JP2001066294A - Ultrasonic flaw detection method and device - Google Patents

Ultrasonic flaw detection method and device

Info

Publication number
JP2001066294A
JP2001066294A JP2000000206A JP2000000206A JP2001066294A JP 2001066294 A JP2001066294 A JP 2001066294A JP 2000000206 A JP2000000206 A JP 2000000206A JP 2000000206 A JP2000000206 A JP 2000000206A JP 2001066294 A JP2001066294 A JP 2001066294A
Authority
JP
Japan
Prior art keywords
flaw detection
ultrasonic
subject
vibrating elements
vibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000000206A
Other languages
Japanese (ja)
Other versions
JP3606146B2 (en
Inventor
Tetsuya Amano
哲也 天野
Koji Yamada
浩司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000000206A priority Critical patent/JP3606146B2/en
Publication of JP2001066294A publication Critical patent/JP2001066294A/en
Application granted granted Critical
Publication of JP3606146B2 publication Critical patent/JP3606146B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve high-sensitivity flaw detection and at the same time eliminate the need for generating unneeded echoes by arranging a plurality of vibration elements at a wedge for oblique-angle flaw detection in an array and setting a vibration element opening width being determined by the width and interval of the elements with a specific expression. SOLUTION: Ultrasonic flaw detection is made, for example, by using an oblique- angle array probe 4 with (n) vibration elements 1 being arranged at a constant interval on the inclined surface of a wedge 2, and each element 1 is individually excited by (n) pulsers included in a group of pulsers 5. A vibration element opening width D in the inclination direction of the wedge is set so that an expression can be satisfied by setting the inclination angle of ultrasonic waves on the flaw detection surface of a specimen to α: a refractive angle to θ; a beam distance determined by an oblique angle flaw detection range or the target position of oblique angle flaw detection to L; wavelength in the nominal frequency of the vibration element of ultrasonic waves being propagated in the specimen to λn. Also, in the plurality of elements 1, the excitation timing and the synthesis timing of a reception signal are controlled for each element, thus performing control so that an ultrasonic sound field being formed in the specimen becomes a desired shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の振動素子を
アレイ状に配列して超音波の送受信を行い、被検体の探
傷を行う超音波探傷方法及びその装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method and apparatus for transmitting and receiving ultrasonic waves by arranging a plurality of vibrating elements in an array to detect flaws on an object.

【0002】[0002]

【従来の技術】鋼材など材料や溶接部の内部に存在する
きずを非破壊検査する手段として、超音波探傷法が広く
用いられている。この超音波探傷法は、被検体の表面か
ら超音波を入射し、内部のきずから反射した超音波を受
信して検査を行う方法である。従来広く行われている超
音波探傷では、垂直用、斜角用など探傷目的に応じた探
触子が用いられており、一般に、市販品の探触子は、1
つの振動子で構成されるものが多い。
2. Description of the Related Art Ultrasonic flaw detection is widely used as a means for non-destructively inspecting a material such as steel or a flaw existing inside a welded portion. The ultrasonic flaw detection method is a method in which an ultrasonic wave is incident from the surface of a subject and an ultrasonic wave reflected from an internal flaw is received to perform an inspection. Conventionally, in ultrasonic testing which has been widely performed, a probe suitable for a flaw detection purpose such as a vertical type or an oblique type is used.
Many are composed of two vibrators.

【0003】なお、微少な振動素子を複数配列し、それ
ぞれの振動素子で超音波の送受信を行うアレイ型探触子
を用いた超音波探傷技術がある。このアレイ型探触子を
用いた超音波探傷では、例えば特開平9−33500号
公報や特開平9−292374号公報などに示されるよ
うに、各アレイ素子の送受信のタイミングを制御して、
被検体内の超音波ビームを所定位置(焦点位置)に集束
(フォーカスイング)させるものである。
There is an ultrasonic flaw detection technique using an array-type probe in which a plurality of minute vibration elements are arranged and each of the vibration elements transmits and receives ultrasonic waves. In the ultrasonic flaw detection using this array probe, for example, as shown in JP-A-9-33500 and JP-A-9-292374, the transmission and reception timing of each array element is controlled,
The ultrasonic beam in the subject is focused on a predetermined position (focal position).

【0004】[0004]

【発明が解決しようとする課題】従来広く用いられてい
る超音波探傷方法を用いて、厚い鋼板の探傷など超音波
のビーム路程が大きくなる場合や、超音波の減衰が大き
な材料の超音波探傷を行う場合、超音波ビームの広がり
や超音波の材料中での減衰により、きずから反射する超
音波が微弱となり、良好なSN比で探傷ができないとい
う問題が生じている。そのため、振動子面積の大きな超
音波探触子を使用して探傷が行われているが、従来タイ
プのように1つの振動子で送受信を行う場合、印加電圧
等の関係で駆動可能な振動子の大きさに限界があった。
また1つの振動子の場合、被検体中の音場は振動子の大
きさ(振動子面積)に直接に支配され、音場の制御は不
可能である。一方、アレイ型探触子を用いる場合には、
前述の特開平9−33500号公報や特開平9−292
374号公報などに代表されるように、各アレイ素子の
送受信のタイミングを制御して超音波ビームを収束させ
る発明においては、超音波ビームの焦点位置もしくはこ
の近傍位置において検出精度の向上のみを目指したもの
であった。
In the case where the beam path of the ultrasonic wave is large, such as the flaw detection of a thick steel plate, or the ultrasonic flaw detection of a material having a large attenuation of the ultrasonic wave, using the conventionally widely used ultrasonic flaw detection method. When performing the method, there is a problem that the ultrasonic wave reflected from the flaw is weakened due to the spread of the ultrasonic beam and the attenuation of the ultrasonic wave in the material, and the flaw detection cannot be performed with a good SN ratio. For this reason, flaw detection is performed using an ultrasonic probe having a large transducer area. However, when transmission and reception are performed by a single transducer as in the conventional type, a transducer that can be driven due to applied voltage and the like is used. There was a limit to the size of
In the case of one vibrator, the sound field in the subject is directly controlled by the size (vibrator area) of the vibrator, and control of the sound field is impossible. On the other hand, when using an array type probe,
The above-mentioned JP-A-9-33500 and JP-A-9-292
As typified by Japanese Patent No. 374, for example, in the invention in which the transmission / reception timing of each array element is controlled to converge the ultrasonic beam, the aim is only to improve the detection accuracy at or near the focal position of the ultrasonic beam. It was.

【0005】前記超音波のビーム路程が大きくなる場合
や被検体内での超音波の減衰が大きくなる場合の超音波
探傷法としては、一般に振動子面積や振動子開口幅を大
きくする方が良いとされているが、所要探傷範囲をカバ
ーするために必要なビーム路程に対して、どの程度に大
きくしたらよいのかが不明のため、従来は試行錯誤を繰
り返していた。従って所望のビーム路程で超音波探傷を
行うために必要とする振動子面積や振動子開口幅の合理
的な基準が求められていた。また上記振動子面積や振動
子開口幅が大きくなった場合においても、被検体内のき
ずを精度良く検出できるように、被検体内における超音
波ビームの広がりを制御可能とすることも要望されてい
た。
In the case of the ultrasonic flaw detection method in which the beam path of the ultrasonic wave is large or the attenuation of the ultrasonic wave in the subject is large, it is generally better to increase the area of the vibrator or the opening width of the vibrator. However, since it is not clear how much the beam path required to cover the required flaw detection range should be increased, conventionally, trial and error has been repeated. Therefore, a rational standard for the transducer area and the transducer aperture width required for performing ultrasonic inspection in a desired beam path has been required. Further, even when the transducer area and the transducer aperture width are increased, it is also demanded to be able to control the spread of the ultrasonic beam in the subject so that flaws in the subject can be accurately detected. Was.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1に係る
超音波探傷法方は、斜角探傷用くさびを介して被検体探
傷面より超音波を屈折入射させて被検体の探傷を行う超
音波探傷方法において、前記斜角探傷用くさびの傾斜面
に複数の振動素子をアレイ状に配列し、くさび傾斜方向
における前記複数の各振動素子の幅及び間隔の総和で決
まる振動素子開口幅Dは、前記被検体探傷面における超
音波の入射角をα、屈折角をθ、斜角探傷範囲または斜
角探傷の対象位置により決定されるビーム路程をL、被
検体内を伝搬する超音波の振動素子の公称周波数におけ
る波長をλn とすると、次式(A)を満足するように設
定するものである。
According to an ultrasonic flaw detection method according to the first aspect of the present invention, an ultrasonic test is performed by refracting an ultrasonic wave from a flaw detection surface through a wedge for oblique flaw detection. In the ultrasonic flaw detection method, a plurality of vibrating elements are arranged in an array on the inclined surface of the wedge for oblique flaw detection, and a vibrating element opening width D determined by the sum of the widths and intervals of the plurality of vibrating elements in the wedge tilt direction. Is the incident angle of the ultrasonic wave on the inspection surface of the subject is α, the refraction angle is θ, the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection is L, and the ultrasonic wave propagating in the subject is When the wavelength at the nominal frequency of the vibrating element is λ n , the setting is made so as to satisfy the following expression (A).

