JPH0365608A - Method and apparatus for measuring thickness of scale in piping - Google Patents

Method and apparatus for measuring thickness of scale in piping

Info

Publication number
JPH0365608A
JPH0365608A JP20090689A JP20090689A JPH0365608A JP H0365608 A JPH0365608 A JP H0365608A JP 20090689 A JP20090689 A JP 20090689A JP 20090689 A JP20090689 A JP 20090689A JP H0365608 A JPH0365608 A JP H0365608A
Authority
JP
Japan
Prior art keywords
scale
ultrasonic
thickness
piping
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20090689A
Other languages
Japanese (ja)
Inventor
Tetsuo Oshima
大嶋 哲夫
Hiroshi Yoneyama
米山 弘志
Tsutomu Kawashima
勉 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP20090689A priority Critical patent/JPH0365608A/en
Publication of JPH0365608A publication Critical patent/JPH0365608A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable accurate measurement of the thickness of a scale even when the thickness is small, by conducting an operation by a prescribed formula on the basis of a frequency interval and a velocity of sound transmitted through the metal material of a piping. CONSTITUTION:An ultrasonic contactor 3 is brought into contact with the outer periphery 1' of a piping 1 and an ultrasonic wave 11 is transmitted in the direction intersecting the axial line l of the piping 1 perpendicularly. Then, a boundary part ultrasonic echo 13 and an inner-peripheral part ultrasonic echo 15 generated by reflection on the boundary 12 between the piping 1 and a scale 2 and on an inner periphery 14 respectively are sent to a frequency analyzer 7 through a gate circuit 5. In the analyzer 7, a frequency interval DELTAf between energy peak parts 20 generated by the interference of the boundary part ultrasonic echo 13 with the inner-peripheral part ultrasonic echo 15 is determined. Next, the frequency interval DELTAf is inputted to an arithmetic unit 8, and the thickness of the scale 2 can be determined exactly from a preset velocity C of sound transmitted through a metal material and the frequency interval DELTAf between the energy peak parts 20 by a formula C/2DELTAf.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は配管内のスケール厚さ計測方法及び装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for measuring scale thickness in piping.

[従来の技術] ボイラでは、経年劣化により炉壁管や過熱管等の管内に
スケールが付着する。このため管外から管内への熱伝達
が阻害され、管内流体に対する成熱不良によって管温度
が上昇し、管が破損する虞れがある。
[Background Art] In a boiler, scale adheres to the inside of tubes such as a furnace wall tube and a superheating tube due to aging deterioration. For this reason, heat transfer from the outside of the tube to the inside of the tube is inhibited, and the tube temperature increases due to insufficient heat formation for the fluid inside the tube, which may lead to damage to the tube.

そこで、従来は定検時に、管の一部を切取り、スケール
の付着傾向を顕微鏡検査で凋べ、スケールが許容量を越
えている場合には、管内を酸洗し、スケール除去を行っ
ていた。
Therefore, conventionally, during periodic inspections, a part of the pipe was cut out and the tendency of scale adhesion was examined using a microscope. If the scale exceeded the allowable amount, the inside of the pipe was washed with acid to remove the scale. .

ところが、上述のように、スケール付着状況を調べるた
めに管の一部を切取った場合には、その部分を修復する
必要があった。
However, as mentioned above, when a part of the pipe was cut out to examine the scale adhesion, it was necessary to repair that part.

