に、超音波による欠陥高さ測定用ア
レイ探触子の動作原理を示す。アレイ探触子1は、縦
波、横波SV波あるいは横波SH波を発生させる複数の振動
子1aが貼り付けられ、電子走査部5からの遅延制御さ
れた送信パルス群72によって個々の超音波ビーム73
を被検査物内部に入射する。
FIG. 11 shows the principle of operation of an array probe for measuring the height of a defect using ultrasonic waves. The array probe 1 has a plurality of transducers 1 a for generating a longitudinal wave, a transverse wave SV wave or a transverse wave SH wave attached thereto, and each ultrasonic beam is transmitted by a delay-controlled transmission pulse group 72 from the electronic scanning unit 5. 73
Into the object to be inspected.

【0022】個々の超音波ビームは僅かに時間差をもっ
ており、この時間差によって生ずる超音波ビーム群の先
端はA−A’合成され一つの束になった超音波ビーム群
となり、探触子面1bに対して角度をもった超音波ビー
ムが被検査物内部に入射する。また、適切な遅延時間を
与えることで超音波ビームに焦点を持たせることができ
る。このような原理で電子走査部5で与える遅延時間を
制御し任意の屈折角度、任意の焦点深さの超音波を送信
する。また、欠陥等によって反射してきた超音波を受信
する。
Each ultrasonic beam has a slight time difference, and the tip of the ultrasonic beam group generated by this time difference becomes an ultrasonic beam group combined into one bundle by AA ', and is placed on the probe surface 1b. An ultrasonic beam having an angle with respect to the object enters the inspection object. Also, by giving an appropriate delay time, the ultrasonic beam can be focused. Based on such a principle, the delay time given by the electronic scanning unit 5 is controlled to transmit an ultrasonic wave having an arbitrary refraction angle and an arbitrary focal depth. In addition, the ultrasonic wave reflected by a defect or the like is received.

【0023】図2を用いて、図1の欠陥高さ測定装置の
動作を説明する。
The operation of the defect height measuring apparatus shown in FIG. 1 will be described with reference to FIG.

【0024】スキャナ2は、アレイ探触子1を保持し、
制御部3からの制御信号によってアレイ探触子1を探傷
面で機械的に走査する。
The scanner 2 holds the array probe 1,
The array probe 1 is mechanically scanned on the flaw detection surface by a control signal from the control unit 3.

【0025】制御部3は、定められた走査パターンの信
号をスキャナ2に送信しスキャナ2を駆動すると共にス
キャナ2からの位置信号を収録する。また、アレイ探触
子1から発生する超音波ビーム23の屈折角と焦点深さ
を変えるための位相データを作成し、超音波ビーム23
の送受信を行う。また、アレイ探触子1から被検査物2
2に発生する超音波ビーム23の屈折角度を、例えば3
0°から70°まで1°毎に角度を振って探傷を行わせ
る。
The control unit 3 transmits a signal of a predetermined scanning pattern to the scanner 2, drives the scanner 2, and records a position signal from the scanner 2. Further, phase data for changing the refraction angle and the focal depth of the ultrasonic beam 23 generated from the array probe 1 is created, and the ultrasonic beam 23 is generated.
Transmission and reception. In addition, from the array probe 1 to the inspection object 2
The refraction angle of the ultrasonic beam 23 generated in
The flaw detection is performed by changing the angle every 1 ° from 0 ° to 70 °.