【0007】[0007]

【数5】 (Equation 5)

【0008】本発明の請求項2に係る超音波探傷方法
は、前記請求項1に係る超音波探傷方法において、前記
複数の各振動素子をそれぞれ励振する際に、前記複数の
各振動素子毎にその励振タイミングを制御し、また前記
複数の各振動素子がそれぞれ受波した信号を合成する際
に、前記複数の各振動素子毎の受波信号の合成タイミン
グを制御し、前記被検体内に形成される超音波音場を所
望の形状とするように制御するものである。
The ultrasonic flaw detection method according to a second aspect of the present invention is the ultrasonic flaw detection method according to the first aspect, wherein each of the plurality of vibration elements is excited for each of the plurality of vibration elements. The excitation timing is controlled, and when synthesizing the signals received by the plurality of vibrating elements, the synthesizing timing of the received signals for each of the plurality of vibrating elements is controlled to form in the subject. The ultrasonic field to be controlled is controlled to have a desired shape.

【0009】本発明の請求項3に係る超音波探傷方法
は、被検体探傷面より超音波を垂直に入射させて被検体
の探傷を行う超音波探傷方法において、前記被検体探傷
面に複数の振動素子をアレイ状に配列し、振動素子配列
方向における前記複数の各振動素子の幅及び間隔の総和
で決まる振動素子開口幅Dは、前記被検体の探傷範囲ま
たは対象とする探傷位置により決定される探傷面からの
深さをd、被検体内を伝搬する超音波の振動素子の公称
周波数における波長をλn とすると、次式(B)を満足
するように設定するものである。
According to a third aspect of the present invention, there is provided an ultrasonic flaw detection method for detecting a flaw of an object by vertically irradiating an ultrasonic wave from the flaw detection surface of the object. The vibrating elements are arranged in an array, and the vibrating element opening width D determined by the sum of the widths and intervals of the plurality of vibrating elements in the vibrating element arrangement direction is determined by the flaw detection range of the subject or the flaw detection position of interest. Assuming that the depth from the flaw detection surface is d and the wavelength of the ultrasonic wave propagating in the subject at the nominal frequency of the vibration element is λ n , the following equation (B) is satisfied.

【0010】[0010]

【数6】 (Equation 6)

【0011】本発明の請求項4に係る超音波探傷方法
は、前記請求項3に係る超音波探傷方法において、前記
複数の各振動素子をそれぞれ励振する際に、前記複数の
各振動素子毎にその励振タイミングを制御し、また前記
複数の各振動素子がそれぞれ受波した信号を合成する際
に、前記複数の各振動素子毎の受波信号の合成タイミン
グを制御し、前記被検体内に形成される超音波音場を所
望の形状とするように制御するものである。
According to a fourth aspect of the present invention, in the ultrasonic flaw detection method according to the third aspect, when each of the plurality of vibrating elements is excited, each of the plurality of vibrating elements is provided. The excitation timing is controlled, and when synthesizing the signals received by the plurality of vibrating elements, the synthesizing timing of the received signals for each of the plurality of vibrating elements is controlled to form in the subject. The ultrasonic field to be controlled is controlled to have a desired shape.

【0012】本発明の請求項5に係る超音波探傷装置
は、斜角探傷用くさびを介して被検体探傷面より超音波
を屈折入射させて被検体の探傷を行う超音波探傷装置に
おいて、前記斜角探傷用くさびの傾斜面に複数の振動素
子をアレイ状に配列し、くさび傾斜方向における前記複
数の各振動素子の幅及び間隔の総和で決まる振動素子開
口幅Dは、前記被検体探傷面における超音波の入射角を
α、屈折角をθ、斜角探傷範囲または斜角探傷の対象位
置により決定されるビーム路程をL、被検体内を伝搬す
る超音波の振動素子の公称周波数における波長をλn
すると、次式(A)を満足するように構成した斜角探触
子と、前記斜角探触子の複数の各振動素子毎に供給する
励振パルスのタイミングを個別に制御し、また前記斜角
探触子の複数の各振動素子毎の受波信号を合成するタイ
ミングを個別に制御し、前記被検体内に形成される超音
波音場を所望の形状とするように制御する音場制御手段
とを備えたものである。
An ultrasonic flaw detector according to a fifth aspect of the present invention is the ultrasonic flaw detector which flaw-detects an object by refracting an ultrasonic wave from a surface to be inspected through a wedge for oblique flaw detection. A plurality of vibrating elements are arranged in an array on the inclined surface of the oblique flaw detection wedge, and the vibrating element aperture width D determined by the sum of the widths and the intervals of the plurality of vibrating elements in the wedge tilt direction is the object flaw detection surface. Is the incident angle of the ultrasonic wave at α, the refraction angle is θ, the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection is L, and the wavelength of the ultrasonic wave propagating in the subject at the nominal frequency of the vibrating element. Let λ n be the angle beam probe configured to satisfy the following equation (A) and the timing of the excitation pulse supplied to each of the plurality of vibrating elements of the angle beam probe are individually controlled. A plurality of vibrations of the oblique probe The timing for combining a receive signal for each child individually controlled, the one in which the ultrasonic field is formed into a subject and a sound field control means for controlling to a desired shape.

【0013】[0013]

【数7】 (Equation 7)

【0014】本発明の請求項6に係る超音波探傷装置
は、被検体探傷面より超音波を垂直に入射させて被検体
の探傷を行う超音波探傷装置において、前記被検体探傷
面に複数の振動素子をアレイ状に配列し、振動素子配列
方向における前記複数の各振動素子の幅及び間隔の総和
で決まる振動素子開口幅Dは、前記被検体の探傷範囲ま
たは対象とする探傷位置により決定される探傷面からの
深さをd、被検体内を伝搬する超音波の振動素子の公称
周波数における波長をλn とすると、次式(B)を満足
するように構成した垂直探触子と、前記垂直探触子の複
数の各振動素子毎に供給する励振パルスのタイミングを
個別に制御し、また前記垂直探触子の複数の各振動素子
毎の受波信号を合成するタイミングを個別に制御し、前
記被検体内に形成される超音波音場を所望の形状とする
ように制御する音場制御手段とを備えたものである。
An ultrasonic flaw detector according to a sixth aspect of the present invention is an ultrasonic flaw detector for detecting an object by vertically irradiating an ultrasonic wave from the object flaw detection surface. The vibrating elements are arranged in an array, and the vibrating element opening width D determined by the sum of the widths and intervals of the plurality of vibrating elements in the vibrating element arrangement direction is determined by the flaw detection range of the subject or the flaw detection position of interest. Assuming that the depth from the flaw detection surface is d and the wavelength of the ultrasonic wave propagating in the subject at the nominal frequency of the vibrating element is λ n , a vertical probe configured to satisfy the following equation (B): The timing of the excitation pulse supplied to each of the plurality of vibration elements of the vertical probe is individually controlled, and the timing of synthesizing the received signals of each of the plurality of vibration elements of the vertical probe is individually controlled. And formed within the subject Sound field control means for controlling the ultrasonic sound field to have a desired shape.