このため、管を切取らず、スケールの厚さを非破壊で計
測する方法として、第4図及び第5図に示すごとく、超
音波探触子3を配管lの外周1°に当て、超音波送受信
器から送信された超音波11を超音波探触子3から配管
1の軸線lに対して交叉する方向へ発信させ、配管iの
内周12°と該内周12°に付着したスケール2との境
界12から反射して戻って来た境界部超音波エコー13
及びスケール2内周14から反射して戻って来た内周部
超音波エコー15を超音波送受信器で受信し、画題音波
エコー13.15が送受信器に受信される際の時間差A
tを求め、この時間差Atを基に、スケールの厚さdS
を d、−Jt−C/2     ・(1)により求めるこ
とが考えられる。ただし、Cは配管金属中を伝わる音速
である。
Therefore, as a non-destructive method to measure the scale thickness without cutting the pipe, as shown in Figs. The ultrasonic wave 11 transmitted from the sonic transmitter/receiver is transmitted from the ultrasonic probe 3 in a direction intersecting the axis l of the pipe 1, and the scale attached to the inner circumference 12° of the pipe i and the inner circumference 12° are transmitted. Boundary ultrasonic echo 13 reflected back from the boundary 12 with 2
and the time difference A when the inner circumference ultrasonic echo 15 reflected and returned from the inner circumference 14 of the scale 2 is received by the ultrasonic transceiver, and the image sound wave echo 13.15 is received by the transceiver.
t, and based on this time difference At, scale thickness dS
It is conceivable to obtain d, -Jt-C/2 (1). However, C is the speed of sound transmitted through the metal pipe.

[発明が解決しようとする課題] しかるに、上記計測方法では、スケール2の厚さが厚く
、時間差Atがあり、第6図に示すように、超音波送受
信器により受信された超音波エコー1B中の境界部超音
波エコー13と内周部超音波エコー15とを明確に区別
できる場合は計測可能であるが、スケール2の厚さが薄
く、時間差Atが小さい場合には、境界部超音波エコー
13と内周部超音波エコー15が重なって重畳波形とな
り両者を区別することができず、計測が不可能である。
[Problems to be Solved by the Invention] However, in the above measurement method, the scale 2 is thick and there is a time difference At, and as shown in FIG. If the boundary ultrasound echo 13 and the inner circumferential ultrasound echo 15 can be clearly distinguished, measurement is possible, but if the scale 2 is thin and the time difference At is small, the boundary ultrasound echo 13 and the inner circumference ultrasound echo 15 can be clearly distinguished. 13 and the inner circumferential ultrasonic echo 15 overlap to form a superimposed waveform, making it impossible to distinguish between the two and making measurement impossible.

すなわち、上記計測方法ではスケール2の厚さが500
μ以上であれば計測可能であるが、それ以下の場合は計
測することはできない。なお第6図中tは超音波送信波
21が超音波送受信器から発信された後戻射し、境界部
超音波エコー13として超音波送受信器に受信されるま
での時間である。
That is, in the above measurement method, the thickness of scale 2 is 500 mm.
If it is more than μ, it can be measured, but if it is less than that, it cannot be measured. Note that t in FIG. 6 is the time from when the ultrasonic transmission wave 21 is emitted from the ultrasonic transceiver until it is returned and received by the ultrasonic transceiver as the boundary ultrasonic echo 13.

一方、大形ボイラは、配管l内を流れる蒸気は高温、高
圧であるためスケール厚さ管理についても厳しい管理が
要求され、100g1程度の厚さを計測できなければ意
味がなく、従って上記計測方法を大形ボイラに適用する
のは難しく、仮に適用してもスケール厚さを正確に求め
ることはできない。
On the other hand, in large boilers, the steam flowing through the piping is at high temperature and high pressure, so strict management of scale thickness is required, and there is no point in measuring the thickness of about 100g1.Therefore, the above measurement method is meaningless. It is difficult to apply this method to large boilers, and even if it were applied, it would not be possible to accurately determine the scale thickness.

本発明は、上述の実情に鑑み、スケールの厚さが薄い場
合にも、その厚さを正確に計測し得るようにすることを
目的としてなしたものである。
In view of the above-mentioned circumstances, the present invention has been made with the object of making it possible to accurately measure the thickness of the scale even when the thickness is thin.

[本発明の原理] 先ず本発明の原理を第2図及び13図により説明する。[Principle of the present invention] First, the principle of the present invention will be explained with reference to FIGS. 2 and 13.