【0026】図3は、超音波探傷における超音波ビーム
23の反射波形を示す。横軸は振動子1aから送信され
た送信パルス76を基準としたビーム路程時間、縦軸は
反射されたエコー(反射波)の波高値を示す。データ収
録部33は、図2の欠陥部25からの反射波を屈折角度
毎に屈折角に対する波形データ71として記憶し、屈折
角度選定部34は、欠陥部25で反射する欠陥エコーと
欠陥部25の先端部25bで反射する端部エコーが出現
することが予測される範囲を予め設定し、これを波形処
理範囲75とし、この波形処理範囲75での高いエコー
(反射波)波高値と屈折角との関係から、波高値の高い
屈折角を選定する。好ましくは、最も高い波高値に対す
る屈折角を選定する。
FIG. 3 shows a reflected waveform of the ultrasonic beam 23 in the ultrasonic flaw detection. The horizontal axis indicates the beam path time based on the transmission pulse 76 transmitted from the transducer 1a, and the vertical axis indicates the peak value of the reflected echo (reflected wave). The data recording unit 33 stores the reflected wave from the defective portion 25 in FIG. 2 as waveform data 71 for the refraction angle for each refraction angle, and the refraction angle selection unit 34 detects the defect echo reflected by the defect portion 25 and the defect portion 25. Is set in advance to define a range in which an end echo reflected at the tip portion 25b of the waveform is expected to appear, and this is set as a waveform processing range 75. A high echo (reflected wave) peak value and a refraction angle in the waveform processing range 75 The refraction angle having a high peak value is selected from the relationship with Preferably, the refraction angle for the highest peak value is selected.

【0027】図4は、アレイ探触子1を静止させた位置
で屈折角度を順次変化させたときのの、屈折角度θと反
射波高値との関係を示す。欠陥部25からの反射波高値
41は、欠陥部25のコーナー部25aで最も大きくな
り、この関係からエコー高さが最も高い屈折角θ0が選
定される。
FIG. 4 shows the relationship between the refraction angle θ and the reflected peak value when the refraction angle is sequentially changed at the position where the array probe 1 is stationary. The peak value 41 reflected from the defective portion 25 is the largest at the corner 25a of the defective portion 25, and from this relationship, the refraction angle θ0 having the highest echo height is selected.

【0028】図5は、アレイ探触子1を静止させた位置
で、屈折角をθ0として、焦点距離Sを変えていくとき
の超音波ビームの概念を示す。アレイ探触子1から被検
査物22に入射する超音波ビーム55の焦点距離Sを変
えることで、焦点深さdを変えることができる。例え
ば、本発明の一例として、比較的肉厚の薄い材料に対し
ては、超音波ビームの焦点距離Sを板厚53の1/4から2
/3まで1mm毎に変えて探傷を行うことができる。
FIG. 5 shows the concept of the ultrasonic beam when the focal length S is changed at a position where the array probe 1 is stationary and the refraction angle is θ0. The focal depth d can be changed by changing the focal length S of the ultrasonic beam 55 incident on the inspection object 22 from the array probe 1. For example, as an example of the present invention, for a material having a relatively small thickness, the focal length S of the ultrasonic beam is set to 1/4 to 2 of the plate thickness 53.
Flaw detection can be performed by changing every 1 mm up to / 3.

【0029】図6は、アレイ探触子1を静止させた位置
で、屈折角をθ0として、焦点距離Sを変化させたとき
欠陥部25から反射した反射波高値との関係を示す。焦
点深さdが変わると欠陥部25からの反射波高値が変化
し、焦点距離Sに対する波高値61は欠陥部25のコー
ナー部25aで最も高くなる。焦点距離Sに対する波高
値はデータ収録部33で記憶し、焦点距離演算部35
は、焦点距離Sと欠陥部25から得られる反射波高値と
の関係データ61から高いエコーが得られる焦点距離、
好ましくは最大エコーが得られる焦点距離S0を求め
る。
FIG. 6 shows the relationship between the position of the array probe 1 at rest and the peak value reflected from the defective portion 25 when the focal length S is changed with the refraction angle θ0. When the focal depth d changes, the peak value reflected from the defective portion 25 changes, and the peak value 61 with respect to the focal length S becomes highest at the corner 25a of the defective portion 25. The peak value for the focal length S is stored in the data recording unit 33, and the focal length calculating unit 35
Is the focal length at which a high echo is obtained from the relation data 61 between the focal length S and the reflected peak value obtained from the defective portion 25;
Preferably, the focal length S0 at which the maximum echo is obtained is determined.