【0015】[0015]

【数8】 (Equation 8)

【0016】[0016]

【発明の実施の形態】実施形態1 実施形態1では、送受波兼用の斜角探傷用アレイ探触子
を用いた例を示している。図1は本発明の実施形態1に
係る超音波探傷装置の構成図である。図1において、1
は複数n個の振動素子であり、ここでは各振動素子の形
状は短冊形とする。そしてこの短冊形の短辺がくさび2
の傾斜方向と一致する配列により、n個の振動素子1は
くさび2の傾斜面に一定間隔でアレイ状に配置される。
2はくさび、3はダンパ材、4は上記1〜3を含む斜角
アレイ探触子である。5はパルサ群であり、前記斜角ア
レイ探触子4に含まれる複数n個の各振動素子1を個別
に励振するn個のパルサを含んでいる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Embodiment 1 shows an example in which an array probe for oblique flaw detection which is used for both transmission and reception is used. FIG. 1 is a configuration diagram of an ultrasonic flaw detector according to Embodiment 1 of the present invention. In FIG. 1, 1
Is a plurality of n vibrating elements, and here, each vibrating element has a strip shape. And the short side of this strip is wedge 2
Are arranged in an array at regular intervals on the inclined surface of the wedge 2.
Reference numeral 2 denotes a wedge, reference numeral 3 denotes a damper material, and reference numeral 4 denotes an oblique array probe including the above-described 1 to 3. Reference numeral 5 denotes a pulser group, which includes n pulsers that individually excite the plurality of n vibrating elements 1 included in the oblique array probe 4.

【0017】6は送信用遅延時間制御器であり、送信時
の各パルサの励振タイミングを制御できるように、デー
タ処理装置10から入力するトリガパルスに対して、制
御装置9から各パルサ毎に個別に指示された遅延時間を
付与するための複数n個の遅延時間可変素子を含んでい
る。7は受信用遅延時間制御器であり、受信時に、複数
n個の各振動素子による受波信号を合成する際の合成タ
イミングを制御できるように、受信時にn個の振動素子
1が出力する各受信信号に対して、制御装置9から各振
動素子毎に個別に指示されたn個の遅延時間を付与する
ための複数n個の遅延時間可変素子を含んでいる。
Reference numeral 6 denotes a transmission delay time controller, which individually controls each pulser from the controller 9 in response to a trigger pulse input from the data processor 10 so that the excitation timing of each pulser at the time of transmission can be controlled. Includes a plurality of n variable delay time elements for giving the specified delay time. Reference numeral 7 denotes a reception delay time controller, which controls the output of the n vibrating elements 1 at the time of reception so as to control the synthesis timing when synthesizing the received signals by the plurality of n vibrating elements at the time of reception. The control unit 9 includes a plurality of n delay time variable elements for giving n delay times individually specified for each vibration element to the received signal.

【0018】8は受信器であり、受信用遅延時間制御器
7の各出力を合成して入力し、所定帯域内の信号を所定
ゲインで増幅後、検波したビデオ信号をデータ処理装置
10へ供給する。9は制御装置であり、パルサ群5及び
受信器8に対して、超音波の送信及び受信の制御を行う
のと共に、送信用遅延時間制御器6内のn個の各遅延時
間可変素子及び受信用遅延時間制御器7内のn個の各遅
延時間可変素子に対して、パソコン11から指示された
通りの遅延時間となるように個別の制御を行う。10は
データ処理装置であり、送信用遅延時間制御器6にトリ
ガパルスを出力し、受信器8からの入力信号による探傷
データの処理を行う。11はパソコンであり、制御装置
9及びデータ処理装置10を制御する。12は被検体内
の超音波、13は被検体である。
Reference numeral 8 denotes a receiver, which combines and inputs each output of the reception delay time controller 7, amplifies a signal in a predetermined band with a predetermined gain, and supplies a detected video signal to the data processing device 10. I do. Reference numeral 9 denotes a control device, which controls transmission and reception of ultrasonic waves to the pulsar group 5 and the receiver 8, and controls each of the n delay time variable elements and reception devices in the transmission delay time controller 6. Each of the n variable delay time elements in the delay time controller 7 is individually controlled so as to have a delay time as instructed by the personal computer 11. Reference numeral 10 denotes a data processing device that outputs a trigger pulse to the transmission delay time controller 6 and performs processing of flaw detection data based on an input signal from the receiver 8. Reference numeral 11 denotes a personal computer, which controls the control device 9 and the data processing device 10. 12 is an ultrasonic wave in the subject, and 13 is the subject.

【0019】図4は本発明に係る斜角探傷時の仮想振動
子開口幅の説明図である。図4において、媒質Aはくさ
び(くさび角度はαとする)、媒質Bは被検体である。
12は媒質B内で一定ビーム幅の超音波であり、この超
音波の進行方向は、実際とは逆方向の媒質Aから媒質B
への方向とする。媒質A内と媒質B内とで超音波の伝搬
速度が異なると、媒質Aと媒質Bとの境界面において、
スネルの法則に従った屈折が生じる。いま、この境界面
で屈折が生じないと仮定すると、境界面のP′点から
Q′点の範囲にわたり、媒質Bから媒質Aへ直進した超
音波12のビームは、くさび傾斜面のP点からQ点の範
囲に到達する。いま、くさび傾斜面のP点とQ点との間
に単一の振動子を設けたとして、このP点とQ点の間の
距離(即ち振動子開口幅)をDとする。なおこの振動子
からの超音波が実際に媒質Aから媒質Bへ屈折して入射
する場合の入射角はα(くさび角度αに等しい)、屈折
角はθとする。
FIG. 4 is an explanatory diagram of a virtual vibrator opening width during oblique flaw detection according to the present invention. In FIG. 4, a medium A is a wedge (a wedge angle is α), and a medium B is a subject.
Numeral 12 denotes an ultrasonic wave having a constant beam width in the medium B. The traveling direction of the ultrasonic wave is from the medium A in the opposite direction to the medium B to the medium B.
To the direction to. When the propagation speed of the ultrasonic wave is different between the medium A and the medium B, at the interface between the medium A and the medium B,
Refraction occurs according to Snell's law. Now, assuming that refraction does not occur at this boundary surface, the beam of the ultrasonic wave 12 that has traveled straight from the medium B to the medium A over the range from the point P 'to the point Q' of the boundary surface is shifted from the point P on the wedge inclined surface. The point Q range is reached. Now, assuming that a single vibrator is provided between the point P and the point Q on the wedge inclined surface, the distance between the point P and the point Q (namely, the vibrator aperture width) is D. When the ultrasonic wave from the vibrator is actually refracted from the medium A and enters the medium B, the incident angle is α (equal to the wedge angle α), and the refraction angle is θ.

【0020】いま、P点から、Q点〜Q′点を通る直線
に直角に交るように垂線を引き、その交点をRとする。
またP点とR点との間の距離をD′とする。このD′
は、図4において、実際の振動子開口幅Dを、超音波が
媒質A,Bを直進すると考えた場合の超音波伝搬方向と
直角な面(波面)に投影したビーム幅であるので、本発
明では、これを仮想振動子開口幅と称する。この仮想振
動子開口幅D′は、くさび角度(即ち媒質Aの入射角)
をα、媒質Bの屈折角をθとすると、図4の直角三角形
PQRを参照して、次式(1)で表せる。 D′=Dcos(θ−α) … (1) なお、上記D′は、入射角α、屈折角θ、くさび傾斜面
上の振動子開口幅Dの斜角探触子を用いた場合に、実際
の媒質B内における超音波ビーム幅であるDcosθ/cos
αとは異なるものであることを付記する。
Now, a perpendicular line is drawn from the point P so as to intersect at right angles with a straight line passing through the points Q to Q '.
The distance between the point P and the point R is D '. This D '
In FIG. 4, the actual transducer aperture width D is the beam width projected on a plane (wavefront) perpendicular to the ultrasonic wave propagation direction when the ultrasonic waves are considered to travel straight through the media A and B. In the present invention, this is referred to as a virtual vibrator aperture width. The virtual oscillator aperture width D 'is the wedge angle (that is, the incident angle of the medium A).
Let α be the refraction angle of the medium B and θ be the refraction angle of the medium B, with reference to the right triangle PQR in FIG. D ′ = Dcos (θ−α) (1) The above D ′ is obtained by using an oblique angle probe having an incident angle α, a refraction angle θ, and a transducer opening width D on a wedge inclined surface. Dcosθ / cos, which is the actual ultrasonic beam width in the medium B
Note that this is different from α.

