JP3606146B2 - Ultrasonic flaw detection method and apparatus - Google Patents

Ultrasonic flaw detection method and apparatus Download PDF

Info

Publication number
JP3606146B2
JP3606146B2 JP2000000206A JP2000000206A JP3606146B2 JP 3606146 B2 JP3606146 B2 JP 3606146B2 JP 2000000206 A JP2000000206 A JP 2000000206A JP 2000000206 A JP2000000206 A JP 2000000206A JP 3606146 B2 JP3606146 B2 JP 3606146B2
Authority
JP
Japan
Prior art keywords
flaw detection
ultrasonic
oblique
subject
wedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000000206A
Other languages
Japanese (ja)
Other versions
JP2001066294A (en
Inventor
哲也 天野
浩司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2000000206A priority Critical patent/JP3606146B2/en
Publication of JP2001066294A publication Critical patent/JP2001066294A/en
Application granted granted Critical
Publication of JP3606146B2 publication Critical patent/JP3606146B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の振動素子をアレイ状に配列して超音波の送受信を行い、被検体の探傷を行う超音波探傷方法及びその装置に関するものである。
【0002】
【従来の技術】
鋼材など材料や溶接部の内部に存在するきずを非破壊検査する手段として、超音波探傷法が広く用いられている。この超音波探傷法は、被検体の表面から超音波を入射し、内部のきずから反射した超音波を受信して検査を行う方法である。
【0003】
従来広く行われている超音波探傷では、垂直用、斜角用など探傷目的に応じた探触子が用いられており、一般に、市販品の探触子は、1つの振動子で構成されるものが多い。
【0004】
なお、微少な振動素子を複数配列し、それぞれの振動素子で超音波の送受信を行うアレイ型探触子を用いた超音波探傷技術がある。このアレイ型探触子を用いた超音波探傷では、例えば特開平9−33500号公報や特開平9−292374号公報などに示されるように、各アレイ素子の送受信のタイミングを制御して、被検体内の超音波ビームを所定位置(焦点位置)に集束(フォーカスイング)させるものである。
【0005】
【発明が解決しようとする課題】
従来広く用いられている超音波探傷方法を用いて、厚い鋼板の探傷など超音波のビーム路程が大きくなる場合や、超音波の減衰が大きな材料の超音波探傷を行う場合、超音波ビームの広がりや超音波の材料中での減衰により、きずから反射する超音波が微弱となり、良好なSN比で探傷ができないという問題が生じている。
【0006】
そのため、振動子面積の大きな超音波探触子を使用して探傷が行われているが、従来タイプのように1つの振動子で送受信を行う場合、印加電圧等の関係で駆動可能な振動子の大きさに限界があった。また1つの振動子の場合、被検体中の音場は振動子の大きさ(振動子面積)に直接に支配され、音場の制御は不可能である。
【0007】
一方、アレイ型探触子を用いる場合には、前述の特開平9−33500号公報や特開平9−292374号公報などに代表されるように、各アレイ素子の送受信のタイミングを制御して超音波ビームを収束させる発明においては、超音波ビームの焦点位置もしくはこの近傍位置において検出精度の向上のみを目指したものであった。
【0008】
前記超音波のビーム路程が大きくなる場合や被検体内での超音波の減衰が大きくなる場合の超音波探傷法としては、一般に振動子面積や振動子開口幅を大きくする方が良いとされているが、所要探傷範囲をカバーするために必要なビーム路程に対して、どの程度に大きくしたらよいのかが不明のため、従来は試行錯誤を繰り返していた。
【0009】
従って所望のビーム路程で超音波探傷を行うために必要とする振動子面積や振動子開口幅の合理的な基準が求められていた。
【0010】
また上記振動子面積や振動子開口幅が大きくなった場合においても、被検体内のきずを精度良く検出できるように、被検体内における超音波ビームの広がりを制御可能とすることも要望されていた。
【0011】
【課題を解決するための手段】
本発明の請求項1に係る超音波探傷方法は、斜角探傷用くさびを介して被検体探傷面より超音波を屈折入射させて被検体の探傷を行う超音波探傷方法において、前記斜角探傷用くさびの傾斜面に複数の振動素子をアレイ状に配列し、くさび傾斜方向における前記複数の各振動素子の幅及び間隔の総和で決まる振動素子開口幅Dは、くさびの傾斜面に対して垂直に超音波を入射させたときの被検体探傷面に対する超音波の入射角をα、屈折角をθ、斜角探傷範囲または斜角探傷の対象位置により決定されるビーム路程をL、被検体内を伝搬する超音波の振動素子の公称周波数における波長をλn とすると、次式(A)を満足するように設定するものである。
【0012】
【数3】

Figure 0003606146
【0013】
本発明の請求項2に係る超音波探傷方法は、前記請求項1に係る超音波探傷方法において、前記複数の各振動素子をそれぞれ励振する際に、前記複数の各振動素子毎にその励振タイミングを制御し、また前記複数の各振動素子がそれぞれ受波した信号を合成する際に、前記複数の各振動素子毎の受波信号の合成タイミングを制御し、前記被検体内に形成される超音波音場を所望の形状とするように制御するものである。
【0014】
本発明の請求項3に係る超音波探傷装置は、斜角探傷用くさびを介して被検体探傷面より超音波を屈折入射させて被検体の探傷を行う超音波探傷装置において、前記斜角探傷用くさびの傾斜面に複数の振動素子をアレイ状に配列し、くさび傾斜方向における前記複数の各振動素子の幅及び間隔の総和で決まる振動素子開口幅Dは、くさびの傾斜面に対して垂直に超音波を入射させたときの被検体探傷面に対する超音波の入射角をα、屈折角をθ、斜角探傷範囲または斜角探傷の対象位置により決定されるビーム路程をL、被検体内を伝搬する超音波の振動素子の公称周波数における波長をλn とすると、次式(A)を満足するように構成した斜角探触子と、前記斜角探触子の複数の各振動素子毎に供給する励振パルスのタイミングを個別に制御し、また前記斜角探触子の複数の各振動素子毎の受波信号を合成するタイミングを個別に制御し、前記被検体内に形成される超音波音場を所望の形状とするように制御する音場制御手段とを備えたものである。
【0015】
【数4】
Figure 0003606146
【0016】
【発明の実施の形態】
実施形態1
実施形態1では、送受波兼用の斜角探傷用アレイ探触子を用いた例を示している。
図1は本発明の実施形態1に係る超音波探傷装置の構成図である。
図1において、1は複数n個の振動素子であり、ここでは各振動素子の形状は短冊形とする。そしてこの短冊形の短辺がくさび2の傾斜方向と一致する配列により、n個の振動素子1はくさび2の傾斜面に一定間隔でアレイ状に配置される。2はくさび、3はダンパ材、4は上記1〜3を含む斜角アレイ探触子である。
5はパルサ群であり、前記斜角アレイ探触子4に含まれる複数n個の各振動素子1を個別に励振するn個のパルサを含んでいる。
【0017】
6は送信用遅延時間制御器であり、送信時の各パルサの励振タイミングを制御できるように、データ処理装置10から入力するトリガパルスに対して、制御装置9から各パルサ毎に個別に指示された遅延時間を付与するための複数n個の遅延時間可変素子を含んでいる。
7は受信用遅延時間制御器であり、受信時に、複数n個の各振動素子による受波信号を合成する際の合成タイミングを制御できるように、受信時にn個の振動素子1が出力する各受信信号に対して、制御装置9から各振動素子毎に個別に指示されたn個の遅延時間を付与するための複数n個の遅延時間可変素子を含んでいる。
【0018】