【0030】図7は、焦点距離S0を測定開始点とし、
欠陥部25の欠陥面に沿って焦点深さdを変えて探傷を
行う時の超音波ビームの概念を示す。アレイ探触子1か
ら被検査物22に入射した超音波ビーム55は、例え
ば、欠陥が疲労割れのように板厚方向に直角にあること
が予想される場合、欠陥部25の欠陥面に沿って焦点深
さdを変える。
FIG. 7 shows that the focal length S0 is used as a measurement start point,
The concept of an ultrasonic beam when performing flaw detection by changing the focal depth d along the defect surface of the defect portion 25 will be described. The ultrasonic beam 55 incident on the inspected object 22 from the array probe 1 is, for example, along the defect surface of the defect portion 25 when the defect is expected to be perpendicular to the thickness direction such as fatigue cracking. To change the focal depth d.

【0031】図8は、欠陥が疲労割れのように板厚方向
に直角にあることが予想される場合、欠陥面に沿って焦
点深さdを変えたときの焦点距離Sを求める関係を示し
てある。変えるべき焦点距離S1は、焦点深さの変化分
Δd1と焦点距離S0、屈折角度θ1、屈折角度θ0の関係
から、次式(数1)〜(数3)で求められる。
FIG. 8 shows the relationship for obtaining the focal length S when the focal depth d is changed along the defect surface when the defect is expected to be perpendicular to the thickness direction like fatigue cracking. It is. The focal length S1 to be changed is obtained by the following equations (Equation 1) to (Equation 3) from the relationship between the focal depth change Δd1 and the focal length S0, the refraction angle θ1, and the refraction angle θ0.

【0032】[0032]

【数1】 (Equation 1)

【0033】[0033]

【数2】 (Equation 2)

【0034】[0034]

【数3】 (Equation 3)

【0035】図9は、屈折角を変化させた場合の屈折角
度θと波高値の関係を示し、図10は、欠陥高さHを計
算するときの屈折角度θとビーム路程Wとの関係を示
す。屈折角がθ0の時、波高値は最大を示し、その前後
では波高値はなだらかに低下する。屈折角度θが大きく
なり、超音波ビーム55が欠陥部25の先端部25bに
当たると端部エコーが生じ、この屈折角度θ1のときに
波高値が極大値となる。
FIG. 9 shows the relationship between the refraction angle θ and the peak value when the refraction angle is changed. FIG. 10 shows the relationship between the refraction angle θ and the beam path W when calculating the defect height H. Show. When the refraction angle is θ0, the peak value shows the maximum, and before and after that, the peak value gradually decreases. When the angle of refraction θ increases and the ultrasonic beam 55 hits the tip 25b of the defect 25, an end echo occurs, and when the angle of refraction is θ1, the peak value reaches a maximum value.

【0036】データ収録部33では、屈折角度θと波高
値との関係を記憶し、欠陥高さ算出部36は、屈折角度
θとの反射波高値との関係データ91から、屈折角度θ
0に対する波高値92(ビーム路程W0のとき)の直後に
ある極大点、すなわち波高値92の次に高くなる波高値
93を端部エコーとし、端部エコーが得られる屈折角θ
1に相当する波形のビーム路程をW1とし、欠陥高さH
を、次式(数4)から算出する。
The data recording unit 33 stores the relationship between the refraction angle θ and the peak value, and the defect height calculation unit 36 calculates the refraction angle θ from the relationship data 91 between the refraction angle θ and the reflected peak value.
The maximum point immediately after the peak value 92 with respect to 0 (when the beam path is W0), that is, the peak value 93 which becomes the next highest after the peak value 92 is defined as an end echo, and the refraction angle θ at which the end echo is obtained.
The beam path of the waveform corresponding to 1 is W1, and the defect height H
Is calculated from the following equation (Equation 4).