【0021】次に本発明における振動素子開口幅(本発
明では複数の振動素子を用いるので振動素子開口幅とい
うが、単一の振動子の場合は振動子開口幅という)を規
定する基準式について説明する。現在、線集束、点集束
等の集束型と呼ばれる超音波探触子が市販されている
が、これらの探触子は、振動子に1次元又は2次元の曲
率を直接設けるか、または振動子の音響放射面に音響レ
ンズを設けて超音波を集束させている。一般に集束型探
触子の場合、集束効果が得られるのは、探触子の近距離
音場限界距離以内であるといわれており、円形振動子の
場合、近距離音場限界距離x0は次式(2)で表されて
いる。 x0=D2/4λ=D2f/4C … (2) ここで、D,λ,f,Cは次の通りである。 D:円形振動子の直径 λ:伝搬媒質中の超音波の波長 f:伝搬媒質中の超音波の周波数 C:伝搬媒質中の超音波の速度
Next, a reference formula for defining the vibrating element opening width in the present invention (the vibrating element opening width because a plurality of vibrating elements are used in the present invention, but the vibrator opening width in the case of a single vibrator). explain. At present, ultrasonic probes called a focusing type such as a line focusing and a point focusing are commercially available, and these probes are provided with a one-dimensional or two-dimensional curvature directly on a transducer, or with a transducer. The ultrasonic wave is focused by providing an acoustic lens on the acoustic radiating surface of. For general-focusing probe, the focusing effect is obtained is said to be within the near field limit distance of the probe, a circular vibrator, near field limit distance x 0 is It is expressed by the following equation (2). x 0 = D 2 / 4λ = D 2 f / 4C (2) where D, λ, f, and C are as follows. D: diameter of circular oscillator λ: wavelength of ultrasonic wave in propagation medium f: frequency of ultrasonic wave in propagation medium C: velocity of ultrasonic wave in propagation medium

【0022】また、集束効果が得られる、すなわち、音
場の制御が可能であるのは、振動子の近距離音場限界距
離以内であることから、斜角探傷範囲または斜角探傷の
対象位置により決定されるビーム路程をLとすると、L
は次式(3)となる。 L≦x0 … (3) ここで本発明においては、前記式(2)における円形振
動子の直径Dの代りに、前記式(1)で示される仮想振
動素子開口幅D′を用いることを考える。そして式
(1)〜(3)をまとめて整理すると次式(4)のよう
な結果が得られる。
Further, since the focusing effect is obtained, that is, the sound field can be controlled within the short-range sound field limit distance of the vibrator, the oblique flaw detection range or the oblique flaw detection target position Let L be the beam path determined by
Is given by the following equation (3). L ≦ x 0 (3) In the present invention, the virtual vibration element opening width D ′ represented by the above equation (1) is used instead of the diameter D of the circular vibrator in the above equation (2). Think. When the expressions (1) to (3) are put together and arranged, a result as shown in the following expression (4) is obtained.

【0023】[0023]

【数9】 (Equation 9)

【0024】ただし、式(4)中のLには、くさび内の
透過距離のパラメータが含まれていないが、このパラメ
ータを例えばkとすると、式(3)は次式(3′)とな
る。 L+k≦x0 … (3′) 式(3′)を用いると式(4)は次式(4′)となる。
However, L in equation (4) does not include the parameter of the transmission distance in the wedge, but if this parameter is, for example, k, equation (3) becomes the following equation (3 '). . L + k ≦ x 0 (3 ′) Using the expression (3 ′), the expression (4) becomes the following expression (4 ′).

【0025】[0025]

【数10】 (Equation 10)

【0026】従って(L+k)の代りにLを使用して
も、式(4)の本質的意味は変化しない。なお、斜角探
傷でなく、実施形態2で述べる垂直探傷の場合は、式
(4)において、θ=α=0とすればよい。
Therefore, even if L is used instead of (L + k), the essential meaning of equation (4) does not change. In the case of the vertical flaw detection described in the second embodiment instead of the oblique flaw detection, θ = α = 0 may be set in Expression (4).

【0027】図1のように複数n個の振動素子1をアレ
イ状に配置した斜角探触子4を用いた場合の超音波探傷
動作を説明する。まず図1の短冊形振動子1の寸法を大
きくするか、または同時に駆動する素子数nを大きくし
て、探触子全体の面積を大きくするが、この場合図示の
振動素子開口幅Dは下記の基準に従う。即ち、くさび傾
斜方向における複数n個の各振動素子の幅(短冊形振動
素子1の短辺の幅)及び間隔の総和で決まる振動素子開
口幅Dは、くさび角度をα、被検体13内への屈折角を
θとして、斜角探傷範囲または斜角探傷の対象位置によ
り決定されるビーム路程をL、被検体内を伝搬する超音
波の振動素子の公称周波数における波長をλn とした場
合、前記式(4)を満足するよう選択する。
An ultrasonic flaw detection operation using the oblique probe 4 in which a plurality of n vibrating elements 1 are arranged in an array as shown in FIG. 1 will be described. First, the dimensions of the strip-shaped vibrator 1 in FIG. 1 are increased, or the number n of simultaneously driven elements is increased to increase the area of the entire probe. In this case, the illustrated vibrating element opening width D is as follows. According to the standards. In other words, the vibration element opening width D determined by the sum of the width of each of the plurality of n vibration elements in the wedge tilt direction (the width of the short side of the strip-shaped vibration element 1) and the interval is such that the wedge angle is α and the object 13 enters the subject 13. Assuming that the refraction angle is θ, the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection is L, and the wavelength at the nominal frequency of the ultrasonic vibration element propagating in the subject is λ n , Selection is made so as to satisfy the above equation (4).

【0028】前記式(4)を満足するように振動素子開
口幅Dが決定され、この開口幅Dによる斜角アレイ探触
子4が製作されると、パソコン11は、この斜角アレイ
探触子4を用いて探傷を行う際に、きず検出感度や検出
分解能等を向上させるために、被検体13内に形成され
る超音波音場を集束させて所望の形状となるように、送
信用遅延時間制御器6及び受信用遅延時間制御器7内の
各遅延時間可変素子に付与すべき各遅延時間を予め算出
して、これを音場制御データとして制御装置9に与えて
おく。上記被検体13内における好ましい集束音場とし
ては、斜角探傷範囲をカバーするのに必要なビーム路程
の長、短や、探傷位置(振動素子からの距離)の既知、
未知等によって、超音波ビームを比較的ゆるやかに集束
させる(あまり超音波ビームを絞らない)場合と、かな
り超音波ビームを絞って所望の探傷位置におけるビーム
径を小さくする場合等があり、探傷仕様に基づき所望の
形状の超音波音場が適宜選択される。
When the aperture width D of the vibrating element is determined so as to satisfy the equation (4), and the oblique array probe 4 having the aperture width D is manufactured, the personal computer 11 starts the oblique array probe. When performing flaw detection using the probe 4, in order to improve the flaw detection sensitivity, detection resolution, and the like, an ultrasonic sound field formed in the subject 13 is focused so as to have a desired shape by focusing. Each delay time to be given to each of the delay time variable elements in the delay time controller 6 and the reception delay time controller 7 is calculated in advance, and the calculated delay time is given to the control device 9 as sound field control data. As a preferable focused sound field in the subject 13, the length and shortness of the beam path required to cover the oblique flaw detection range, the known flaw detection position (distance from the vibration element),
Depending on unknowns, there are cases where the ultrasonic beam is focused relatively slowly (the ultrasonic beam is not narrowed down too much), and cases where the ultrasonic beam is narrowed down considerably to reduce the beam diameter at the desired flaw detection position. An ultrasonic field having a desired shape is appropriately selected based on the above.

【0029】制御装置9は、パソコン11から予め供給
されている音場制御データに基づき、超音波送信時に
は、入力トリガパルスに個別の遅延時間を付与する送信
用遅延時間制御器6内のn個の各遅延時間可変素子に対
して、指示された音場制御データの通り各遅延時間を制
御する。その結果、パルサ群5内の各パルサがそれぞれ
励振するn個の振動素子1の各励振タイミングが制御さ
れ、所望の送信音場が形成される。また制御装置9は、
超音波受信時には、n個の振動素子1の各受信信号にそ
れぞれ個別の遅延時間を付与する受信用遅延時間制御器
7内の各遅延時間可変素子に対して、指示された音場デ
ータの通り各遅延時間を制御する。受信用遅延時間制御
器7の出力するn個の遅延受波信号は出力側で合成さ
れ、受信器8に供給される。このようにしてn個の各振
動素子毎の受波信号の合成タイミングが制御され、所望
の受信音場が形成される。
Based on sound field control data supplied in advance from the personal computer 11, the control device 9 provides n individual delay times to the input trigger pulse when transmitting ultrasonic waves. Are controlled according to the designated sound field control data. As a result, the respective excitation timings of the n vibrating elements 1 excited by the respective pulsars in the pulsar group 5 are controlled, and a desired transmission sound field is formed. Further, the control device 9
At the time of the ultrasonic wave reception, for each of the delay time variable elements in the reception delay time controller 7 for giving an individual delay time to each of the reception signals of the n vibrating elements 1 according to the designated sound field data. Control each delay time. The n delayed reception signals output from the reception delay time controller 7 are combined on the output side and supplied to the receiver 8. In this way, the synthesis timing of the received signals for each of the n vibrating elements is controlled, and a desired received sound field is formed.