すなわち、音源Aから発信された音波18.19は反射
体17にぶつかり反射するが、反射した超音波散乱波t
g’、t9°は波として広がり、互に干渉し合う。今音
波の波長をλとし、反射体17の傾きをθ、BC間の間
隔をdとすれば、音波の法則から 2d@sinθ−nλ   ・・・■ λ−C/f         ・・・(至)が成立する
。ここでnは整数、fは周波数、Cは配管金属中を伝わ
る音速である。
That is, the sound waves 18 and 19 emitted from the sound source A collide with the reflector 17 and are reflected, but the reflected ultrasound scattered waves t
g' and t9° spread as waves and interfere with each other. Now, if the wavelength of the sound wave is λ, the inclination of the reflector 17 is θ, and the interval between BC is d, then from the law of sound waves, 2d@sinθ-nλ...■ λ-C/f...(towards) holds true. Here, n is an integer, f is the frequency, and C is the speed of sound that travels through the metal pipe.

0式をOi)式に入れて整理すると、超音波散乱波18
′、19°の干渉によりエネルギピークが生じる周波数
fnは fyl −nC/2 d * s i nθ−fheに
より表わされ、干渉により生じた土ネルギビーク部20
間の周波数間隔Jfは ΔfMfn−fn−。
If we put the equation 0 into the equation Oi) and rearrange it, we get the ultrasound scattered wave 18
', the frequency fn at which an energy peak occurs due to interference at 19° is expressed by fyl - nC/2 d * sin θ - fhe,
The frequency interval Jf between is ΔfMfn−fn−.

−C/2d−sinθ −(V) となる。-C/2d-sinθ-(V) becomes.

スケール2の厚さを計測する場合、θ−90″であるか
ら、(V)式は d−C/2Δf       ・・・0Dとなる。但し
Δf≠0とする。
When measuring the thickness of the scale 2, since it is θ-90'', the equation (V) becomes d-C/2Δf...0D. However, it is assumed that Δf≠0.

従って、干渉縞の場合と同様の考え方で音波の干渉によ
り生じるエネルギビーク部20の周波数間隔Δfを求め
れば、スケールの厚さdを計測することができる。
Therefore, the thickness d of the scale can be measured by finding the frequency interval Δf of the energy beak portion 20 caused by the interference of sound waves using the same concept as in the case of interference fringes.

[課題を解決するための手段] 本発明方法は、配管外周に接触させた超音波探触子から
配管軸線に対して直交する方向へ向けて超音波を発信さ
せ、配管内周と該内周に付着したスケールとの境界にお
いて反射した境界部超音波エコー及び前記スケール内周
において反射した内周部超音波エコーが干渉して生じる
エネルギピーク部の周波数から、エネルギピーク部間の
周波数間隔を求め、該周波数間隔と、配管金属材料中を
伝わる音速からC/2At(ただし、Δfは周波数間隔
、Cは配管金属材料中を伝わる音速である)によりスケ
ールの厚さを求めるものであり、本発明装置は、配管軸
線に対して直交する方向へ超音波を発信させる超音波探
触子と、該超音波探触子へ超音波を送信すると共に配管
内周と該内周に付着したスケールとの境界において反射
した境界部超音波エコー及び前記スケール内周において
反射した内周部超音波エコーを受信する超音波送受信器
と、該超音波送受信器から入力された両超音波エコーを
周波数分析すると共に両超音波エコーの干渉により生じ
たエネルギピーク部間の周波数間隔を求める周波数分析
器と、該周波数分析器で得られた前記エネルギビーク部
の周波数間隔及び配管金属中を伝わる音速からスケール
の厚さを求める演算器を設けたものである。
[Means for Solving the Problems] The method of the present invention transmits ultrasonic waves from an ultrasonic probe brought into contact with the outer periphery of a pipe in a direction perpendicular to the axis of the pipe, and Calculate the frequency interval between the energy peak parts from the frequency of the energy peak part caused by interference between the boundary ultrasound echo reflected at the boundary with the scale attached to the scale and the inner periphery ultrasound echo reflected at the inner periphery of the scale. , the thickness of the scale is determined by C/2At from the frequency interval and the sound speed transmitted through the pipe metal material (where Δf is the frequency interval and C is the sound speed transmitted through the pipe metal material), and the present invention The device includes an ultrasonic probe that emits ultrasonic waves in a direction perpendicular to the axis of the pipe, and a probe that transmits the ultrasonic waves to the ultrasonic probe and detects the inner circumference of the pipe and the scale attached to the inner circumference. an ultrasonic transmitter/receiver that receives boundary ultrasonic echoes reflected at the boundary and inner circumferential ultrasonic echoes reflected at the inner periphery of the scale, and frequency-analyzes both ultrasonic echoes input from the ultrasonic transceiver; A frequency analyzer that calculates the frequency interval between the energy peak parts caused by the interference of both ultrasonic echoes, and the scale thickness from the frequency interval of the energy peak parts obtained by the frequency analyzer and the speed of sound that travels through the pipe metal. It is equipped with a computing unit that calculates .