【0037】[0037]

【数4】 (Equation 4)

【0038】このように、欠陥部25の欠陥面に沿って
超音波ビーム55を振り、この時の屈折角度と波高値の
データとから端部エコーを識別し、端部エコーと欠陥エ
コーのビーム路程を基に欠陥高さを演算処理することを
欠陥高さ算出部36が行う。
As described above, the ultrasonic beam 55 is radiated along the defect surface of the defect portion 25, and the end echo is identified from the refraction angle and the peak value data at this time. The defect height calculation unit 36 calculates the defect height based on the path.

【0039】[0039]

【発明の効果】本発明によれば、検査員の熟練性に頼ら
ず、被検査物の欠陥高さを精度良く簡単に測定すること
ができるので、検査の能率向上及び信頼性向上を図るこ
とができる。
According to the present invention, the defect height of the inspected object can be easily and accurately measured without relying on the skill of the inspector, thereby improving the efficiency and reliability of the inspection. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態例に係る超音波による欠
陥高さ測定装置の機能構成を示すブロック図である。
FIG. 1 is a block diagram showing a functional configuration of a defect height measuring device using ultrasonic waves according to an embodiment of the present invention.

【図2】図1の欠陥高さ測定装置の動作を説明する図で
ある。
FIG. 2 is a diagram for explaining the operation of the defect height measuring device of FIG.

【図3】超音波探傷における超音波ビーム23の反射波
形を示す図である。
FIG. 3 is a diagram showing a reflected waveform of an ultrasonic beam 23 in ultrasonic inspection.

【図4】屈折角度と反射波高値との関係を示す図であ
る。
FIG. 4 is a diagram illustrating a relationship between a refraction angle and a reflected wave peak value.

【図5】焦点距離Sを変えていくときの超音波ビームの
概念を示す図である。
FIG. 5 is a diagram showing a concept of an ultrasonic beam when changing a focal length S.

【図6】焦点距離Sと欠陥部から反射した反射波高値と
の関係を示す図である。
FIG. 6 is a diagram showing a relationship between a focal length S and a peak value reflected from a defective portion.

【図7】欠陥部の欠陥面に沿って焦点深さdを変えて探
傷を行う時の超音波ビームの概念を示す図である。
FIG. 7 is a diagram showing the concept of an ultrasonic beam when performing flaw detection by changing the depth of focus d along the defect surface of the defect part.

【図8】欠陥面に沿って焦点深さdを変えたときの焦点
距離Sを求める関係を示す図である。
FIG. 8 is a diagram showing a relationship for obtaining a focal length S when a focal depth d is changed along a defect surface.

【図9】屈折角度と反射波高値との関係を示す図であ
る。
FIG. 9 is a diagram illustrating a relationship between a refraction angle and a reflected wave peak value.

【図10】欠陥高さHを計算するときの屈折角度θとビ
ーム路程Wとの関係を示す図である。
FIG. 10 is a diagram showing a relationship between a refraction angle θ and a beam path W when calculating a defect height H.

【図11】超音波による欠陥高さ測定用アレイ探触子の
動作原理を示す図である。
FIG. 11 is a diagram illustrating an operation principle of an array probe for measuring a defect height using ultrasonic waves.

【符号の説明】[Explanation of symbols]

1…アレイ探触子、2…スキャナ、3…制御部、31…
スキャナ制御部、32…電子走査部、33…データ収録
部、34…屈折角度選定部、35…焦点距離演算部、3
6…欠陥高さ算出部、4…表示部、22…被検査物、2
3…超音波ビーム、25…欠陥部、71…超音波波形、
72…超音波送信パルス群、73…超音波ビーム波面、
75…波形処理範囲、76…送信パルス
DESCRIPTION OF SYMBOLS 1 ... Array probe, 2 ... Scanner, 3 ... Control part, 31 ...
Scanner control unit, 32: electronic scanning unit, 33: data recording unit, 34: refraction angle selection unit, 35: focal length calculation unit, 3
6: Defect height calculation unit, 4: Display unit, 22: Inspection object, 2
3: Ultrasonic beam, 25: Defect part, 71: Ultrasonic waveform,
72 ... Ultrasonic transmission pulse group, 73 ... Ultrasonic beam wavefront,
75: Waveform processing range, 76: Transmission pulse