【0030】受信器8では、この合成入力信号に対し
て、前記式(4)の波長λn を中心周波数とする所定周
波数帯域の信号を所定ゲインで増幅後、検波したビデオ
信号をデータ処理装置10に供給する。データ処理装置
10では、この入力ビデオ信号からきずデータの抽出、
きず位置及び寸法の算出等の処理を行い、この処理結果
をパソコン11に通知する。パソコン11は、この通知
情報を図示しない表示器に表示したり、プリンタや記録
計に出力する。
[0030] In the receiver 8, with respect to the synthetic input signal, the equation (4) after amplification with a predetermined gain a signal of a predetermined frequency band having a center frequency wavelength lambda n of the detection and data processing unit video signal Supply 10 The data processor 10 extracts flaw data from the input video signal,
Processing such as calculation of a flaw position and size is performed, and the processing result is notified to the personal computer 11. The personal computer 11 displays the notification information on a display (not shown) or outputs the notification information to a printer or a recorder.

【0031】このように図1の実施形態1では、前記式
(4)の振動素子開口幅を満足するように、くさび傾斜
面にアレイ配置される複数nの振動素子の素子寸法や配
列素子数を大きくすることで、厚い鋼板の探傷など、超
音波ビーム路程が大きくなる場合や超音波の減衰が大き
な材料の探傷を行う場合にも高感度での探傷ができる。
なお複数n個の各振動素子の寸法は、同一であっても同
一でなくともよい。また複数nの振動素子のパルス励振
タイミング及び受信信号の波形合成タイミングを制御し
て、被検体内での超音波ビームの広がりを制御すること
で、超音波の広がりに起因する不要なエコーの発生が抑
制され、且つ欠陥部を精度良く検出することができる。
As described above, in the first embodiment shown in FIG. 1, the element dimensions and the number of array elements of the plurality of n elements arranged in an array on the wedge inclined surface so as to satisfy the opening width of the element of the above formula (4) are satisfied. By increasing the diameter, it is possible to perform high-sensitivity flaw detection even when the path of the ultrasonic beam is large, such as flaw detection of a thick steel plate, or when flaw detection is performed on a material having a large attenuation of ultrasonic waves.
Note that the dimensions of the plurality of n vibrating elements may or may not be the same. Further, by controlling the pulse excitation timing of the plurality of n vibrating elements and the waveform synthesis timing of the received signal to control the spread of the ultrasonic beam in the subject, generation of unnecessary echoes due to the spread of the ultrasonic waves. Is suppressed, and a defective portion can be detected with high accuracy.

【0032】図2は本発明の実施形態1に係る図1と異
なる超音波探触子の例を示す図である。図2は、図1の
短冊形振動素子1の代りに、正方形又は矩形の振動素子
を行方向と列方向にマトリックス状(2次元的)に配置
したものである。このマトリックス状配置では、振動素
子開口幅と全体の振動素子面積の両方の調整が容易とな
る(図のDとWの調整により)。また図1の超音波探触
子では、ビーム集束は、くさび傾斜方向の1次元方向の
みに制御されるが、図2の超音波探触子では、ビーム集
束は、くさび傾斜方向とその直角方向の2次元方向に制
御が可能となる。
FIG. 2 is a diagram showing an example of an ultrasonic probe different from FIG. 1 according to the first embodiment of the present invention. FIG. 2 shows a square or rectangular vibrating element arranged in a matrix (two-dimensionally) in the row and column directions instead of the strip-shaped vibrating element 1 of FIG. In this matrix arrangement, it is easy to adjust both the vibration element opening width and the entire vibration element area (by adjusting D and W in the drawing). Further, in the ultrasonic probe of FIG. 1, the beam focusing is controlled only in the one-dimensional direction of the wedge tilt direction, but in the ultrasonic probe of FIG. 2, the beam focusing is controlled in the wedge tilt direction and the direction perpendicular thereto. Can be controlled in two-dimensional directions.

【0033】実施形態2 実施形態2では、送受波兼用の垂直探傷用アレイ探触子
を用いた例を示している。図3は本発明の実施形態2に
係る超音波探傷装置の構成図である。図3では、図1の
斜角アレイ探触子4の代りに垂直アレイ探触子4Aを用
いてる点のみが、図1と異なり、その他は図1と同一の
構成になっている。
Embodiment 2 In Embodiment 2, an example is shown in which an array probe for vertical flaw detection which is used for both transmission and reception is used. FIG. 3 is a configuration diagram of an ultrasonic flaw detector according to Embodiment 2 of the present invention. FIG. 3 differs from FIG. 1 only in that a vertical array probe 4A is used instead of the oblique array probe 4 in FIG. 1, and the other configuration is the same as that in FIG.

【0034】図3の垂直探傷の場合には、斜角探傷範囲
または斜角探傷の対象位置により決定されるビーム路程
Lが、探傷範囲または対象とする探傷位置により決定さ
れる探傷面からの深さdとなり、超音波の入射角α、屈
折角θが共に0となるため、短冊形振動子1の短辺の幅
及び間隔の総和で決定される振動素子開口幅Dは、被検
体13内を伝搬する超音波の波長をλとすると、次式
(5)となるよう選択すればよい。
In the case of the vertical flaw detection shown in FIG. 3, the beam path L determined by the oblique flaw detection range or the target position of the oblique flaw detection is determined by the depth from the flaw detection surface determined by the flaw detection range or the target flaw detection position. Since the incident angle α and the refraction angle θ of the ultrasonic wave are both 0, the vibrating element aperture width D determined by the sum of the widths and the intervals of the short sides of the rectangular vibrator 1 Assuming that the wavelength of the ultrasonic wave propagating through is λ, the selection may be made to satisfy the following equation (5).

【0035】[0035]

【数11】 [Equation 11]

【0036】それ以外の構成および作用、効果は図1の
場合と同じである。なお、垂直探傷の場合も、振動素子
の配列を2次元的に配列したマトリックス型探触子を用
いて2次元方向のビーム制御が可能である。
Other structures, operations and effects are the same as those in FIG. Also in the case of vertical flaw detection, beam control in two-dimensional directions can be performed using a matrix probe in which vibrating elements are two-dimensionally arranged.

【0037】次に、図1の超音波探傷装置による斜角探
傷試験結果を説明する。ここでは、試験片として、厚さ
120mmの鋼製ブロックに、探傷面から深さ100m
mの位置にφ3mmの横向きのドリル穴を加工した試験
片を用いた場合の斜角探傷試験結果を示す。この試験で
は、通常の斜角探傷と同様にくさびを用いて試験片中に
横波が入射する構成とし、公称周波数5MHzの振動素
子を用いた。また、くさびはポリスチレン製のものを用
い、くさび角度は試験片中で屈折角度が70°になるよ
うな角度で42.7°とした。
Next, the results of the oblique flaw detection test performed by the ultrasonic flaw detector shown in FIG. 1 will be described. Here, as a test piece, a steel block having a thickness of 120 mm was placed at a depth of 100 m from the flaw detection surface.
The results of the oblique flaw detection test using a test piece in which a φ3 mm horizontal drill hole was machined at the position of m are shown. In this test, a transverse wave was introduced into the test piece using a wedge as in the case of ordinary angle beam testing, and a vibration element having a nominal frequency of 5 MHz was used. The wedge was made of polystyrene, and the wedge angle was 42.7 ° such that the refraction angle in the test piece was 70 °.