[作   用] 超音波探触子から発信された超音波は配管内周とスケー
ルとの境界で反射すると共にスケール内周で反射し、反
射して戻って来た境界部超音波エコー及び内周部超音波
エコーは周波数分析されると共に両超音波エコーが干渉
して生じるエネルギピークの周波数から該エネルギビー
ク部の周波数間隔が求められ、該周波数間隔と配管金属
中を伝わる音速からスケールの厚さが求められる。スケ
ールの厚さは周波数間隔をΔf、配管金属材料中を伝わ
る音速をCとすると、C/2Δfにより演算される。
[Function] The ultrasonic waves emitted from the ultrasonic probe are reflected at the boundary between the inner circumference of the pipe and the scale, and are also reflected at the inner circumference of the scale. The frequency of the ultrasonic echo is analyzed, and the frequency interval of the energy peak is determined from the frequency of the energy peak caused by interference between the two ultrasonic echoes.The thickness of the scale is determined from the frequency interval and the speed of sound traveling through the pipe metal. is required. The thickness of the scale is calculated by C/2Δf, where Δf is the frequency interval and C is the speed of sound transmitted through the pipe metal material.

[実 施 例] 以下、本発明の実施例を添付図面を参照しつつ説明する
[Example] Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の一実施例で、図中lは内周12°にス
ケール2の付着したボイラ配管等の配管、3は配管l外
周l°に当接させ、超音波11を配管lの軸線!に対し
て交叉する方向へ向けて発信する超音波探触子、4は超
音波探触子3へ超音波を送信すると共に、配管lの内周
12’と内周12’に付着したスケール2との境界12
から反射して戻って来た境界部超音波エコー13及びス
ケール2内周14から反射して戻って来た内周部超音波
エコー15を受信する超音波送受信器、5は超音波送受
信器4からの両超音波エコー13゜15が通過し得るよ
うにしたゲート回路、6はゲート回路5からアナログ信
号として与えられた両超音波エコー13.15をディジ
タル信号に変えるA/D変換器、7はA/D変換器6か
らのディジタル信号化した両超音波エコー13.15を
周波数分析すると共に両超音波エコー13.15が干渉
することにより生じるエネルギピーク部20(1@3図
参照)の周波数間隔Δfを求める周波数分析器、8は周
波数分析器7で分析して得られたエネルギピーク部20
の周波数間隔Δfと予め入力されている配管金属中を伝
わる音速Cから9D式に従いスケール2の厚さdを求め
る演算器、9は求められたスケール2の厚さdを表示す
るブラウン管等の表示装置、lOは計測したスケール2
の厚さdを必要に応じ記録する記録装置である。
FIG. 1 shows an embodiment of the present invention. In the figure, 1 is a pipe such as a boiler pipe with scale 2 attached on the inner circumference 12°, 3 is a pipe 1 in contact with the outer periphery 1°, and an ultrasonic wave 11 is applied to the pipe 1. axis line! An ultrasonic probe 4 transmits ultrasonic waves to the ultrasonic probe 3 in a direction crossing the inner circumference 12' of the pipe l and the scale 2 attached to the inner circumference 12'. boundary with 12
An ultrasonic transceiver 5 receives the boundary ultrasonic echo 13 reflected from and returned from the scale 2 and the inner circumferential ultrasonic echo 15 reflected from the inner periphery 14 of the scale 2; 6 is an A/D converter that converts both ultrasonic echoes 13.15 given as analog signals from the gate circuit 5 into digital signals; 7 analyzes the frequency of both ultrasonic echoes 13.15 converted into digital signals from the A/D converter 6, and calculates the energy peak portion 20 (see Figure 1 @ 3) caused by interference between both ultrasonic echoes 13.15. A frequency analyzer for determining the frequency interval Δf; 8 is an energy peak portion 20 obtained by analysis by the frequency analyzer 7;
A calculator that calculates the thickness d of the scale 2 according to the 9D formula from the frequency interval Δf and the sound speed C transmitted through the pipe metal, which has been input in advance, and 9 is a display on a cathode ray tube or the like that displays the calculated thickness d of the scale 2. Apparatus, lO is measured scale 2
This is a recording device that records the thickness d of .