8は受信器であり、受信用遅延時間制御器7の各出力を合成して入力し、所定帯域内の信号を所定ゲインで増幅後、検波したビデオ信号をデータ処理装置10へ供給する。9は制御装置であり、パルサ群5及び受信器8に対して、超音波の送信及び受信の制御を行うのと共に、送信用遅延時間制御器6内のn個の各遅延時間可変素子及び受信用遅延時間制御器7内のn個の各遅延時間可変素子に対して、パソコン11から指示された通りの遅延時間となるように個別の制御を行う。
10はデータ処理装置であり、送信用遅延時間制御器6にトリガパルスを出力し、受信器8からの入力信号による探傷データの処理を行う。11はパソコンであり、制御装置9及びデータ処理装置10を制御する。12は被検体内の超音波、13は被検体である。
【0019】
図4は本発明に係る斜角探傷時の仮想振動子開口幅の説明図である。
図4において、媒質Aはくさび(くさび角度はαとする)、媒質Bは被検体である。12は媒質B内で一定ビーム幅の超音波であり、この超音波の進行方向は、実際とは逆方向の媒質Aから媒質Bへの方向とする。媒質A内と媒質B内とで超音波の伝搬速度が異なると、媒質Aと媒質Bとの境界面において、スネルの法則に従った屈折が生じる。いま、この境界面で屈折が生じないと仮定すると、境界面のP′点からQ′点の範囲にわたり、媒質Bから媒質Aへ直進した超音波12のビームは、くさび傾斜面のP点からQ点の範囲に到達する。
いま、くさび傾斜面のP点とQ点との間に単一の振動子を設けたとして、このP点とQ点の間の距離(即ち振動子開口幅)をDとする。なおこの振動子からの超音波が実際に媒質Aから媒質Bへ屈折して入射する場合の入射角はα(くさび角度αに等しい)、屈折角はθとする。
【0020】
いま、P点から、Q点〜Q′点を通る直線に直角に交るように垂線を引き、その交点をRとする。またP点とR点との間の距離をD′とする。
このD′は、図4において、実際の振動子開口幅Dを、超音波が媒質A,Bを直進すると考えた場合の超音波伝搬方向と直角な面(波面)に投影したビーム幅であるので、本発明では、これを仮想振動子開口幅と称する。
この仮想振動子開口幅D′は、くさび角度(即ち媒質Aの入射角)をα、媒質Bの屈折角をθとすると、図4の直角三角形PQRを参照して、次式(1)で表せる。
D′=Dcos(θ−α) … (1)
なお、上記D′は、入射角α、屈折角θ、くさび傾斜面上の振動子開口幅Dの斜角探触子を用いた場合に、実際の媒質B内における超音波ビーム幅であるDcosθ/cosαとは異なるものであることを付記する。
【0021】
次に本発明における振動素子開口幅(本発明では複数の振動素子を用いるので振動素子開口幅というが、単一の振動子の場合は振動子開口幅という)を規定する基準式について説明する。
現在、線集束、点集束等の集束型と呼ばれる超音波探触子が市販されているが、これらの探触子は、振動子に1次元又は2次元の曲率を直接設けるか、または振動子の音響放射面に音響レンズを設けて超音波を集束させている。
一般に集束型探触子の場合、集束効果が得られるのは、探触子の近距離音場限界距離以内であるといわれており、円形振動子の場合、近距離音場限界距離x0 は次式(2)で表されている。
0=D2/4λ=D2f/4C … (2)
ここで、D,λ,f,Cは次の通りである。
D:円形振動子の直径
λ:伝搬媒質中の超音波の波長
f:伝搬媒質中の超音波の周波数
C:伝搬媒質中の超音波の速度
【0022】
また、集束効果が得られる、すなわち、音場の制御が可能であるのは、振動子の近距離音場限界距離以内であることから、斜角探傷範囲または斜角探傷の対象位置により決定されるビーム路程をLとすると、Lは次式(3)となる。
L≦x0 … (3)
ここで本発明においては、前記式(2)における円形振動子の直径Dの代りに、前記式(1)で示される仮想振動素子開口幅D′を用いることを考える。そして式(1)〜(3)をまとめて整理すると次式(4)のような結果が得られる。
【0023】
【数5】
Figure 0003606146
【0024】
ただし、式(4)中のLには、くさび内の透過距離のパラメータが含まれていないが、このパラメータを例えばkとすると、式(3)は次式(3′)となる。
L+k≦x0 … (3′)
式(3′)を用いると式(4)は次式(4′)となる。
【0025】
【数6】
Figure 0003606146
【0026】
従って(L+k)の代りにLを使用しても、式(4)の本質的意味は変化しない。
なお、斜角探傷でなく、実施形態2で述べる垂直探傷の場合は、式(4)において、θ=α=0とすればよい。
【0027】
図1のように複数n個の振動素子1をアレイ状に配置した斜角探触子4を用いた場合の超音波探傷動作を説明する。
まず図1の短冊形振動子1の寸法を大きくするか、または同時に駆動する素子数nを大きくして、探触子全体の面積を大きくするが、この場合図示の振動素子開口幅Dは下記の基準に従う。
即ち、くさび傾斜方向における複数n個の各振動素子の幅(短冊形振動素子1の短辺の幅)及び間隔の総和で決まる振動素子開口幅Dは、くさび角度をα、被検体13内への屈折角をθとして、斜角探傷範囲または斜角探傷の対象位置により決定されるビーム路程をL、被検体内を伝搬する超音波の振動素子の公称周波数における波長をλn とした場合、前記式(4)を満足するよう選択する。
【0028】
前記式(4)を満足するように振動素子開口幅Dが決定され、この開口幅Dによる斜角アレイ探触子4が製作されると、パソコン11は、この斜角アレイ探触子4を用いて探傷を行う際に、きず検出感度や検出分解能等を向上させるために、被検体13内に形成される超音波音場を集束させて所望の形状となるように、送信用遅延時間制御器6及び受信用遅延時間制御器7内の各遅延時間可変素子に付与すべき各遅延時間を予め算出して、これを音場制御データとして制御装置9に与えておく。
上記被検体13内における好ましい集束音場としては、斜角探傷範囲をカバーするのに必要なビーム路程の長、短や、探傷位置(振動素子からの距離)の既知、未知等によって、超音波ビームを比較的ゆるやかに集束させる(あまり超音波ビームを絞らない)場合と、かなり超音波ビームを絞って所望の探傷位置におけるビーム径を小さくする場合等があり、探傷仕様に基づき所望の形状の超音波音場が適宜選択される。
【0029】
制御装置9は、パソコン11から予め供給されている音場制御データに基づき、超音波送信時には、入力トリガパルスに個別の遅延時間を付与する送信用遅延時間制御器6内のn個の各遅延時間可変素子に対して、指示された音場制御データの通り各遅延時間を制御する。その結果、パルサ群5内の各パルサがそれぞれ励振するn個の振動素子1の各励振タイミングが制御され、所望の送信音場が形成される。
また制御装置9は、超音波受信時には、n個の振動素子1の各受信信号にそれぞれ個別の遅延時間を付与する受信用遅延時間制御器7内の各遅延時間可変素子に対して、指示された音場データの通り各遅延時間を制御する。受信用遅延時間制御器7の出力するn個の遅延受波信号は出力側で合成され、受信器8に供給される。このようにしてn個の各振動素子毎の受波信号の合成タイミングが制御され、所望の受信音場が形成される。
【0030】
受信器8では、この合成入力信号に対して、前記式(4)の波長λn を中心周波数とする所定周波数帯域の信号を所定ゲインで増幅後、検波したビデオ信号をデータ処理装置10に供給する。データ処理装置10では、この入力ビデオ信号からきずデータの抽出、きず位置及び寸法の算出等の処理を行い、この処理結果をパソコン11に通知する。パソコン11は、この通知情報を図示しない表示器に表示したり、プリンタや記録計に出力する。
【0031】
このように図1の実施形態1では、前記式(4)の振動素子開口幅を満足するように、くさび傾斜面にアレイ配置される複数nの振動素子の素子寸法や配列素子数を大きくすることで、厚い鋼板の探傷など、超音波ビーム路程が大きくなる場合や超音波の減衰が大きな材料の探傷を行う場合にも高感度での探傷ができる。なお複数n個の各振動素子の寸法は、同一であっても同一でなくともよい。
また複数nの振動素子のパルス励振タイミング及び受信信号の波形合成タイミングを制御して、被検体内での超音波ビームの広がりを制御することで、超音波の広がりに起因する不要なエコーの発生が抑制され、且つ欠陥部を精度良く検出することができる。
【0032】
図2は本発明の実施形態1に係る図1と異なる超音波探触子の例を示す図である。
図2は、図1の短冊形振動素子1の代りに、正方形又は矩形の振動素子を行方向と列方向にマトリックス状(2次元的)に配置したものである。このマトリックス状配置では、振動素子開口幅と全体の振動素子面積の両方の調整が容易となる(図のDとWの調整により)。
また図1の超音波探触子では、ビーム集束は、くさび傾斜方向の1次元方向のみに制御されるが、図2の超音波探触子では、ビーム集束は、くさび傾斜方向とその直角方向の2次元方向に制御が可能となる。
【0033】
実施形態2
実施形態2では、送受波兼用の垂直探傷用アレイ探触子を用いた例を示している。