【0038】図5は、振動素子の開口幅Dを変化させ、
超音波音場を集束制御した場合と、しない場合での上記
試験片横穴でのビーム広がりの測定例を示す図である。
この場合、斜角探傷範囲または斜角探傷の対象位置によ
り決定されるビーム路程Lは、きず位置を対象とする
と、L=100mm/cos 70°≒292mmとなり、
試験片中の横波音速を3230m/sとすると、公称周
波数における超音波波長λn は0.65mmとなる。こ
れらのL=292mm、λn =0.65mm、α=4
2.7°、θ=70°を用いて計算される必要最小限の
開口幅DをD min とすると、Dmin は式(4)に基づ
き、次式(6)のように求められる。また、探傷範囲を
試験片全体とする場合には、L=120mm/cos 70
°≒351mmとなり、Dmin は式(4)に基づき、次
式(7)のように求められる。
FIG. 5 shows that the opening width D of the vibration element is changed.
The above with and without the focus control of the ultrasonic sound field
It is a figure which shows the example of a measurement of the beam spread in a test piece side hole.
In this case, depending on the oblique flaw detection range or the target position for bevel flaw detection.
The determined beam path L is directed to the flaw position.
And L = 100 mm / cos 70 ° ≒ 292 mm,
Assuming that the shear wave velocity in the test piece is 3230 m / s, the nominal
Ultrasonic wavelength λ at wavenumbern Is 0.65 mm. This
Their L = 292 mm, λn = 0.65mm, α = 4
2.7 °, minimum required calculated using θ = 70 °
Opening width D is D min Then Dmin Is based on equation (4)
Then, it is obtained as in the following equation (6). Also, the flaw detection range
When the entire test piece is used, L = 120 mm / cos 70
° ≒ 351 mm, Dmin Is based on equation (4)
It is obtained as in equation (7).

【0039】[0039]

【数12】 (Equation 12)

【0040】図5において、横軸はくさび傾斜方向にお
ける複数の各振動素子の幅及び間隔の総和で決まる振動
素子開口幅Dを、上記式(6)のDmin で除した値D/
mi n を、縦軸は各条件での横穴のエコーピークを0d
Bとしたときの、−6dBのビーム幅Wb-6dBを上記D
min で除した値Wb-6dB/Dmin を示している。また図
の黒丸は音場制御あり、白丸は音場制御なしの場合であ
る。図5により、D/Dmin が1以下、すなわち、振動
素子開口幅DがDmin より小さい場合においては、Wb
-6dB/Dminが大きくビーム幅が広い。また、音場制御
の有無でビーム幅に差がなく、音場の制御が有効でない
ことがわかる。一方、D/Dmin が1より大きい場合
は、音場制御ありの場合ビーム幅が狭くなり、音場制御
なしの場合ビーム幅が広くなり、音場制御の有無でビー
ム幅の違いが明白である。従って音場制御を行う場合、
振動素子開口幅Dは式(4)を満足させるように設定す
る必要がある。
In FIG. 5, the horizontal axis represents the value D / D obtained by dividing the vibration element opening width D determined by the sum of the widths and intervals of the plurality of vibration elements in the wedge inclination direction by D min in the above equation (6).
The D mi n, and the vertical axis the echo peak of the transverse hole in each condition 0d
The beam width Wb-6 dB of -6 dB when B is
The value Wb -6 dB / D min divided by min is shown. The black circles in the figure indicate the case where the sound field control is performed, and the white circles indicate the case where the sound field control is not performed. According to FIG. 5, when D / D min is 1 or less, that is, when the vibration element opening width D is smaller than D min , Wb
-6dB / Dmin is large and the beam width is wide. In addition, there is no difference in beam width depending on the presence or absence of the sound field control, which indicates that the sound field control is not effective. On the other hand, when D / D min is greater than 1, the beam width becomes narrower with sound field control, and the beam width becomes wider without sound field control. is there. Therefore, when performing sound field control,
It is necessary to set the vibration element opening width D so as to satisfy Expression (4).

【0041】次に前記試験片(厚さ120mmの鋼製ブ
ロックに、探傷面から深さ100mmの位置にφ3mm
の横向きのドリル穴を加工した試験片)を用い、振動素
子の開口幅は、上記式(6)または式(7)の数値を十
分満足するD=80mmとし、試験片中での屈折角は7
0°、振動素子の公称周波数は5MHzで横波が入射す
る構成とし、くさびはポリスチレン製のものを用い、く
さび角度は試験片中で屈折角度が70°になるような角
度で42.7°を用いた場合の探傷結果を表1に示す。
表1は、(1)音場を収束制御した場合、(2)音場を
制御しない場合、(3)従来広く用いられている振動子
サイズ10mm×10mmの場合について、エコー高さ
ピークに対しエコー高さが−6dBとなる前後方向の走
査距離と、ピークエコー高さを80%にしたときSN比
を示している。
Next, the test piece (on a steel block having a thickness of 120 mm, a φ3 mm
Of the vibrating element is set to D = 80 mm, which sufficiently satisfies the value of the above equation (6) or (7), and the refraction angle in the test piece is 7
0 °, the nominal frequency of the vibrating element is 5 MHz, and a transverse wave is incident. The wedge is made of polystyrene, and the wedge angle is 42.7 ° so that the refraction angle becomes 70 ° in the test piece. Table 1 shows the results of flaw detection when used.
Table 1 shows that, for (1) the case where the convergence control of the sound field is performed, (2) the case where the sound field is not controlled, and (3) the case where the transducer size is 10 mm × 10 mm which is conventionally widely used, the echo height peak is compared. The scanning distance in the front-back direction at which the echo height is -6 dB and the SN ratio when the peak echo height is 80% are shown.

【0042】[0042]

【表1】 [Table 1]

【0043】表1より、従来法にくらべてアレイ探触子
を用いて、振動素子開口幅を大きくして入射超音波のエ
ネルギーを大きくすることにより、SN比がかなり改善
されることがわかる。また、音場を制御することによ
り、超音波の広がりが抑制されるため、超音波の広がり
に起因する不要なエコーの発生が抑制され、さらに、超
音波ビームが広くなり過ぎることによるエコーピーク位
置検出精度の低下を防止でき、精度の良い探傷が実現で
きることになる。
It can be seen from Table 1 that the SN ratio is considerably improved by increasing the aperture width of the vibrating element and increasing the energy of incident ultrasonic waves by using an array probe as compared with the conventional method. Also, by controlling the sound field, the spread of the ultrasonic wave is suppressed, so that the generation of unnecessary echoes due to the spread of the ultrasonic wave is suppressed, and further, the echo peak position caused by the ultrasonic beam becoming too wide. A decrease in detection accuracy can be prevented, and accurate flaw detection can be realized.

【0044】[0044]

【発明の効果】以上のように本発明によれば、斜角探傷
用くさびを介して被検体探傷面より超音波を屈折入射さ
せて被検体の探傷を行う超音波探傷方法およびその装置
において、前記斜角探傷用くさびの傾斜面に複数の振動
素子をアレイ状に配列し、くさび傾斜方向における前記
複数の各振動素子の幅及び間隔の総和で決まる振動素子
開口幅Dは、前記被検体探傷面における超音波の入射角
をα、屈折角をθ、斜角探傷範囲または斜角探傷の対象
位置により決定されるビーム路程をL、被検体内を伝搬
する超音波の振動素子の公称周波数における波長をλn
とすると、次式(A)を満足するように設定するので、
厚板でビーム路程が大きくなる場合や被検体内での超音
波の減衰が大きくなる場合の斜角探傷においても、良好
なSN比により、高感度の探傷が可能となる。
As described above, according to the present invention, there is provided an ultrasonic flaw detection method and apparatus for refracting ultrasonic waves from a flaw detection surface through a wedge for oblique flaw detection to detect a flaw in a subject. A plurality of vibrating elements are arranged in an array on the inclined surface of the oblique flaw detection wedge, and the vibrating element opening width D determined by the sum of the width and the interval of each of the plurality of vibrating elements in the wedge tilt direction is the object inspection flaw. The incident angle of the ultrasonic wave on the surface is α, the refraction angle is θ, the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection is L, at the nominal frequency of the vibration element of the ultrasonic wave propagating in the subject Wavelength λ n
Then, setting is made so as to satisfy the following equation (A).
Even in the case of oblique flaw detection where the beam path becomes large with a thick plate or the attenuation of ultrasonic waves in the subject becomes large, high-sensitivity flaw detection becomes possible with a good SN ratio.