配管l内周12゛に付着したスケール2の厚さdを計測
する場合には、超音波探触子3を配管l外周l°に当接
させ、超音波送受信器4から送給された超音波11を配
管1の軸線Iに対し直交する方向へ向け、発信させる。
When measuring the thickness d of the scale 2 attached to the inner circumference 12゛ of the pipe l, the ultrasonic probe 3 is brought into contact with the outer circumference l° of the pipe l, and the The sound waves 11 are directed and emitted in a direction perpendicular to the axis I of the pipe 1.

発信された超音波11は、一部は配管lとスケール2の
境界12で反射し、又他はスケール2の内周14で反射
し、反射により生じた境界部超音波エコーI3及び内周
部超音波エコー15は分離波形又は重畳波形をした超音
波エコーとして超音波探触子3から超音波送受信器4へ
戻され、超音波送受信器4からゲート回路5へ入力され
、ゲート回路5へ入力された超音波エコー13.15は
ゲート回路5から出力されて周波数分析器7へ送られる
A portion of the emitted ultrasonic wave 11 is reflected at the boundary 12 between the pipe 1 and the scale 2, and the other part is reflected at the inner circumference 14 of the scale 2, and the ultrasonic wave echo I3 at the boundary and the inner circumference generated by the reflection is The ultrasonic echo 15 is returned from the ultrasonic probe 3 to the ultrasonic transceiver 4 as an ultrasonic echo having a separated waveform or a superimposed waveform, and is input from the ultrasonic transceiver 4 to the gate circuit 5, and then input to the gate circuit 5. The ultrasonic echoes 13 and 15 thus obtained are outputted from the gate circuit 5 and sent to the frequency analyzer 7.

周波数分析器7では、超音波エコーが細かい周波数帯域
に分けられると共に各周波数帯域に対応したエネルギが
求められ、その結果から、境界部超音波エコー13と内
周部超音波エコー15が干渉することにより生じたエネ
ルギビーク部20間の周波数間隔Δfが求められる(第
3図参照)。
The frequency analyzer 7 divides the ultrasonic echo into fine frequency bands and determines the energy corresponding to each frequency band. From the results, it is determined that the boundary ultrasonic echo 13 and the inner circumferential ultrasonic echo 15 interfere. The frequency interval Δf between the energy peak portions 20 caused by this is determined (see FIG. 3).

エネルギビーク部20間の周波数間隔Atは演算器8へ
入力され、該演算器8では、予め設定された金属材料中
を伝わる音速Cとエネルギビーク部20間の周波数間隔
Δfから、0D式によりスケール2の厚さdが求められ
、求められた厚さdは必要に応じて表示装置9に表示さ
れ、或いは記録装置10に記録される。
The frequency interval At between the energy beak parts 20 is input to the calculator 8, and the calculator 8 scales the frequency interval Δf between the energy beak parts 20 and the preset sound speed C through the metal material using the 0D formula. The thickness d of 2 is determined, and the determined thickness d is displayed on the display device 9 or recorded on the recording device 10 as necessary.

エネルギビーク部20間の周波数間隔Δfは、境界部超
音波エコー13及び内周部超音波エコー15が超音波送
受信器4へ戻るまでの画題音波エコー13.15の時間
差とは関係なく求めることができるため、スケール2の
厚さdが薄い場合でもその計測を正確に行うことが可能
となる。
The frequency interval Δf between the energy beak parts 20 can be determined regardless of the time difference between the image sound wave echoes 13 and 15 until the boundary ultrasonic echo 13 and the inner circumferential ultrasonic echo 15 return to the ultrasonic transceiver 4. Therefore, even if the thickness d of the scale 2 is small, it is possible to accurately measure the thickness d.

又、成る周波数帯域間で求めたエネルギピーク部20間
の周波数間隔/Ifが他の周波数帯域間で求めた周波数
間隔Δfと異なる場合は、得られた複数の周波数間隔Δ
fを算術平均して、周波数帯域Δfを求めるようにする
In addition, if the frequency interval/If between the energy peak parts 20 determined between the frequency bands is different from the frequency interval Δf determined between other frequency bands, the obtained frequency intervals Δ
The frequency band Δf is determined by taking the arithmetic mean of f.

なお、本発明の実施例においては、ボイラ配管内のスケ
ールを計測する場合について説明したが、ボイラ配管に
限らず種々の配管に付着したスケールの計測に適用でき
ること、その他、本発明の要旨を逸脱しない範囲内で種
々変更を加え得ること、等は勿論である。
In the embodiments of the present invention, a case has been described in which scale within boiler piping is measured, but the present invention is applicable not only to boiler piping but also to measurement of scale attached to various types of piping. Of course, various changes may be made within the scope.

[発明の効果] 本発明の配管内のスケール厚さ計測方法及び装置によれ
ば、配管内に付着したスケールの厚さが薄い場合でも、
該厚さを正確に求めることができ、又配管を切取る必要
がないため検査期間の短縮、検査費用の削減を図ること
ができる、等種々の優れた効果を奏し得る。
[Effects of the Invention] According to the method and apparatus for measuring the scale thickness in piping of the present invention, even when the thickness of scale attached to the piping is thin,
The thickness can be determined accurately, and since there is no need to cut out the piping, various excellent effects can be achieved, such as shortening the inspection period and reducing inspection costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の配管内のスケール厚さ計測方法及び装
置の一実施例の系統図、第2図は本発明の詳細な説明す
るための概念図、第3図は本発明の原理に従い超音波エ
コーのエネルギピーク部間の周波数間隔を表わすグラフ
、第4図は配管を切取らないでスケールの厚さを計測す
る場合に一般的に考えられる方法を説明するための正面
図、第5図は同一般的に考えられる方法において超音波
の反射を説明するための概念図、第6図は同一般的に考
えられる方法において発信された超音波が配管内周とス
ケールとの境界及びスケール内周で反射して戻って来る
ときの状態を示す超音波波形の図である。 図中1は配管、1゛は外周、2はスケール、3は超音波
探触子、4は超音波送受信器、7は周波数分析器、8は
演算器、11は超音波、12は境界、12゛は内周、1
3は境界部超音波エコー、14は内周、15は内周部超
音波エコー、20はエネルギピーク部、fは周波数、Δ
fはエネルギピーク部間の周波数間隔、Cは配管金属中
を伝わる音速、dは厚さ、lは軸線を示す。
Fig. 1 is a system diagram of an embodiment of the method and apparatus for measuring scale thickness in piping according to the present invention, Fig. 2 is a conceptual diagram for explaining the present invention in detail, and Fig. 3 is a system diagram according to the principle of the present invention. A graph showing the frequency interval between the energy peaks of ultrasonic echoes; Fig. 4 is a front view for explaining a commonly considered method when measuring scale thickness without cutting the pipe; Fig. 5 The figure is a conceptual diagram to explain the reflection of ultrasonic waves in the same generally considered method, and Figure 6 shows the boundary between the inner circumference of the pipe and the scale and the scale of the ultrasonic waves emitted in the same commonly considered method. FIG. 4 is a diagram of an ultrasonic waveform showing a state when it is reflected at the inner circumference and returns. In the figure, 1 is the piping, 1゛ is the outer periphery, 2 is the scale, 3 is the ultrasonic probe, 4 is the ultrasonic transceiver, 7 is the frequency analyzer, 8 is the calculator, 11 is the ultrasonic wave, 12 is the boundary, 12゛ is the inner circumference, 1
3 is the boundary ultrasonic echo, 14 is the inner circumference, 15 is the inner circumference ultrasonic echo, 20 is the energy peak part, f is the frequency, Δ
f is the frequency interval between energy peak parts, C is the sound speed transmitted through the metal pipe, d is the thickness, and l is the axis line.

Claims (1)

【特許請求の範囲】 1)配管外周に接触させた超音波探触子から配管軸線に
対して直交する方向へ向けて超音波を発信させ、配管内
周と該内周に付着したスケールとの境界において反射し
た境界部超音波エコー及び前記スケール内周において反
射した内周部超音波エコーが干渉して生じるエネルギピ
ーク部の周波数から、エネルギピーク部間の周波数間隔
を求め、該周波数間隔と、配管金属材料中を伝わる音速
からC/2Δf(ただし、Δfは周波数間隔、Cは配管
金属材料中を伝わる音速である)によりスケールの厚さ
を求めることを特徴とする配管内のスケール厚さ計測方
法。 2)配管軸線に対して直交する方向へ超音波を発信させ
る超音波探触子と、該超音波探触子へ超音波を送信する
と共に配管内周と該内周に付着したスケールとの境界に
おいて反射した境界部超音波エコー及び前記スケール内
周において反射した内周部超音波エコーを受信する超音
波送受信器と、該超音波送受信器から入力された両超音
波エコーを周波数分析すると共に両超音波エコーの干渉
により生じたエネルギピーク部間の周波数間隔を求める
周波数分析器と、該周波数分析器で得られた前記エネル
ギピーク部の周波数間隔及び配管金属中を伝わる音速か
らスケールの厚さを求める演算器を設けたことを特徴と
する配管内のスケール厚さ計測装置。
[Claims] 1) Ultrasonic waves are emitted from an ultrasonic probe in contact with the outer periphery of the pipe in a direction perpendicular to the axis of the pipe to detect the inner periphery of the pipe and the scale attached to the inner periphery. Determine the frequency interval between the energy peak parts from the frequency of the energy peak part caused by interference between the boundary ultrasound echo reflected at the boundary and the inner periphery ultrasound echo reflected at the inner periphery of the scale, and calculate the frequency interval between the energy peak parts, and Measurement of scale thickness in piping, characterized by determining the thickness of the scale from the speed of sound traveling through the metal material of the piping by C/2Δf (where Δf is the frequency interval and C is the speed of sound traveling through the metal material of the piping) Method. 2) An ultrasonic probe that transmits ultrasonic waves in a direction perpendicular to the axis of the pipe, and a boundary between the inner circumference of the pipe and the scale attached to the inner circumference while transmitting ultrasonic waves to the ultrasonic probe. an ultrasonic transmitter/receiver that receives the boundary ultrasonic echoes reflected at the scale and the inner circumferential ultrasonic echoes reflected at the inner periphery of the scale; A frequency analyzer that determines the frequency interval between the energy peak parts caused by the interference of ultrasonic echoes, and a scale thickness that is calculated from the frequency interval of the energy peak parts obtained by the frequency analyzer and the speed of sound that travels through the pipe metal. A scale thickness measuring device in piping, characterized by being equipped with a calculation unit for calculating the thickness.
JP20090689A 1989-08-02 1989-08-02 Method and apparatus for measuring thickness of scale in piping Pending JPH0365608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20090689A JPH0365608A (en) 1989-08-02 1989-08-02 Method and apparatus for measuring thickness of scale in piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20090689A JPH0365608A (en) 1989-08-02 1989-08-02 Method and apparatus for measuring thickness of scale in piping