図3は本発明の実施形態2に係る超音波探傷装置の構成図である。
図3では、図1の斜角アレイ探触子4の代りに垂直アレイ探触子4Aを用いてる点のみが、図1と異なり、その他は図1と同一の構成になっている。
【0034】
図3の垂直探傷の場合には、斜角探傷範囲または斜角探傷の対象位置により決定されるビーム路程Lが、探傷範囲または対象とする探傷位置により決定される探傷面からの深さdとなり、超音波の入射角α、屈折角θが共に0となるため、短冊形振動子1の短辺の幅及び間隔の総和で決定される振動素子開口幅Dは、被検体13内を伝搬する超音波の波長をλとすると、次式(5)となるよう選択すればよい。
【0035】
【数7】
Figure 0003606146
【0036】
それ以外の構成および作用、効果は図1の場合と同じである。なお、垂直探傷の場合も、振動素子の配列を2次元的に配列したマトリックス型探触子を用いて2次元方向のビーム制御が可能である。
【0037】
次に、図1の超音波探傷装置による斜角探傷試験結果を説明する。
ここでは、試験片として、厚さ120mmの鋼製ブロックに、探傷面から深さ100mmの位置にφ3mmの横向きのドリル穴を加工した試験片を用いた場合の斜角探傷試験結果を示す。
この試験では、通常の斜角探傷と同様にくさびを用いて試験片中に横波が入射する構成とし、公称周波数5MHzの振動素子を用いた。また、くさびはポリスチレン製のものを用い、くさび角度は試験片中で屈折角度が70°になるような角度で42.7°とした。
【0038】
図5は、振動素子の開口幅Dを変化させ、超音波音場を集束制御した場合と、しない場合での上記試験片横穴でのビーム広がりの測定例を示す図である。
この場合、斜角探傷範囲または斜角探傷の対象位置により決定されるビーム路程Lは、きず位置を対象とすると、L=100mm/cos 70°≒292mmとなり、試験片中の横波音速を3230m/sとすると、公称周波数における超音波波長λn は0.65mmとなる。これらのL=292mm、λn =0.65mm、α=42.7°、θ=70°を用いて計算される必要最小限の開口幅DをDmin とすると、Dmin は式(4)に基づき、次式(6)のように求められる。
また、探傷範囲を試験片全体とする場合には、L=120mm/cos 70°≒351mmとなり、Dmin は式(4)に基づき、次式(7)のように求められる。
【0039】
【数8】
Figure 0003606146
【0040】
図5において、横軸はくさび傾斜方向における複数の各振動素子の幅及び間隔の総和で決まる振動素子開口幅Dを、上記式(6)のDmin で除した値D/Dmin を、縦軸は各条件での横穴のエコーピークを0dBとしたときの、−6dBのビーム幅Wb-6dBを上記Dmin で除した値Wb-6dB/Dmin を示している。また図の黒丸は音場制御あり、白丸は音場制御なしの場合である。
【0041】
図5により、D/Dmin が1以下、すなわち、振動素子開口幅DがDmin より小さい場合においては、Wb-6dB/Dminが大きくビーム幅が広い。また、音場制御の有無でビーム幅に差がなく、音場の制御が有効でないことがわかる。
【0042】
一方、D/Dmin が1より大きい場合は、音場制御ありの場合ビーム幅が狭くなり、音場制御なしの場合ビーム幅が広くなり、音場制御の有無でビーム幅の違いが明白である。従って音場制御を行う場合、振動素子開口幅Dは式(4)を満足させるように設定する必要がある。
【0043】
次に前記試験片(厚さ120mmの鋼製ブロックに、探傷面から深さ100mmの位置にφ3mmの横向きのドリル穴を加工した試験片)を用い、振動素子の開口幅は、上記式(6)または式(7)の数値を十分満足するD=80mmとし、試験片中での屈折角は70°、振動素子の公称周波数は5MHzで横波が入射する構成とし、くさびはポリスチレン製のものを用い、くさび角度は試験片中で屈折角度が70°になるような角度で42.7°を用いた場合の探傷結果を表1に示す。
【0044】
表1は、(1)音場を収束制御した場合、(2)音場を制御しない場合、(3)従来広く用いられている振動子サイズ10mm×10mmの場合について、エコー高さピークに対しエコー高さが−6dBとなる前後方向の走査距離と、ピークエコー高さを80%にしたときSN比を示している。
【0045】
【表1】
Figure 0003606146
【0046】
表1より、従来法にくらべてアレイ探触子を用いて、振動素子開口幅を大きくして入射超音波のエネルギーを大きくすることにより、SN比がかなり改善されることがわかる。また、音場を制御することにより、超音波の広がりが抑制されるため、超音波の広がりに起因する不要なエコーの発生が抑制され、さらに、超音波ビームが広くなり過ぎることによるエコーピーク位置検出精度の低下を防止でき、精度の良い探傷が実現できることになる。
【0047】
【発明の効果】
以上のように本発明によれば、斜角探傷用くさびを介して被検体探傷面より超音波を屈折入射させて被検体の探傷を行う超音波探傷方法およびその装置において、前記斜角探傷用くさびの傾斜面に複数の振動素子をアレイ状に配列し、くさび傾斜方向における前記複数の各振動素子の幅及び間隔の総和で決まる振動素子開口幅Dは、くさびの傾斜面に対して垂直に超音波を入射させたときの被検体探傷面に対する超音波の入射角をα、屈折角をθ、斜角探傷範囲または斜角探傷の対象位置により決定されるビーム路程をL、被検体内を伝搬する超音波の振動素子の公称周波数における波長をλn とすると、次式(A)を満足するように設定するので、厚板でビーム路程が大きくなる場合や被検体内での超音波の減衰が大きくなる場合の斜角探傷においても、良好なSN比により、高感度の探傷が可能となる。
【0048】
【数9】
Figure 0003606146
【0049】
また本発明によれば、前記斜角探傷において、前記複数の各振動素子をそれぞれ励振する際に、前記複数の各振動素子毎にその励振タイミングを制御し、また前記複数の各振動素子がそれぞれ受波した信号を合成する際に、前記複数の各振動素子毎の受波信号の合成タイミングを制御し、前記被検体内に形成される超音波音場を所望の形状とするように制御するので、超音波の広がりに起因する不要なエコーの発生が抑止され、且つ欠陥部の精度の良い検出が可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態1に係る超音波探傷装置の構成図である。
【図2】本発明の実施形態1に係る図1と異なる超音波探触子の例を示す図である。
【図3】本発明の実施形態2に係る超音波探傷装置の構成図である。
【図4】本発明に係る斜角探傷時の仮想振動子開口幅の説明図である。
【図5】振動素子開口幅を変化させ、超音波音場を収束制御した場合としない場合での超音波ビーム広がりの測定例を示す図である。
【符号の説明】
1 振動素子
2 くさび
3 ダンパ材
4 斜角アレイ探触子
4A 垂直アレイ探触子
5 パルサ群
6 送信用遅延時間制御器
7 受信用遅延時間制御器
8 受信器
9 制御装置
10 データ処理装置
11 パソコン[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic flaw detection method and apparatus for performing flaw detection on an object by transmitting and receiving ultrasonic waves by arranging a plurality of vibration elements in an array.
[0002]
[Prior art]
The ultrasonic flaw detection method is widely used as a means for nondestructive inspection of flaws existing in materials such as steel and welds. This ultrasonic flaw detection method is a method in which an ultrasonic wave is incident from the surface of a subject and an ultrasonic wave reflected from an internal flaw is received and inspected.
[0003]
In conventional ultrasonic flaw detection, a probe suitable for the purpose of flaw detection, such as for vertical and oblique angles, is used. Generally, a commercially available probe is composed of one transducer. There are many things.