【0045】[0045]

【数13】 (Equation 13)

【0046】また本発明によれば、前記斜角探傷におい
て、前記複数の各振動素子をそれぞれ励振する際に、前
記複数の各振動素子毎にその励振タイミングを制御し、
また前記複数の各振動素子がそれぞれ受波した信号を合
成する際に、前記複数の各振動素子毎の受波信号の合成
タイミングを制御し、前記被検体内に形成される超音波
音場を所望の形状とするように制御するので、超音波の
広がりに起因する不要なエコーの発生が抑止され、且つ
欠陥部の精度の良い検出が可能となる。
According to the present invention, in the oblique flaw detection, when exciting each of the plurality of vibration elements, the excitation timing is controlled for each of the plurality of vibration elements,
Further, when synthesizing the signals received by each of the plurality of vibrating elements, it controls the synthesizing timing of the received signals for each of the plurality of vibrating elements to generate an ultrasonic sound field formed in the subject. Since control is performed so as to obtain a desired shape, generation of unnecessary echoes due to the spread of ultrasonic waves is suppressed, and accurate detection of a defective portion becomes possible.

【0047】また本発明によれば、被検体探傷面より超
音波を垂直に入射させて被検体の探傷を行う超音波探傷
方法およびその装置において、前記被検体探傷面に複数
の振動素子をアレイ状に配列し、振動素子配列方向にお
ける前記複数の各振動素子の幅及び間隔の総和で決まる
振動素子開口幅Dは、前記被検体の探傷範囲または対象
とする探傷位置により決定される探傷面からの深さを
d、被検体内を伝搬する超音波の振動素子の公称周波数
における波長をλn とすると、次式(B)を満足するよ
うに設定するので、厚板でビーム路程が大きくなる場合
や被検体内での超音波の減衰が大きくなる場合の垂直探
傷においても、良好なSN比により、高感度の探傷が可
能となる。
According to the present invention, in the ultrasonic flaw detection method and apparatus for detecting a flaw of an object by vertically irradiating an ultrasonic wave from the flaw detection surface of the object, a plurality of vibrating elements are arrayed on the flaw detection surface of the object. The vibrating element opening width D determined by the sum of the widths and intervals of the plurality of vibrating elements in the vibrating element arrangement direction is determined from the flaw detection range of the subject or the flaw detection surface determined by the flaw detection position of interest. Is defined as d and the wavelength of the ultrasonic wave propagating in the subject at the nominal frequency of the vibrating element as λ n , the following formula (B) is satisfied. Also in a vertical flaw detection in a case or when the attenuation of the ultrasonic wave in the subject becomes large, a high sensitivity flaw detection becomes possible with a good SN ratio.

【0048】[0048]

【数14】 [Equation 14]

【0049】また本発明によれば、前記垂直探傷におい
て、前記複数の各振動素子をそれぞれ励振する際に、前
記複数の各振動素子毎にその励振タイミングを制御し、
また前記複数の各振動素子がそれぞれ受波した信号を合
成する際に、前記複数の各振動素子毎の受波信号の合成
タイミングを制御し、前記被検体内に形成される超音波
音場を所望の形状とするように制御するので、超音波の
広がりに起因する不要なエコーの発生が抑止され、且つ
欠陥部の精度の良い検出が可能となる。
According to the present invention, in the vertical flaw detection, when exciting each of the plurality of vibration elements, the excitation timing is controlled for each of the plurality of vibration elements,
Further, when synthesizing the signals received by each of the plurality of vibrating elements, it controls the synthesizing timing of the received signals for each of the plurality of vibrating elements to generate an ultrasonic sound field formed in the subject. Since control is performed so as to obtain a desired shape, generation of unnecessary echoes due to the spread of ultrasonic waves is suppressed, and accurate detection of a defective portion becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1に係る超音波探傷装置の構
成図である。
FIG. 1 is a configuration diagram of an ultrasonic flaw detector according to Embodiment 1 of the present invention.

【図2】本発明の実施形態1に係る図1と異なる超音波
探触子の例を示す図である。
FIG. 2 is a diagram illustrating an example of an ultrasonic probe different from FIG. 1 according to the first embodiment of the present invention.

【図3】本発明の実施形態2に係る超音波探傷装置の構
成図である。
FIG. 3 is a configuration diagram of an ultrasonic flaw detector according to Embodiment 2 of the present invention.

【図4】本発明に係る斜角探傷時の仮想振動子開口幅の
説明図である。
FIG. 4 is an explanatory diagram of a virtual vibrator opening width during oblique flaw detection according to the present invention.

【図5】振動素子開口幅を変化させ、超音波音場を収束
制御した場合としない場合での超音波ビーム広がりの測
定例を示す図である。
FIG. 5 is a diagram showing an example of measuring the spread of an ultrasonic beam in a case where the aperture width of a vibrating element is changed and convergence control is performed on an ultrasonic sound field.

【符号の説明】[Explanation of symbols]