Publications (1)

Publication Number Publication Date
JPH0365608A true JPH0365608A (en) 1991-03-20

Family

ID=16432236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20090689A Pending JPH0365608A (en) 1989-08-02 1989-08-02 Method and apparatus for measuring thickness of scale in piping

Country Status (1)

Country Link
JP (1) JPH0365608A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262909A (en) * 1990-03-13 1991-11-22 Olympus Optical Co Ltd Ultrasonic measuring instrument
JPH0442011A (en) * 1990-06-06 1992-02-12 Jgc Corp Method for measuring thickness of thin layer using ultrasonic wave
JPH04315909A (en) * 1991-04-15 1992-11-06 Toppan Printing Co Ltd Layer thickness measuring method
JP4709499B2 (en) * 2003-05-13 2011-06-22 ベルキン ビーブイ Thermal mass flow meter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284209A (en) * 1986-03-26 1987-12-10 ザ・バブコツク・アンド・ウイルコツクス・カンパニ− High-frequency ultrasonic technique for measuring oxide scale on inner side surface of boiler tube
JPS6351209B2 (en) * 1982-07-27 1988-10-13 Dainichi Konkuriito Kogyo Kk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351209B2 (en) * 1982-07-27 1988-10-13 Dainichi Konkuriito Kogyo Kk
JPS62284209A (en) * 1986-03-26 1987-12-10 ザ・バブコツク・アンド・ウイルコツクス・カンパニ− High-frequency ultrasonic technique for measuring oxide scale on inner side surface of boiler tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03262909A (en) * 1990-03-13 1991-11-22 Olympus Optical Co Ltd Ultrasonic measuring instrument
JPH0442011A (en) * 1990-06-06 1992-02-12 Jgc Corp Method for measuring thickness of thin layer using ultrasonic wave
JPH04315909A (en) * 1991-04-15 1992-11-06 Toppan Printing Co Ltd Layer thickness measuring method
JP4709499B2 (en) * 2003-05-13 2011-06-22 ベルキン ビーブイ Thermal mass flow meter

Similar Documents

Publication Publication Date Title
KR890000607B1 (en) Ultrasone method and device for detecting and measuring defects in metal media
US6122968A (en) Delay line for an ultrasonic probe and method of using same
US8225665B2 (en) Method and system of measuring material loss from a solid structure
US5780744A (en) Out-of-plane ultrasonic velocity measurement
JP2013130572A (en) Ultrasonic thickness measurement method and instrument
JPH0365608A (en) Method and apparatus for measuring thickness of scale in piping
JP3421412B2 (en) Pipe thinning measurement method and equipment
JP2001343365A (en) Thickness resonance spectrum measuring method for metal sheet and electromagnetic ultrasonic measuring method for metal sheet
JPH021273B2 (en)
JP3510137B2 (en) Ultrasonic thickness measurement method and device
JPH08271322A (en) Ultrasonic liquid level measuring method
GB2188420A (en) Ultrasonic range finding
JPH0749944B2 (en) Simultaneous measurement of material thickness and sound velocity
JPH0394109A (en) Ultrasonic measuring device
JP2866964B2 (en) Coating film thickness measurement method
JPH0727551A (en) Tube inner shape inspecting device
JP2023163980A (en) Ultrasonic wave inspection method, and ultrasonic wave inspection system
JPH0729447Y2 (en) Ultrasonic measuring device
JPH09287937A (en) Method and device for measuring scale thickness of inner surface of pipe
JPH0476454A (en) Inspection method for liquid piping
JPH09304041A (en) Apparatus and method for measuring scale thickness of internal surface of pipe
JPS59135307A (en) Stroke detector for cylinder
JPH0472558A (en) Sound wave measuring device
JPS5842919Y2 (en) stress measuring device
JPH05172793A (en) Sound characteristic value measuring device