[0004]
There is an ultrasonic flaw detection technique using an array type probe in which a plurality of minute vibration elements are arranged and ultrasonic waves are transmitted and received by each vibration element. In ultrasonic flaw detection using this array type probe, as shown in, for example, Japanese Patent Application Laid-Open Nos. 9-33500 and 9-292374, transmission / reception timing of each array element is controlled to be covered. The ultrasonic beam in the specimen is focused (focused) at a predetermined position (focal position).
[0005]
[Problems to be solved by the invention]
When the ultrasonic beam path length becomes large, such as flaw detection on thick steel plates, or when performing ultrasonic flaw detection on materials with large ultrasonic attenuation, using the conventional ultrasonic flaw detection method, the spread of the ultrasonic beam Due to the attenuation of the ultrasonic wave in the material, the ultrasonic wave reflected from the flaw becomes weak, and there is a problem that the flaw cannot be detected with a good SN ratio.
[0006]
For this reason, flaw detection is performed using an ultrasonic probe having a large transducer area, but when transmitting and receiving with one transducer as in the conventional type, a transducer that can be driven in relation to applied voltage or the like. There was a limit to the size. In the case of one transducer, the sound field in the subject is directly governed by the size of the transducer (vibrator area), and the sound field cannot be controlled.
[0007]
On the other hand, when an array type probe is used, the transmission / reception timing of each array element is controlled as shown in the above-mentioned JP-A-9-33500 and JP-A-9-292374. In the invention for converging the sound beam, the aim is only to improve the detection accuracy at the focal position of the ultrasonic beam or in the vicinity thereof.
[0008]
In general, it is better to increase the transducer area and the transducer aperture width as an ultrasonic flaw detection method when the ultrasonic beam path is large or the attenuation of the ultrasonic wave in the subject is large. However, since it is unclear how large the beam path necessary to cover the required flaw detection range is, trial and error have been repeated in the past.
[0009]
Accordingly, there has been a demand for a reasonable standard for the transducer area and transducer aperture width required for performing ultrasonic flaw detection with a desired beam path.
[0010]
There is also a need to be able to control the spread of an ultrasonic beam in a subject so that a flaw in the subject can be accurately detected even when the transducer area and the transducer opening width are increased. It was.
[0011]
[Means for Solving the Problems]
The ultrasonic flaw detection method according to claim 1 of the present invention is the ultrasonic flaw detection method for performing flaw detection on a subject by refracting incident ultrasonic waves from a subject flaw detection surface via a bevel for flaw detection. A plurality of vibration elements are arranged in an array on the inclined surface of the wedge, and the vibration element opening width D determined by the sum of the widths and intervals of the plurality of vibration elements in the wedge inclination direction is perpendicular to the inclined surface of the wedge. Is the incident angle of the ultrasonic wave with respect to the object flaw detection surface when the ultrasonic wave is incident on the object , α is the refraction angle, L is the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection, Is set so as to satisfy the following equation (A), where λ n is the wavelength at the nominal frequency of the ultrasonic vibration element propagating through the line.
[0012]
[Equation 3]
Figure 0003606146
[0013]
An ultrasonic flaw detection method according to a second aspect of the present invention is the ultrasonic flaw detection method according to the first aspect, wherein when the plurality of vibration elements are excited, the excitation timing of each of the plurality of vibration elements. In addition, when synthesizing the signals received by each of the plurality of vibration elements, the synthesis timing of the received signals for each of the plurality of vibration elements is controlled, and the superposition formed in the subject is controlled. The sonic sound field is controlled to have a desired shape.
[0014]
The ultrasonic flaw detector according to claim 3 of the present invention is the ultrasonic flaw detector which performs flaw detection on a subject by refracting incident ultrasonic waves from the subject flaw detection surface via a bevel for flaw detection. A plurality of vibration elements are arranged in an array on the inclined surface of the wedge, and the vibration element opening width D determined by the sum of the widths and intervals of the plurality of vibration elements in the wedge inclination direction is perpendicular to the inclined surface of the wedge. Is the incident angle of the ultrasonic wave with respect to the object flaw detection surface when the ultrasonic wave is incident on the object , α is the refraction angle, L is the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection, An oblique probe configured to satisfy the following formula (A), and a plurality of transducers of the oblique probe, where λ n is a wavelength at the nominal frequency of the ultrasonic transducer that propagates through Individually control the timing of the excitation pulses supplied for each In addition, the timing for synthesizing the received signals for each of the plurality of vibration elements of the oblique angle probe is individually controlled, and the ultrasonic sound field formed in the subject is controlled to have a desired shape. Sound field control means.
[0015]
[Expression 4]
Figure 0003606146
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
In the first embodiment, an example using an array probe for oblique flaw detection that is also used for transmission and reception is shown.
FIG. 1 is a configuration diagram of an ultrasonic flaw detector according to Embodiment 1 of the present invention.
In FIG. 1, reference numeral 1 denotes a plurality of n vibration elements. Here, each vibration element has a strip shape. With the arrangement in which the short sides of the rectangular shape coincide with the inclination direction of the wedge 2, the n vibration elements 1 are arranged in an array at regular intervals on the inclined surface of the wedge 2. 2 is a wedge, 3 is a damper material, and 4 is an oblique angle array probe including the above 1-3.
Reference numeral 5 denotes a pulsar group, which includes n pulsers that individually excite a plurality of n vibration elements 1 included in the oblique angle array probe 4.
[0017]
Reference numeral 6 denotes a transmission delay time controller, which is individually instructed by the control device 9 for each pulser with respect to a trigger pulse input from the data processing device 10 so that the excitation timing of each pulser at the time of transmission can be controlled. The delay time variable element includes a plurality of n delay time variable elements.
Reference numeral 7 denotes a delay time controller for reception, and each of the n vibration elements 1 that are output at the time of reception is controlled so that the synthesis timing at the time of synthesizing the received signals by the plurality of n vibration elements at the time of reception can be controlled. It includes a plurality of n delay time variable elements for giving n delay times individually instructed for each vibration element from the control device 9 to the received signal.
[0018]
Reference numeral 8 denotes a receiver that synthesizes and inputs the outputs of the reception delay time controller 7, amplifies a signal within a predetermined band with a predetermined gain, and supplies the detected video signal to the data processing device 10. Reference numeral 9 denotes a control device that controls transmission and reception of ultrasonic waves to the pulsar group 5 and the receiver 8, and each of the n delay time variable elements and the reception in the transmission delay time controller 6. The n delay time variable elements in the delay time controller 7 are individually controlled so that the delay time is instructed from the personal computer 11.
A data processing apparatus 10 outputs a trigger pulse to the transmission delay time controller 6 and processes flaw detection data using an input signal from the receiver 8. A personal computer 11 controls the control device 9 and the data processing device 10. Reference numeral 12 denotes an ultrasonic wave in the subject, and 13 denotes the subject.
[0019]
FIG. 4 is an explanatory diagram of the virtual vibrator opening width at the time of oblique flaw detection according to the present invention.
In FIG. 4, medium A is a wedge (the wedge angle is α), and medium B is a subject. Reference numeral 12 denotes an ultrasonic wave having a constant beam width in the medium B. The traveling direction of the ultrasonic wave is a direction from the medium A to the medium B in the opposite direction to the actual direction. When the propagation speed of the ultrasonic wave is different between the medium A and the medium B, refraction according to Snell's law occurs at the boundary surface between the medium A and the medium B. Assuming that refraction does not occur at this boundary surface, the beam of the ultrasonic wave 12 traveling straight from the medium B to the medium A over the range from the point P ′ to the point Q ′ on the boundary surface is from the point P on the wedge inclined surface. The range of Q point is reached.
Now, assuming that a single vibrator is provided between the point P and the point Q on the wedge inclined surface, let D be the distance between the point P and the point Q (that is, the vibrator opening width). When the ultrasonic wave from this vibrator is actually refracted and incident from the medium A to the medium B, the incident angle is α (equal to the wedge angle α) and the refraction angle is θ.
[0020]
Now, a perpendicular line is drawn from the point P so as to intersect at right angles to a straight line passing through the points Q to Q ′, and the intersection is assumed to be R. The distance between point P and point R is D ′.
This D ′ is the beam width obtained by projecting the actual transducer opening width D in FIG. 4 onto a plane (wavefront) perpendicular to the ultrasonic wave propagation direction when the ultrasonic wave is considered to travel straight through the media A and B. Therefore, in the present invention, this is called a virtual vibrator opening width.
The virtual vibrator opening width D ′ is expressed by the following equation (1) with reference to the right triangle PQR in FIG. 4 where the wedge angle (that is, the incident angle of the medium A) is α and the refraction angle of the medium B is θ. I can express.
D ′ = Dcos (θ−α) (1)
Note that D ′ is an ultrasonic beam width Dcosθ in the actual medium B when an oblique angle probe having an incident angle α, a refraction angle θ, and a transducer aperture width D on the wedge inclined surface is used. Note that it is different from / cosα.
[0021]
Next, a reference formula for defining the vibration element opening width in the present invention (in the present invention, a plurality of vibration elements are used, which is referred to as a vibration element opening width, but in the case of a single vibrator, a vibrator opening width) will be described.
At present, ultrasonic probes called focusing types such as line focusing and point focusing are commercially available. These probes can be directly provided with a one-dimensional or two-dimensional curvature in the transducer, or the transducer. An acoustic lens is provided on the acoustic radiation surface to focus the ultrasonic waves.
In general, in the case of a focusing probe, it is said that the focusing effect is obtained within the near field limit distance of the probe. In the case of a circular vibrator, the near field limit distance x 0 is It is represented by the following formula (2).
x 0 = D 2 / 4λ = D 2 f / 4C (2)
Here, D, λ, f, and C are as follows.
D: Diameter of circular vibrator λ: Wavelength of ultrasonic wave in propagation medium f: Frequency of ultrasonic wave in propagation medium C: Speed of ultrasonic wave in propagation medium
In addition, since the focusing effect is obtained, that is, the sound field can be controlled within the near field limit distance of the transducer, it is determined by the oblique flaw detection range or the target position of the oblique flaw detection. Assuming that the beam path length is L, L is given by the following equation (3).
L ≦ x 0 (3)
Here, in the present invention, it is considered to use the virtual vibration element opening width D ′ represented by the equation (1) instead of the diameter D of the circular vibrator in the equation (2). Then, when formulas (1) to (3) are collectively arranged, a result like the following formula (4) is obtained.
[0023]
[Equation 5]
Figure 0003606146
[0024]
However, although the parameter of the transmission distance in the wedge is not included in L in the equation (4), if this parameter is k, for example, the equation (3) becomes the following equation (3 ′).
L + k ≦ x 0 (3 ′)
When Expression (3 ′) is used, Expression (4) becomes the following Expression (4 ′).
[0025]
[Formula 6]
Figure 0003606146
[0026]
Therefore, even if L is used instead of (L + k), the essential meaning of equation (4) does not change.
In the case of vertical flaw detection described in Embodiment 2 instead of oblique flaw detection, θ = α = 0 in equation (4).
[0027]
The ultrasonic flaw detection operation when using the oblique probe 4 in which a plurality of n vibration elements 1 are arranged in an array as shown in FIG. 1 will be described.
First, the size of the strip vibrator 1 shown in FIG. 1 is increased or the number n of simultaneously driven elements is increased to increase the entire area of the probe. In this case, the vibration element opening width D shown in FIG. Follow the standards.
In other words, the vibration element opening width D determined by the sum of the width (width of the short side of the strip-shaped vibration element 1) and the interval of each of the plurality of n vibration elements in the wedge inclination direction has the wedge angle α, and enters the subject 13. When the refraction angle is θ, the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection is L, and the wavelength at the nominal frequency of the ultrasonic vibration element propagating in the subject is λ n , Selection is made so as to satisfy the formula (4).
[0028]
When the vibration element aperture width D is determined so as to satisfy the above formula (4), and the oblique angle array probe 4 with the opening width D is manufactured, the personal computer 11 defines the oblique angle array probe 4 as When performing flaw detection using, in order to improve the flaw detection sensitivity, detection resolution, etc., the transmission delay time control is performed so that the ultrasonic sound field formed in the subject 13 is converged to have a desired shape. Each delay time to be given to each delay time variable element in the receiver 6 and the reception delay time controller 7 is calculated in advance and given to the control device 9 as sound field control data.
As a preferable focused sound field in the subject 13, ultrasonic waves may be used depending on the length or shortness of the beam path necessary to cover the oblique flaw detection range, or the known or unknown flaw detection position (distance from the vibration element). There are cases where the beam is focused relatively gently (the ultrasonic beam is not squeezed too much) and the ultrasonic beam is squeezed to reduce the beam diameter at the desired flaw detection position. An ultrasonic sound field is appropriately selected.
[0029]
Based on the sound field control data supplied in advance from the personal computer 11, the control device 9 provides each of the n delays in the transmission delay time controller 6 that gives an individual delay time to the input trigger pulse during ultrasonic transmission. Each delay time is controlled according to the designated sound field control data for the time variable element. As a result, the excitation timings of the n vibrating elements 1 excited by the pulsars in the pulsar group 5 are controlled, and a desired transmission sound field is formed.
In addition, the control device 9 is instructed to each delay time variable element in the reception delay time controller 7 that gives an individual delay time to each received signal of the n vibration elements 1 at the time of ultrasonic reception. Each delay time is controlled according to the sound field data. The n delayed received signals output from the reception delay time controller 7 are combined on the output side and supplied to the receiver 8. In this way, the synthesis timing of the received signal for each of the n vibrating elements is controlled, and a desired received sound field is formed.
[0030]
The receiver 8 supplies the detected video signal to the data processing device 10 after amplifying a signal of a predetermined frequency band having the wavelength λ n of the above formula (4) as a center frequency with a predetermined gain with respect to the combined input signal. To do. The data processing device 10 performs processing such as extraction of flaw data from the input video signal, calculation of flaw position and size, and notifies the personal computer 11 of the processing result. The personal computer 11 displays this notification information on a display (not shown) or outputs it to a printer or recorder.
[0031]
As described above, in the first embodiment shown in FIG. 1, the element dimensions and the number of array elements of the plurality of n vibration elements arrayed on the wedge inclined surface are increased so as to satisfy the vibration element opening width of the formula (4). As a result, high-sensitivity flaw detection can be performed even when the ultrasonic beam path length becomes large, such as flaw detection on thick steel plates, or when flaw detection is performed on materials with large attenuation of ultrasonic waves. Note that the dimensions of each of the plural n vibration elements may or may not be the same.
In addition, by controlling the pulse excitation timing of multiple n transducer elements and the waveform synthesis timing of the received signal to control the spread of the ultrasonic beam within the subject, generation of unnecessary echoes caused by the spread of the ultrasonic wave Is suppressed, and a defective portion can be detected with high accuracy.
[0032]
FIG. 2 is a diagram showing an example of an ultrasonic probe different from FIG. 1 according to the first embodiment of the present invention.
In FIG. 2, square or rectangular vibrating elements are arranged in a matrix (two-dimensional) in the row and column directions instead of the strip-shaped vibrating element 1 of FIG. In this matrix arrangement, both the vibration element aperture width and the entire vibration element area can be easily adjusted (by adjusting D and W in the figure).
Further, in the ultrasonic probe of FIG. 1, the beam focusing is controlled only in the one-dimensional direction of the wedge inclination direction. However, in the ultrasonic probe of FIG. 2, the beam focusing is performed in the wedge inclination direction and its perpendicular direction. Can be controlled in the two-dimensional direction.
[0033]
Embodiment 2
Embodiment 2 shows an example using an array probe for vertical flaw detection that is also used for transmission and reception.
FIG. 3 is a configuration diagram of an ultrasonic flaw detector according to Embodiment 2 of the present invention.
3 differs from FIG. 1 only in that a vertical array probe 4A is used in place of the oblique array probe 4 of FIG. 1, and the other configuration is the same as that of FIG.
[0034]
In the case of the vertical flaw detection shown in FIG. 3, the beam path L determined by the oblique flaw detection range or the target position of the oblique flaw detection is the depth d from the flaw detection surface determined by the flaw detection range or the target flaw detection position. Since both the incident angle α and the refraction angle θ of the ultrasonic wave are 0, the vibration element opening width D determined by the sum of the short side width and interval of the strip vibrator 1 propagates in the subject 13. If the wavelength of the ultrasonic wave is λ, the following equation (5) may be selected.
[0035]
[Expression 7]
Figure 0003606146
[0036]
Other configurations, operations, and effects are the same as those in FIG. Even in the case of vertical flaw detection, beam control in a two-dimensional direction is possible using a matrix probe in which an array of vibration elements is two-dimensionally arranged.
[0037]
Next, the results of the oblique flaw detection test by the ultrasonic flaw detection apparatus of FIG. 1 will be described.
Here, an oblique flaw detection test result in the case where a test piece obtained by processing a φ3 mm sideways drill hole at a position of a depth of 100 mm from the flaw detection surface on a steel block having a thickness of 120 mm is shown as a test piece.
In this test, a wedge was used in the same manner as a normal oblique flaw detection so that a transverse wave was incident on the test piece, and a vibration element having a nominal frequency of 5 MHz was used. The wedge was made of polystyrene, and the wedge angle was set to 42.7 ° so that the refraction angle would be 70 ° in the test piece.
[0038]
FIG. 5 is a diagram illustrating an example of measurement of the beam divergence in the side hole of the test piece when the aperture width D of the vibration element is changed and the ultrasonic sound field is focused and controlled.
In this case, the beam path L determined by the oblique flaw detection range or the target position of the oblique flaw detection is L = 100 mm / cos 70 ° ≈292 mm when the flaw position is targeted, and the transverse wave velocity in the test piece is 3230 m / If s, the ultrasonic wavelength λ n at the nominal frequency is 0.65 mm. These L = 292mm, λ n = 0.65mm , α = 42.7 °, if the minimum opening width D that is calculated and D min with θ = 70 °, D min is the formula (4) Based on the above, the following equation (6) is obtained.
Further, when the flaw detection range is the entire test piece, L = 120 mm / cos 70 ° ≈351 mm, and D min is obtained from the following equation (7) based on equation (4).
[0039]
[Equation 8]
Figure 0003606146
[0040]
In FIG. 5, the horizontal axis represents a value D / D min obtained by dividing the vibration element opening width D determined by the sum of the widths and intervals of the plurality of vibration elements in the wedge tilt direction by D min in the above equation (6). axis shows the value Wb -6dB / D min of the, the -6dB beam width Wb -6dB divided by the D min when the echo peak of the transverse hole at each condition and 0 dB. Also, the black circles in the figure are for the sound field control, and the white circles are for the case without the sound field control.
[0041]
According to FIG. 5, when D / D min is 1 or less, that is, when the vibration element aperture width D is smaller than D min , Wb −6 dB / D min is large and the beam width is wide. It can also be seen that there is no difference in beam width with and without sound field control, and sound field control is not effective.
[0042]
On the other hand, when D / D min is larger than 1, the beam width is narrowed with sound field control, the beam width is widened without sound field control, and the difference in beam width with and without sound field control is obvious. is there. Therefore, when performing sound field control, it is necessary to set the vibration element opening width D so as to satisfy Expression (4).
[0043]
Next, using the above-mentioned test piece (a test piece obtained by machining a φ3 mm horizontal drill hole at a position 100 mm deep from a flaw detection surface on a steel block having a thickness of 120 mm), the opening width of the vibration element is expressed by the above formula (6 Or D = 80 mm that sufficiently satisfies the numerical value of formula (7), the refraction angle in the test piece is 70 °, the nominal frequency of the vibration element is 5 MHz, and a transverse wave is incident, and the wedge is made of polystyrene. Table 1 shows the flaw detection results when 42.7 ° was used and the wedge angle was such that the refraction angle was 70 ° in the test piece.
[0044]
Table 1 shows (1) when the sound field is converged, (2) when the sound field is not controlled, and (3) when the transducer size is 10 mm × 10 mm, which is widely used in the past, with respect to the echo height peak. The S / N ratio is shown when the scanning distance in the front-rear direction in which the echo height is −6 dB and the peak echo height is 80%.
[0045]
[Table 1]
Figure 0003606146
[0046]
From Table 1, it can be seen that the SN ratio is considerably improved by using the array probe and enlarging the vibration element aperture width and increasing the energy of the incident ultrasonic wave as compared with the conventional method. In addition, by controlling the sound field, the spread of the ultrasonic wave is suppressed, so that the generation of unnecessary echoes due to the spread of the ultrasonic wave is suppressed, and furthermore, the echo peak position due to the ultrasonic beam becoming too wide A decrease in detection accuracy can be prevented, and accurate flaw detection can be realized.
[0047]
【The invention's effect】
As described above, according to the present invention, in the ultrasonic flaw detection method and apparatus for performing flaw detection on a subject by refracting incident ultrasonic waves from the flaw detection surface via the bevel flaw detection wedge, the oblique flaw detection A plurality of vibration elements are arranged in an array on the inclined surface of the wedge, and the vibration element opening width D determined by the sum of the widths and intervals of the plurality of vibration elements in the wedge inclination direction is perpendicular to the inclined surface of the wedge. The incident angle of the ultrasonic wave with respect to the object flaw detection surface when the ultrasonic wave is incident is α, the refraction angle is θ, the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection is L, and inside the object. Assuming that the wavelength of the propagating ultrasonic vibration element at the nominal frequency is λ n , it is set so as to satisfy the following equation (A). Oblique flaw detection with high attenuation Oite also by good SN ratio, it is possible to flaw sensitive.
[0048]
[Equation 9]
Figure 0003606146
[0049]
According to the invention, in the oblique flaw detection, when exciting each of the plurality of vibration elements, the excitation timing is controlled for each of the plurality of vibration elements, and each of the plurality of vibration elements is respectively When synthesizing the received signals, the timing of synthesizing the received signals for each of the plurality of vibration elements is controlled, and the ultrasonic sound field formed in the subject is controlled to have a desired shape. Therefore, the generation of unnecessary echoes due to the spread of the ultrasonic waves is suppressed, and the defective portion can be detected with high accuracy.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an ultrasonic flaw detector according to Embodiment 1 of the present invention.
FIG. 2 is a diagram showing an example of an ultrasonic probe different from that shown in FIG. 1 according to the first embodiment of the present invention.
FIG. 3 is a configuration diagram of an ultrasonic flaw detector according to Embodiment 2 of the present invention.
FIG. 4 is an explanatory diagram of a virtual vibrator opening width during oblique flaw detection according to the present invention.