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F068 AA02 AA22 AA49 BB09 CC00 FF12 GG01 HH01 HH02 JJ02 JJ11 KK13 LL04 PP08 QQ22 2G047 AB01 AB07 AC02 BB02 BC10 BC11 DB02 EA10 GB02 GF17 GF18 GF22 GF31  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F068 AA02 AA22 AA49 BB09 CC00 FF12 GG01 HH01 HH02 JJ02 JJ11 KK13 LL04 PP08 QQ22 2G047 AB01 AB07 AC02 BB02 BC10 BC11 DB02 EA10 GB02 GF17 GF18 GF22 GF31

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被検査物に向け超音波を発信し、前記被検
査物から反射してきた前記超音波を受信するアレイ探触
子と、前記アレイ探触子を制御して前記被検査物の欠陥
部を探傷し前記欠陥部の欠陥高さを測定する制御部とを
有する超音波による欠陥高さ測定装置において、 前記制御部は、前記アレイ探触子から発信される前記超
音波の被検査物内への屈折角度を連続的に変化させ、前
記被検査物内で反射した前記超音波の前記各屈折角度に
対応する波形データの中から前記超音波の反射波高値が
高い屈折角度を選定する屈折角度選定部と、前記選定し
た屈折角度で前記アレイ探触子から発信される前記超音
波の被検査物内への焦点距離を連続的に変化させ、前記
被検査物内で反射した前記超音波の前記各焦点距離に対
応する波形データに基づき前記超音波の反射波高値が高
くなる焦点距離を演算する焦点距離演算部と、前記演算
した焦点距離を始点とし前記欠陥部の欠陥面に沿って前
記超音波の焦点深さと前記屈折角度を連続的に変化さ
せ、前記欠陥面で反射した前記超音波の前記各屈折角度
に対応する波形データの中の前記超音波の反射波高値が
高くなる屈折角度に相当する超音波ビーム路程と次に高
くなる屈折角度に相当する音波ビーム路程との路程差か
ら前記欠陥高さを算出する欠陥高さ算出部とを有するこ
とを特徴とする超音波による欠陥高さ測定装置。
An array probe for transmitting ultrasonic waves toward the object to be inspected and receiving the ultrasonic waves reflected from the object to be inspected; An ultrasonic defect height measuring device having a control unit for detecting a defect portion and measuring a defect height of the defect portion, wherein the control unit inspects the ultrasonic wave transmitted from the array probe The refraction angle into the object is continuously changed, and the refraction angle at which the reflected wave peak value of the ultrasonic wave is high is selected from the waveform data corresponding to the respective refraction angles of the ultrasonic wave reflected in the inspection object. The refraction angle selection unit, and the focal length of the ultrasonic wave transmitted from the array probe into the test object at the selected refraction angle is continuously changed, and the ultrasonic beam reflected in the test object is reflected. Based on the waveform data corresponding to each focal length of the ultrasonic wave, A focal length calculating unit that calculates a focal length at which the reflected wave peak value of the ultrasonic wave becomes higher, and the focal depth and the refraction angle of the ultrasonic wave along the defect surface of the defect part with the calculated focal length as a starting point. Continuously changing, the ultrasonic beam path corresponding to the refraction angle at which the reflected wave peak value of the ultrasonic wave in the waveform data corresponding to each refraction angle of the ultrasonic wave reflected at the defect surface becomes high, and then A defect height calculation unit for calculating the defect height from a path difference from a sound beam path corresponding to an increased refraction angle.