1 振動素子 2 くさび 3 ダンパ材 4 斜角アレイ探触子 4A 垂直アレイ探触子 5 パルサ群 6 送信用遅延時間制御器 7 受信用遅延時間制御器 8 受信器 9 制御装置 10 データ処理装置 11 パソコン DESCRIPTION OF SYMBOLS 1 Vibration element 2 Wedge 3 Damper material 4 Angled array probe 4A Vertical array probe 5 Pulser group 6 Transmission delay time controller 7 Reception delay time controller 8 Receiver 9 Control device 10 Data processing device 11 Personal computer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 斜角探傷用くさびを介して被検体探傷面
より超音波を屈折入射させて被検体の探傷を行う超音波
探傷方法において、 前記斜角探傷用くさびの傾斜面に複数の振動素子をアレ
イ状に配列し、くさび傾斜方向における前記複数の各振
動素子の幅及び間隔の総和で決まる振動素子開口幅D
は、前記被検体探傷面における超音波の入射角をα、屈
折角をθ、斜角探傷範囲または斜角探傷の対象位置によ
り決定されるビーム路程をL、被検体内を伝搬する超音
波の振動素子の公称周波数における波長をλn とする
と、次式(A)を満足するように設定することを特徴と
する超音波探傷方法。 【数1】
1. An ultrasonic flaw detection method in which ultrasonic waves are refracted from a flaw detection surface of an object via a wedge for flaw detection to perform flaw detection on the object, wherein a plurality of vibrations are formed on an inclined surface of the wedge for the flaw detection. The elements are arranged in an array, and a vibrating element opening width D determined by the sum of the widths and intervals of the plurality of vibrating elements in the wedge tilt direction.
Is the incident angle of the ultrasonic wave on the inspection surface of the subject is α, the refraction angle is θ, the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection is L, and the ultrasonic wave propagating in the subject is An ultrasonic flaw detection method characterized by setting the wavelength at a nominal frequency of a vibrating element to be λ n so as to satisfy the following expression (A). (Equation 1)
【請求項2】 前記複数の各振動素子をそれぞれ励振す
る際に、前記複数の各振動素子毎にその励振タイミング
を制御し、また前記複数の各振動素子がそれぞれ受波し
た信号を合成する際に、前記複数の各振動素子毎の受波
信号の合成タイミングを制御し、前記被検体内に形成さ
れる超音波音場を所望の形状とするように制御すること
を特徴とする請求項1記載の超音波探傷方法。
2. When exciting each of the plurality of vibrating elements, controlling excitation timing of each of the plurality of vibrating elements, and synthesizing signals received by each of the plurality of vibrating elements. 2. The method according to claim 1, further comprising: controlling a synthesis timing of a received signal for each of the plurality of vibrating elements so as to control an ultrasonic sound field formed in the subject to have a desired shape. The described ultrasonic flaw detection method.
【請求項3】 被検体探傷面より超音波を垂直に入射さ
せて被検体の探傷を行う超音波探傷方法において、 前記被検体探傷面に複数の振動素子をアレイ状に配列
し、振動素子配列方向における前記複数の各振動素子の
幅及び間隔の総和で決まる振動素子開口幅Dは、前記被
検体の探傷範囲または対象とする探傷位置により決定さ
れる探傷面からの深さをd、被検体内を伝搬する超音波
の振動素子の公称周波数における波長をλ n とすると、
次式(B)を満足するように設定することを特徴とする
超音波探傷方法。 【数2】
3. Ultrasonic waves are perpendicularly incident from a flaw detection surface of an object.
In the ultrasonic flaw detection method for flaw detection of a subject, a plurality of vibrating elements are arranged in an array on the flaw detection surface of the subject.
And a plurality of the vibrating elements in the vibrating element array direction.
The vibration element opening width D, which is determined by the sum of the width and the interval,
Determined by the flaw detection area of the specimen or the flaw detection position of interest
The ultrasonic wave propagating in the subject, where d is the depth from the inspection surface
Wavelength at the nominal frequency of the vibrating element n Then
The setting is made so as to satisfy the following equation (B).
Ultrasonic flaw detection method. (Equation 2)
【請求項4】 前記複数の各振動素子をそれぞれ励振す
る際に、前記複数の各振動素子毎にその励振タイミング
を制御し、また前記複数の各振動素子がそれぞれ受波し
た信号を合成する際に、前記複数の各振動素子毎の受波
信号の合成タイミングを制御し、前記被検体内に形成さ
れる超音波音場を所望の形状とするように制御すること
を特徴とする請求項3記載の超音波探傷方法。
4. When exciting each of the plurality of vibrating elements, controlling the excitation timing of each of the plurality of vibrating elements, and synthesizing signals received by the plurality of vibrating elements, respectively. 4. The method according to claim 3, further comprising: controlling a synthesis timing of a received signal for each of the plurality of vibrating elements to control an ultrasonic sound field formed in the subject to have a desired shape. The described ultrasonic flaw detection method.
【請求項5】 斜角探傷用くさびを介して被検体探傷面
より超音波を屈折入射させて被検体の探傷を行う超音波
探傷装置において、 前記斜角探傷用くさびの傾斜面に複数の振動素子をアレ
イ状に配列し、くさび傾斜方向における前記複数の各振
動素子の幅及び間隔の総和で決まる振動素子開口幅D
は、前記被検体探傷面における超音波の入射角をα、屈
折角をθ、斜角探傷範囲または斜角探傷の対象位置によ
り決定されるビーム路程をL、被検体内を伝搬する超音
波の振動素子の公称周波数における波長をλn とする
と、次式(A)を満足するように構成した斜角探触子
と、 前記斜角探触子の複数の各振動素子毎に供給する励振パ
ルスのタイミングを個別に制御し、また前記斜角探触子
の複数の各振動素子毎の受波信号を合成するタイミング
を個別に制御し、前記被検体内に形成される超音波音場
を所望の形状とするように制御する音場制御手段とを備
えたことを特徴とする超音波探傷装置。 【数3】
5. An ultrasonic flaw detector for detecting a subject by refracting ultrasonic waves from a flaw detection surface through a wedge for bevel flaw detection, wherein a plurality of vibrations are formed on an inclined surface of the wedge for bevel flaw detection. The elements are arranged in an array, and a vibrating element opening width D determined by the sum of the widths and intervals of the plurality of vibrating elements in the wedge tilt direction.
Is the incident angle of the ultrasonic wave on the inspection surface of the subject is α, the refraction angle is θ, the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection is L, and the ultrasonic wave propagating in the subject is Assuming that the wavelength at the nominal frequency of the vibrating element is λ n , an oblique probe configured to satisfy the following expression (A), and an excitation pulse supplied to each of the plurality of vibrating elements of the oblique probe Individually controlling the timing of combining the received signals of the plurality of vibrating elements of the oblique probe, and controlling the ultrasonic sound field formed in the subject. An ultrasonic flaw detector comprising: a sound field control means for controlling a shape of the ultrasonic flaw. (Equation 3)
【請求項6】 被検体探傷面より超音波を垂直に入射さ
せて被検体の探傷を行う超音波探傷装置において、 前記被検体探傷面に複数の振動素子をアレイ状に配列
し、振動素子配列方向における前記複数の各振動素子の
幅及び間隔の総和で決まる振動素子開口幅Dは、前記被
検体の探傷範囲または対象とする探傷位置により決定さ
れる探傷面からの深さをd、被検体内を伝搬する超音波
の振動素子の公称周波数における波長をλ n とすると、
次式(B)を満足するように構成した垂直探触子と、 前記垂直探触子の複数の各振動素子毎に供給する励振パ
ルスのタイミングを個別に制御し、また前記垂直探触子
の複数の各振動素子毎の受波信号を合成するタイミング
を個別に制御し、前記被検体内に形成される超音波音場
を所望の形状とするように制御する音場制御手段とを備
えたことを特徴とする超音波探傷装置。 【数4】
6. An ultrasonic wave is vertically incident on a flaw detection surface of an object.
An ultrasonic flaw detector that performs flaw detection of a subject by arranging a plurality of vibrating elements in an array on the flaw detection surface of the subject.
And a plurality of the vibrating elements in the vibrating element array direction.
The vibration element opening width D, which is determined by the sum of the width and the interval,
Determined by the flaw detection area of the specimen or the flaw detection position of interest
The ultrasonic wave propagating in the subject, where d is the depth from the inspection surface
Wavelength at the nominal frequency of the vibrating element n Then
A vertical probe configured to satisfy the following expression (B); and an excitation pad supplied to each of a plurality of vibrating elements of the vertical probe.
The timing of the lus individually and the vertical probe
For synthesizing the received signals for each of the multiple vibrating elements
Are individually controlled, and an ultrasonic sound field formed in the subject
Sound field control means for controlling the sound to a desired shape.
An ultrasonic flaw detector characterized by the following. (Equation 4)
JP2000000206A 1999-06-22 2000-01-05 Ultrasonic flaw detection method and apparatus Expired - Lifetime JP3606146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000000206A JP3606146B2 (en) 1999-06-22 2000-01-05 Ultrasonic flaw detection method and apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-175225 1999-06-22
JP17522599 1999-06-22
JP2000000206A JP3606146B2 (en) 1999-06-22 2000-01-05 Ultrasonic flaw detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2001066294A true JP2001066294A (en) 2001-03-16
JP3606146B2 JP3606146B2 (en) 2005-01-05

Family

ID=26496558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000000206A Expired - Lifetime JP3606146B2 (en) 1999-06-22 2000-01-05 Ultrasonic flaw detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3606146B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088913A (en) * 2018-01-09 2018-05-29 东莞理工学院 For the piezoelectric supersonic guided wave probe of rail flange of rail flaw detection and its method of detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088913A (en) * 2018-01-09 2018-05-29 东莞理工学院 For the piezoelectric supersonic guided wave probe of rail flange of rail flaw detection and its method of detection
CN108088913B (en) * 2018-01-09 2023-08-25 东莞理工学院 Piezoelectric ultrasonic guided wave probe for flaw detection of steel rail bottom and flaw detection method thereof

Also Published As

Publication number Publication date
JP3606146B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
JP5721770B2 (en) Ultrasonic flaw detection method and apparatus
JP5841026B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
EP2546641B1 (en) Ultrasonic flaw detector and ultrasonic flaw detection method for objects having a complex surface shape
JP5306919B2 (en) Ultrasonic flaw detection method and apparatus
US11408861B2 (en) Transducer and transducer arrangement for ultrasonic probe systems, ultrasonic probe system and inspection method
JP3606132B2 (en) Ultrasonic flaw detection method and apparatus
JP3635453B2 (en) Ultrasonic shear wave oblique angle flaw detection method and apparatus
WO2020250379A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JP4633268B2 (en) Ultrasonic flaw detector
JP3606146B2 (en) Ultrasonic flaw detection method and apparatus
JP2019078558A (en) Reference test piece and supersonic phased array flaw testing method
JP2501488B2 (en) Ultrasonic testing of pipes
JP2006313115A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
JPS6228869B2 (en)
JP2001255308A (en) Method and apparatus for ultrasonic flaw detection
JP2002195986A (en) Ultrasonic array probe and ultrasonic testing method
JP2000131297A (en) Leakage elastic surface wave measuring probe
JPH07253414A (en) Method and apparatus for ultrasonic flaw detection
JPS6356946B2 (en)
JPH0545346A (en) Ultrasonic probe
JP2612890B2 (en) Ultrasonic flaw detection method
JPS6066159A (en) Electronic scanning type transverse wave diagonal angle probe and non-destructive inspecting method using said probe
JPS597260A (en) Method and device for ultrasonic flaw detection
JPH0862191A (en) Method and apparatus for aperture synthesis of ultrasonic

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Ref document number: 3606146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

EXPY Cancellation because of completion of term