FIG. 5 is a diagram illustrating an example of measurement of the ultrasonic beam divergence in the case where the vibration element aperture width is changed and the ultrasonic sound field is converged and controlled.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vibration element 2 Wedge 3 Damper material 4 Oblique array probe 4A Vertical array probe 5 Pulsar group 6 Transmission delay time controller 7 Reception delay time controller 8 Receiver 9 Controller 10 Data processor 11 Personal computer

Claims (3)

斜角探傷用くさびを介して被検体探傷面より超音波を屈折入射させて被検体の探傷を行う超音波探傷方法において、
前記斜角探傷用くさびの傾斜面に複数の振動素子をアレイ状に配列し、くさび傾斜方向における前記複数の各振動素子の幅及び間隔の総和で決まる振動素子開口幅Dは、前記くさびの傾斜面に対して垂直に超音波を入射させたときの前記被検体探傷面に対する超音波の入射角をα、屈折角をθ、斜角探傷範囲または斜角探傷の対象位置により決定されるビーム路程をL、被検体内を伝搬する超音波の振動素子の公称周波数における波長をλn とすると、次式(A)を満足するように設定することを特徴とする超音波探傷方法。
Figure 0003606146
In the ultrasonic flaw detection method of performing flaw detection of a subject by refracting incident ultrasonic waves from the subject flaw detection surface via a bevel for flaw detection,
A plurality of vibration elements are arranged in an array on the inclined surface of the oblique flaw detection wedge, and the vibration element opening width D determined by the sum of the widths and intervals of the plurality of vibration elements in the wedge inclination direction is the inclination of the wedge. When the ultrasonic wave is incident perpendicularly to the surface, the incident angle of the ultrasonic wave with respect to the object flaw detection surface is α, the refraction angle is θ, the oblique flaw detection range or the beam path determined by the oblique flaw detection target position. Is set to satisfy the following formula (A), where L is the wavelength at the nominal frequency of the ultrasonic vibration element propagating in the subject, and λ n .
Figure 0003606146
前記複数の各振動素子をそれぞれ励振する際に、前記複数の各振動素子毎にその励振タイミングを制御し、また前記複数の各振動素子がそれぞれ受波した信号を合成する際に、前記複数の各振動素子毎の受波信号の合成タイミングを制御し、前記被検体内に形成される超音波音場を所望の形状とするように制御することを特徴とする請求項1記載の超音波探傷方法。When exciting each of the plurality of vibration elements, the excitation timing is controlled for each of the plurality of vibration elements, and when the signals received by the plurality of vibration elements are combined, 2. The ultrasonic flaw detection according to claim 1, wherein the synthesis timing of the received signal for each vibration element is controlled to control the ultrasonic sound field formed in the subject to have a desired shape. Method. 斜角探傷用くさびを介して被検体探傷面より超音波を屈折入射させて被検体の探傷を行う超音波探傷装置において、In an ultrasonic flaw detection apparatus that performs flaw detection of a subject by refracting incident ultrasonic waves from the subject flaw detection surface via a bevel for flaw detection,
前記斜角探傷用くさびの傾斜面に複数の振動素子をアレイ状に配列し、くさび傾斜方向における前記複数の各振動素子の幅及び間隔の総和で決まる振動素子開口幅Dは、前記くさびの傾斜面に対して垂直に超音波を入射させたときの前記被検体探傷面に対する超音波の入射角をα、屈折角をθ、斜角探傷範囲または斜角探傷の対象位置により決定されるビーム路程をL、被検体内を伝搬する超音波の振動素子の公称周波数における波長をλ  A plurality of vibration elements are arranged in an array on the inclined surface of the oblique flaw detection wedge, and the vibration element opening width D determined by the sum of the widths and intervals of the plurality of vibration elements in the wedge inclination direction is the inclination of the wedge. When the ultrasonic wave is incident perpendicularly to the surface, the incident angle of the ultrasonic wave with respect to the object flaw detection surface is α, the refraction angle is θ, the oblique flaw detection range or the beam path determined by the oblique flaw detection target position. L, the wavelength at the nominal frequency of the ultrasonic vibration element propagating in the subject, λ nn とすると、次式(A)を満足するように構成した斜角探触子と、Then, an oblique angle probe configured to satisfy the following formula (A):
前記斜角探触子の複数の各振動素子毎に供給する励振パルスのタイミングを個別に制御し、また前記斜角探触子の複数の各振動素子毎の受波信号を合成するタイミングを個別に制御し、前記被検体内に形成される超音波音場を所望の形状とするように制御する音場制御手段とを備えたことを特徴とする超音波探傷装置。  The timing of the excitation pulse supplied to each of the plurality of vibrating elements of the oblique angle probe is individually controlled, and the timing of synthesizing the received signal for each of the plurality of vibrating elements of the oblique angle probe is individually controlled. And a sound field control means for controlling the ultrasonic sound field formed in the subject to have a desired shape.
Figure 0003606146
Figure 0003606146
JP2000000206A 1999-06-22 2000-01-05 Ultrasonic flaw detection method and apparatus Expired - Lifetime JP3606146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000000206A JP3606146B2 (en) 1999-06-22 2000-01-05 Ultrasonic flaw detection method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-175225 1999-06-22
JP17522599 1999-06-22
JP2000000206A JP3606146B2 (en) 1999-06-22 2000-01-05 Ultrasonic flaw detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2001066294A JP2001066294A (en) 2001-03-16
JP3606146B2 true JP3606146B2 (en) 2005-01-05

Family

ID=26496558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000000206A Expired - Lifetime JP3606146B2 (en) 1999-06-22 2000-01-05 Ultrasonic flaw detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3606146B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088913B (en) * 2018-01-09 2023-08-25 东莞理工学院 Piezoelectric ultrasonic guided wave probe for flaw detection of steel rail bottom and flaw detection method thereof

Also Published As

Publication number Publication date
JP2001066294A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JP5721770B2 (en) Ultrasonic flaw detection method and apparatus
JP5841026B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP5306919B2 (en) Ultrasonic flaw detection method and apparatus
US11408861B2 (en) Transducer and transducer arrangement for ultrasonic probe systems, ultrasonic probe system and inspection method
JP3606132B2 (en) Ultrasonic flaw detection method and apparatus
Osumi et al. Imaging slit in metal plate using aerial ultrasound source scanning and nonlinear harmonic method
JP3635453B2 (en) Ultrasonic shear wave oblique angle flaw detection method and apparatus
RU2651431C1 (en) Method of industrial ultrasound diagnostics of vertically oriented defects of prismatic metal products and device for its implementation
JP3606146B2 (en) Ultrasonic flaw detection method and apparatus
JP4633268B2 (en) Ultrasonic flaw detector
JP3241519B2 (en) Ultrasonic flaw detection method and apparatus
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
JP2501488B2 (en) Ultrasonic testing of pipes
Shimizu et al. Non-destructive testing of metal plates by guided wave propagation image using scanning sound source technique and airborne ultrasound phased array with suppressed grating lobe generation
JP4175762B2 (en) Ultrasonic flaw detector
JP2000131297A (en) Leakage elastic surface wave measuring probe
JP2001255308A (en) Method and apparatus for ultrasonic flaw detection
Shevaldykin et al. Digital Focusing of Aperture when Probing Test Object by All Elements of Antenna Array in One Emission–Reception Cycle
JP2006313110A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP2002195986A (en) Ultrasonic array probe and ultrasonic testing method
JP2007327747A (en) Ultrasonic flaw inspection method and device
JPH0545346A (en) Ultrasonic probe
JPS6356946B2 (en)
RU2740168C1 (en) Method of determining reflector coordinate in section perpendicular to welded connection based on tofd-echo signals
JP3298085B2 (en) Ultrasonic flaw detection method and device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Ref document number: 3606146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

EXPY Cancellation because of completion of term