【請求項2】アレイ探触子から被検査物に向け超音波を
発信し、前記被検査物から反射してきた超音波の波形デ
ータに基づき前記被検査物の欠陥部を探傷し前記欠陥部
の欠陥高さを測定する超音波による欠陥高さ測定方法に
おいて、 前記アレイ探触子から発信される前記超音波の被検査物
内への屈折角度を連続的に変化させ、前記被検査物内で
反射した前記超音波の前記各屈折角度に対応する波形デ
ータの中から前記超音波の反射波高値が高い屈折角度を
選定し、次に前記選定した屈折角度で前記アレイ探触子
から発信される前記超音波の被検査物内への焦点距離を
連続的に変化させ、前記被検査物内で反射した前記超音
波の前記各焦点距離に対応する波形データに基づき前記
超音波の反射波高値が高くなる焦点距離を演算し、次に
演算した焦点距離を始点とし前記欠陥部の欠陥面に沿っ
て前記超音波の焦点深さと前記屈折角度を連続的に変化
させ、前記欠陥面で反射した前記超音波の前記各屈折角
度に対応する波形データの中の前記超音波の反射波高値
が高くなる屈折角度に相当する超音波ビーム路程と次に
高くなる屈折角度に相当する超音波ビーム路程との路程
差から前記欠陥高さを算出するすることを特徴とする超
音波による欠陥高さ測定方法。
2. An ultrasonic wave is transmitted from an array probe toward an object to be inspected, and a defect of the object is inspected based on waveform data of the ultrasonic wave reflected from the object to be inspected. In the defect height measuring method using ultrasonic waves for measuring the defect height, the refraction angle of the ultrasonic waves emitted from the array probe into the object to be inspected is continuously changed, and From the waveform data corresponding to the respective refraction angles of the reflected ultrasonic wave, a refraction angle at which the reflected wave height of the ultrasonic wave is high is selected, and then transmitted from the array probe at the selected refraction angle. The focal length of the ultrasonic wave into the inspection object is continuously changed, and the reflected wave height value of the ultrasonic wave is based on waveform data corresponding to each of the focal lengths of the ultrasonic wave reflected in the inspection object. Calculate the focal length to be higher, then calculate Waveform data corresponding to each of the refraction angles of the ultrasonic wave reflected on the defect surface while continuously changing the focal depth and the refraction angle of the ultrasonic wave along the defect surface of the defect portion with the focal length as a starting point. Calculating the defect height from the path difference between the ultrasonic beam path corresponding to the refraction angle at which the reflected wave height of the ultrasonic wave becomes higher and the ultrasonic beam path corresponding to the next higher refraction angle. A method for measuring the height of a defect using ultrasonic waves.
JP19888099A 1999-07-13 1999-07-13 Ultrasonic defect height measuring device and defect height measuring method Expired - Fee Related JP3535417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19888099A JP3535417B2 (en) 1999-07-13 1999-07-13 Ultrasonic defect height measuring device and defect height measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19888099A JP3535417B2 (en) 1999-07-13 1999-07-13 Ultrasonic defect height measuring device and defect height measuring method

Publications (2)

Publication Number Publication Date
JP2001027630A true JP2001027630A (en) 2001-01-30
JP3535417B2 JP3535417B2 (en) 2004-06-07

Family

ID=16398469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19888099A Expired - Fee Related JP3535417B2 (en) 1999-07-13 1999-07-13 Ultrasonic defect height measuring device and defect height measuring method

Country Status (1)

Country Link
JP (1) JP3535417B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333497A (en) * 2003-04-30 2004-11-25 General Electric Co <Ge> Ultrasonic inspection method
JP2008139325A (en) * 2008-01-16 2008-06-19 Toshiba Corp Ultrasonic flaw detector
JP2012022013A (en) * 2005-04-01 2012-02-02 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2013088240A (en) * 2011-10-17 2013-05-13 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method, ultrasonic testing method and ultrasonic inspection apparatus
JP2013156166A (en) * 2012-01-30 2013-08-15 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection method
CN106289121A (en) * 2016-07-18 2017-01-04 中国石油大学(华东) A kind of computational methods of reducer pipe equivalence pipe range

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075477A1 (en) * 2006-12-18 2008-06-26 Chiyoda Technol Corporation Method of inspecting metal drum and apparatus therefor
JP4963087B2 (en) * 2006-12-18 2012-06-27 株式会社千代田テクノル Drum can inspection method and apparatus
JP5455293B2 (en) * 2007-07-19 2014-03-26 青山 元章 Drum inspection device
CN102847287B (en) * 2012-09-05 2014-12-17 河南理工大学 Basketball training device
CN106195648B (en) * 2016-07-18 2018-12-07 中国石油大学(华东) A kind of experimental test procedures of the equivalent pipe range of reducer pipe

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333497A (en) * 2003-04-30 2004-11-25 General Electric Co <Ge> Ultrasonic inspection method
JP4542814B2 (en) * 2003-04-30 2010-09-15 ゼネラル・エレクトリック・カンパニイ Ultrasonic inspection method
JP2012022013A (en) * 2005-04-01 2012-02-02 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2008139325A (en) * 2008-01-16 2008-06-19 Toshiba Corp Ultrasonic flaw detector
JP4602421B2 (en) * 2008-01-16 2010-12-22 株式会社東芝 Ultrasonic flaw detector
JP2013088240A (en) * 2011-10-17 2013-05-13 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method, ultrasonic testing method and ultrasonic inspection apparatus
US9423380B2 (en) 2011-10-17 2016-08-23 Hitachi, Ltd. Ultrasonic inspection method, ultrasonic test method and ultrasonic inspection apparatus
JP2013156166A (en) * 2012-01-30 2013-08-15 Mitsubishi Heavy Ind Ltd Ultrasonic flaw detection method
CN106289121A (en) * 2016-07-18 2017-01-04 中国石油大学(华东) A kind of computational methods of reducer pipe equivalence pipe range
CN106289121B (en) * 2016-07-18 2018-10-02 中国石油大学(华东) A kind of computational methods of the equivalent pipe range of reducer pipe

Also Published As

Publication number Publication date
JP3535417B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
US7369250B2 (en) System and method to inspect components having non-parallel surfaces
JP4785151B2 (en) Ultrasonic flaw detection apparatus and method
US5497662A (en) Method and apparatus for measuring and controlling refracted angle of ultrasonic waves
US7010982B2 (en) Method of ultrasonically inspecting airfoils
CA2496370C (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
US9423380B2 (en) Ultrasonic inspection method, ultrasonic test method and ultrasonic inspection apparatus
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
JP2009540311A (en) Ultrasonic testing equipment with array probe
JP3535417B2 (en) Ultrasonic defect height measuring device and defect height measuring method
KR101163549B1 (en) Calibration block for phased-array ultrasonic inspection
JP2011027571A (en) Piping thickness reduction inspection apparatus and piping thickness reduction inspection method
JP2014077708A (en) Inspection device and inspection method
JP5738684B2 (en) Ultrasonic flaw detection test method, ultrasonic flaw detection test apparatus and ultrasonic flaw detection test program incorporating surface shape identification processing of ultrasonic flaw detection test specimen
JP4112526B2 (en) Ultrasonic flaw detection method and apparatus
JP2016511413A (en) Ultrasonic inspection of parts whose surface shape is unknown
JP2011529170A (en) Improved ultrasonic non-destructive inspection using coupling check
JP2004077292A (en) Method and device for inspecting stress corrosion cracking
KR100485450B1 (en) Ultrasonic testing apparatus and control method therefor
JP2002214204A (en) Ultrasonic flaw detector and method using the same
KR20100124238A (en) Calibration block (reference block) and calibration procedure for phased-array ultrasonic inspection
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
RU2397489C1 (en) Ultrasonic flaw detection device and ultrasonic flaw detection method
JP3497984B2 (en) Ultrasonic flaw detector
JP5672674B2 (en) Ultrasonic imaging method and ultrasonic imaging apparatus
JP5123644B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees