JPS597260A - Method and device for ultrasonic flaw detection - Google Patents

Method and device for ultrasonic flaw detection

Info

Publication number
JPS597260A
JPS597260A JP57116435A JP11643582A JPS597260A JP S597260 A JPS597260 A JP S597260A JP 57116435 A JP57116435 A JP 57116435A JP 11643582 A JP11643582 A JP 11643582A JP S597260 A JPS597260 A JP S597260A
Authority
JP
Japan
Prior art keywords
ultrasonic
probe
wave
waves
electronic scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57116435A
Other languages
Japanese (ja)
Other versions
JPH0161181B2 (en
Inventor
Taiji Hirasawa
平沢 泰治
Kuniharu Uchida
内田 邦治
Ichiro Furumura
古村 一朗
Satoshi Nagai
敏 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57116435A priority Critical patent/JPS597260A/en
Priority to US06/510,834 priority patent/US4497210A/en
Publication of JPS597260A publication Critical patent/JPS597260A/en
Publication of JPH0161181B2 publication Critical patent/JPH0161181B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor
    • G10K11/346Circuits therefor using phase variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • G01S7/52063Sector scan display

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To estimate the angle of inclination of a flaw by using an array type probe for electronic scanning as a probe for wave transmission and reception, making parallel beams incident deflectively to the flaw direction after detecting the position of the flaw, and receiving the reflected wave by sectorial scanning. CONSTITUTION:The respective ultrasonic oscillators of an array type probe 1 for wave transmission and reception juxtaposed with plural pieces of ultrasonic oscillators are electrically coupled to an ultrasonic transmitter group 2 for excitation and an ultrasonic receiver group 3 which amplifies the received outputs of the reflected waves respectively. The group 2 and the group 3 are coupled to a controller 4 for delay time which determines the beam direction of the ultrasonic waves by selecting the ultrasonic oscillator groups for receiving ultrasonic waves changing momentarily and controlling the timings for wave transmission and the timings for wave reception. Parallel beams UBt are made incident to a flaw part TG having certain inclination and the waves reflected thereof are received by sectorial scanning Ss. When the sectorial scanning is accomplished so as to be perpendicular to the wave reception plane from the part TG, the reception level of the reflected waves is maximized; therefore, the inclination of the flaw part is estimated.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、金属、非金属月料の欠陥の探傷を超音波によ
勺行う超音波探傷方法および装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ultrasonic flaw detection method and apparatus for detecting defects in metals and non-metal materials using ultrasonic waves.

〔発明の技術的背景〕[Technical background of the invention]

構造物に内部欠陥があると、その欠陥部分に過大々?1
?T重が作用した場合、欠陥部分が大きく成長して構造
物の破損など重大事故の原因となる。従って、内部欠陥
の探傷を行って事前にこれの発見に務める。内部欠陥探
傷においては欠陥の形状及び寸法の測定は重要な項目で
ある。
If there is an internal defect in a structure, will the defect be excessively large? 1
? When a T-weight acts on the structure, the defective part will grow and cause serious accidents such as damage to the structure. Therefore, it is necessary to detect internal defects in advance. In internal defect detection, measuring the shape and size of defects is an important item.

従来、構造物の内部欠陥探傷には、超音波ビームを欠陥
部に入射させ、欠陥部での反射エコーを受波するために
、送信用斜角探触子を手動走査させながら、受信用斜角
探触子を手動走査させ、欠陥部からの反射エコーを高感
度で検出し、前記両探触子の相対位置から欠陥の傾き角
を推定する方法がとられており、かなりの時間が費やさ
れていた。
Conventionally, for internal defect detection in structures, an ultrasonic beam is incident on the defective part, and in order to receive the reflected echo at the defective part, the transmitting angle probe is manually scanned while the receiving angle probe is manually scanned. The method used is to manually scan the angle probe, detect the reflected echo from the defect with high sensitivity, and estimate the tilt angle of the defect from the relative position of both probes, which takes a considerable amount of time. He was healed.

さらに、従来の方法では、使用する斜角探触子の超音波
ビーム入射角が任意に選定し得々いため、被検体の形状
によっては、欠陥の傾き角に応じた適正な入射角と探触
子位置を選定できなかつたため、推定精度も十分ではな
かった。
Furthermore, in the conventional method, it is not possible to arbitrarily select the incident angle of the ultrasonic beam of the angle probe used, so depending on the shape of the object, it is difficult to select the appropriate incident angle and probe depending on the inclination angle of the defect. Since the location could not be selected, the estimation accuracy was not sufficient.

〔発明の目的〕 本発明は上記事情に鑑みて成されたもので、探触子を任
意の位置に固定して探傷することができ、しかも被検体
の形状に関係なく内部欠陥部分の傾き角が精度良く推定
でき、しかも探傷を短時間に行い得るようにした超音波
探傷方法および装置を提供することを目的とする。
[Object of the Invention] The present invention has been made in view of the above circumstances, and it is possible to perform flaw detection by fixing the probe at an arbitrary position, and also allows the inclination angle of the internal defect to be fixed regardless of the shape of the object to be inspected. It is an object of the present invention to provide an ultrasonic flaw detection method and apparatus that can estimate with high accuracy and perform flaw detection in a short time.

〔発明の概要〕[Summary of the invention]

即ち、本発明は上記目的を達成するため、超音波探傷に
おいて、電子走査用のアレ1型探触子を送・受信用探触
子として使用し、探触子を被検体表面上で任意に移動さ
せで、或いは定位置で扇形電子走査により欠陥を検知し
たのち、探触子から平行な超音波ビームを欠陥方向に偏
向させて入射し、欠陥からの反射波を扇形走査させて受
信し、その感度が最大のところを検出することにより、
欠陥の傾き角を推定するようにする。
That is, in order to achieve the above object, the present invention uses an array type 1 probe for electronic scanning as a transmitting/receiving probe in ultrasonic flaw detection, and arbitrarily moves the probe on the surface of the object. After detecting a defect by moving or in a fixed position by fan-shaped electronic scanning, a parallel ultrasonic beam is deflected from the probe toward the defect and is incident, and the reflected wave from the defect is received by scanning in a fan-shaped manner. By detecting the point where the sensitivity is maximum,
Try to estimate the tilt angle of the defect.

即ち、本発明は、アレイ型探触子を送受信用探触子とし
て用い、このアレイ型探触子の励振を制御して電子走査
法により内部欠陥に超音波平行ビームを入射し、これに
よシ前記内部欠陥から反射される反射波は、欠陥の傾き
の法線に対して入射角と等しい反射角で法線の反対側に
強く反射されるが、一部の反射波成分は欠陥面で種々の
方向に散乱する点に着目し、反射波として入射波と同一
の経路を通過するものに注目している。即ち、内部欠陥
に対し平行ビームを送信し、受信は扇形走査により行っ
て前記一部反射波の受波方向を電子走査法によシ扇形走
査させて受信して各超音波振動子の加算波形の最高感度
下で内部欠陥の傾き角の推定を行うようにする。
That is, the present invention uses an array type probe as a transmitting/receiving probe, controls the excitation of this array type probe, and injects a parallel ultrasonic beam into an internal defect using an electronic scanning method. The reflected wave reflected from the internal defect is strongly reflected to the opposite side of the normal to the defect's slope at a reflection angle equal to the incident angle, but some reflected wave components are reflected from the defect surface. We focus on points that are scattered in various directions, and focus on reflected waves that pass through the same path as the incident wave. That is, a parallel beam is transmitted to the internal defect, reception is performed by fan-shaped scanning, and the reception direction of the partially reflected wave is fan-shaped scanned using an electronic scanning method to obtain the summed waveform of each ultrasonic transducer. The inclination angle of the internal defect is estimated under the highest sensitivity.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照しガから説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

本発明は電子スキャン(電子定置)方式の超音波装置を
用い、探傷を行うものである。ここで電子短資方式とは
複数の超音波振動子を並列に配設した超音波探触子を用
い、リニア電子スギ−Vン・モードであれば前記超音波
振111子を複数素子で1単位としてこの1単位の超音
波振動子について励振を行い、超音波発振を行う。
The present invention uses an electronic scanning (electronic stationary) type ultrasonic device to perform flaw detection. Here, the electronic tanshi method uses an ultrasonic probe with multiple ultrasonic transducers arranged in parallel, and in the linear electronic sugin mode, the ultrasonic transducer 111 is used as one unit with multiple elements. This unit of ultrasonic transducer is excited to generate ultrasonic oscillation.

そして、例えば順次1振動子分ずつピッチをずら[7て
励振してゆくことによシ、超音波ビームの発振位置を電
、予約にずらしてゆくものである。
For example, by sequentially shifting the pitch by one oscillator [7] and excitation, the oscillation position of the ultrasonic beam is shifted in an orderly manner.

そして、1召音波ビームがビームとして収束するように
励I辰される超音波振動子はビームの中心側に位置する
ものと側方に位置するものでは励振のタイミングをずら
し、これによって生ずる超音波振動子の各発生超音波の
位相差を利用して放射される超音波を集束させる。(こ
れを電子フォーカスと云う)。
The ultrasonic transducers that are excited so that the one-wave sound beam converges as a beam are shifted in excitation timing between those located toward the center of the beam and those located to the sides. The emitted ultrasonic waves are focused using the phase difference between the ultrasonic waves generated by each vibrator. (This is called electronic focus).

また、セクタ電子スキャン(扇形走査)・モードであれ
ば励振させる1単位の超音波振%iJ+子群に対し、超
音波ビームの放射方向が超音波ビーム1パルス分毎にJ
IN次扇状に変るように各振動子の励振タイミングを方
向に応じて変化させてゆく。
In addition, in the sector electronic scan (fan-shaped scan) mode, for one unit of ultrasonic vibration %iJ + child group to be excited, the radiation direction of the ultrasonic beam is J for every one pulse of the ultrasonic beam.
The excitation timing of each vibrator is changed according to the direction so as to change in a fan-like manner.

このような重子走査方式の超音波装置は励振させた超音
波振動子にて超音波エコーを捕え、これを電気信号に変
換して超音波像を得る。
Such a multiplex scanning type ultrasound device captures ultrasound echoes using an excited ultrasound transducer, converts them into electrical signals, and obtains ultrasound images.

本発明の一実施例を第1図に示す。第1図は本発明によ
る電子走査型超音波探傷装置の構成を示すブロック図で
あり、図中1は超音波を送受する超音波振動子を複数個
並設した構成の送受波相アレイ型探触子1であり、この
送受波相アレ1型探触子1の各超音波振動子は超音波励
振用の超音波発信器群2と超音波の反射波を受信出力を
それぞれ増幅する超音波受信器群3に電気的に結合され
ている。ここで、超音波発信器群2を構成する超音波発
信器および超音波受信器群3を構成する超音波受信器は
、それぞれ送・受波用アレイ掠触子内の縫音波振動子数
に対応した数だけ用意されている。
An embodiment of the present invention is shown in FIG. FIG. 1 is a block diagram showing the configuration of an electronic scanning type ultrasonic flaw detection device according to the present invention. Each ultrasonic transducer of this transmitting/receiving phase array type 1 probe 1 has an ultrasonic transmitter group 2 for excitation of ultrasonic waves and an ultrasonic wave generator for amplifying the received output of reflected waves of ultrasonic waves. It is electrically coupled to receiver group 3. Here, the ultrasonic transmitters constituting the ultrasonic transmitter group 2 and the ultrasonic receivers constituting the ultrasonic receiver group 3 correspond to the number of sonic wave transducers in the wave transmitting/receiving array probe. Only the corresponding number is available.

前記超音波発信器群2と超音波受信器群3は、時々刻々
変える超音波送受信用の超音波振動子群の選定と各超音
波振動子への超音波発信時間タイミングおよび超音波受
信時間タイミングを制卸し、超音波のビーム方向を決定
する遅延時間制御器4に結合されている。とくに、受信
時においては、前記遅延時間制御器4の信号に応じて、
各超音波振動子からの受信号超音波波形を遅延し、各超
音波振動子が検出する同一方向、同一の深さ位置からの
信号を加算できるようにして扇形走査による受信をでき
るようにしたことおよびこの加算した波形を記憶するこ
とを可能とした遅延加算器5により、加算超音波波形を
得ることを可能としている。
The ultrasonic transmitter group 2 and the ultrasonic receiver group 3 select the ultrasonic transducer group for transmitting and receiving ultrasonic waves that changes from time to time, and the ultrasonic transmission time timing and ultrasonic reception time timing to each ultrasonic transducer. It is coupled to a delay time controller 4 which controls the ultrasonic beam direction and determines the beam direction of the ultrasonic wave. In particular, during reception, depending on the signal from the delay time controller 4,
The received signal ultrasonic waveform from each ultrasonic transducer is delayed, and the signals detected by each ultrasonic transducer from the same direction and the same depth position can be added to enable reception by fan-shaped scanning. In addition, the delay adder 5, which is capable of storing the added waveform, makes it possible to obtain the added ultrasonic waveform.

さらに、扇形走査させて得られた波形の中で、最大感度
を示す加算波形を検出して取り出し、検波増幅器6で検
波および増幅させたのち画像表示装置例えばブラウン管
7に加算波形を表示させるとともに、検波増幅器6で所
定の超音波ビーム路程範囲にゲートを付して従来同様の
使用法をも可能にしている。
Furthermore, among the waveforms obtained by fan-shaped scanning, the summation waveform exhibiting the maximum sensitivity is detected and extracted, and after being detected and amplified by the detection amplifier 6, the summation waveform is displayed on an image display device, for example, a cathode ray tube 7, and A gate is attached to a predetermined ultrasonic beam path range by the detection amplifier 6, thereby making it possible to use the same method as in the conventional method.

また、8は信号処理器であり、この信号処理器8は、超
音波の音速、遅延時間から欠陥の傾き角を演算し、それ
らの結果を表示器9に表示することを可能としている。
Moreover, 8 is a signal processor, and this signal processor 8 calculates the inclination angle of the defect from the sound velocity and delay time of the ultrasonic wave, and makes it possible to display the results on the display 9.

尚、人は被検体、TGは欠陥部である。Note that the person is the subject and the TG is the defective part.

次に、本発明の作用例を第2図を参照して説明する。卯
、2図において、本発明の装置によれは、遅延時間制御
器4によシ駆動させるべき一群の超音波振動子の各々の
動作タイミングを電子走査のモードに応じて制卸し、こ
れによって超音波発信器群2の各発信器及び超音波受信
群3の各受信器を制卸して各超音波振動子の送受信タイ
ミングを制御することにより、超音波送信方向を任意に
電子走査させることを可能としているため、探触子1を
被検体面上で任意に移動させて、欠陥部TGを検知した
のち、欠陥部TGに対して超音波ビームを任意の角度で
送波することができる。また、受波時には各超音波振動
子の受信信号をそれぞれ送波時と異なる適宜々遅延時間
を力えて遅延させ同一方向・同−深さから得た受信信号
が同一タイミングで得られるようにしてこれを加算する
ことにより送波時のビーム方向と異なる方向にビームラ
ミ子短資したことと同様な効果が得られ、送受の走査モ
ードをそれぞれ異なるものとすることができる。
Next, an example of the operation of the present invention will be explained with reference to FIG. 2. In Fig. 2, the device of the present invention controls the operation timing of each of the group of ultrasonic transducers to be driven by the delay time controller 4 according to the mode of electronic scanning, and thereby By controlling each transmitter of the sonic wave transmitter group 2 and each receiver of the ultrasonic receiver group 3 and controlling the transmission/reception timing of each ultrasonic transducer, it is possible to electronically scan the ultrasound transmission direction arbitrarily. Therefore, after detecting the defective part TG by moving the probe 1 arbitrarily on the surface of the subject, it is possible to transmit the ultrasonic beam to the defective part TG at an arbitrary angle. In addition, when receiving waves, the received signals of each ultrasonic transducer are delayed by applying an appropriate delay time different from that during transmitting, so that the received signals obtained from the same direction and the same depth are obtained at the same timing. By adding these values, an effect similar to that obtained by directing the beam laminate in a direction different from the beam direction during wave transmission can be obtained, and the scanning modes for transmission and reception can be made different.

従って木装置ではある傾きをもった欠陥部TGに対して
、探触子1の各振動子から超音波の平行ビームUBtを
欠陥部TGに入射させ、欠陥部TGからの平行ビームの
反射波を受信時に扇形走査SSさせて受信する。即ち、
遅延加算器5にて各撰動子の出力する各受4P出力をそ
れぞれ各振動子位置に対応して遅延させて同−深さから
の信号が加算できるようにして加算し、これにより1つ
の波形にすることによって、検波増幅器6で最適加算波
形を検波、増幅して、ブラウン管7に表示させる。
Therefore, in the wooden device, a parallel beam of ultrasonic waves UBt from each transducer of the probe 1 is made incident on the defective part TG with a certain inclination, and the reflected wave of the parallel beam from the defective part TG is reflected from the defective part TG. At the time of reception, the data is received by performing fan-shaped scanning SS. That is,
In the delay adder 5, the outputs of each receiver 4P output from each transducer are delayed in accordance with each transducer position, so that the signals from the same depth can be added, and are added together. By converting it into a waveform, the detection amplifier 6 detects and amplifies the optimal summed waveform, and displays it on the cathode ray tube 7.

ブラウン管7上において、前駅扇形短資により欠陥から
受信した超音波ビームの加算波形の感度が最大となるよ
うに1.たときの遅延時間は、欠陥部TGからの受波面
に垂直になるように扇形走査して受信したときの遅延時
間と一致しておシ、従って欠陥の像または欠陥からの超
音波反射波の信号レベルの最大レベルを検出してそのと
きの前記遅延時間のデータと超音波の音速データを信号
処理器8に与えて、この信号処理器8VC第1式を演算
させ、その演算値から欠陥部TGの傾き角αを得て表示
器9に表示させる。
1. On the cathode ray tube 7, the sensitivity of the summed waveform of the ultrasonic beam received from the defect is maximized by the front fan-shaped tanshi. The delay time when received is the same as the delay time when receiving by fan-shaped scanning perpendicular to the wave receiving surface from the defective part TG. After detecting the maximum level of the signal level, the delay time data and ultrasonic sound speed data at that time are given to the signal processor 8, the signal processor 8 calculates the first equation VC, and the defective part is detected from the calculated value. The tilt angle α of the TG is obtained and displayed on the display 9.

本発明によれば、このときの欠陥の傾き角αは、第3図
に基づいて考察すると次式で与えられる。
According to the present invention, the inclination angle α of the defect at this time is given by the following equation when considered based on FIG.

C・Δt α七Co5−’ −―拳−・・赤口・・(1)ここで、
αは欠陥TGの傾き角、aは受波した任意の振動子間の
距離、Cは被検体A中の超音波の音速、Δtは上記扇形
走査によって求められた加算波形の感度が最大となる時
の反射エコーの前記任意の振動子間における到達時間差
即ち前記遅延時間である。
C・Δt α7Co5−' --Fist−・Akaguchi・(1) Here,
α is the inclination angle of the defect TG, a is the distance between arbitrary transducers that received the wave, C is the sound speed of the ultrasonic wave in the object A, and Δt is the maximum sensitivity of the added waveform obtained by the fan-shaped scan described above. This is the arrival time difference between the arbitrary oscillators of the reflected echo at time, that is, the delay time.

尚、第3図中vEは欠陥TOからの反射エコーであり、
U B Fは欠陥TOからの反射エコーの反射波面であ
る。
In addition, vE in Fig. 3 is the reflected echo from the defect TO,
U BF is the reflected wavefront of the reflected echo from the defect TO.

以上によ)本装置は探触子を被検体表面に接触させるだ
けで欠陥部TGの傾き角を晶精鹿且つ短時間に推定表示
できる。
Based on the above), this device can estimate and display the inclination angle of the defective portion TG accurately and in a short time simply by bringing the probe into contact with the surface of the object to be inspected.

尚、本発明の装置では、探触子Iを任意の位置に固定し
て探傷することより、欠陥BB T <)の傾き角が推
定可能であるため、被検体表面の形状変化にも十分対応
用能となっている。
In addition, with the device of the present invention, the inclination angle of the defect BB T <) can be estimated by fixing the probe I at an arbitrary position and performing flaw detection, so it can sufficiently cope with changes in the shape of the surface of the object to be inspected. It has become useful.

ところで、上記した本発明の実施例でシま、被検体A上
の任意の位置から探触子1を用いて欠陥部TGの傾き角
を推定しているが、第4図に矢印B、Oで示すように、
被検体Aの表面上で探触子1を種々の方向に移動させて
、前記同様の手法によシ、加算波形の感度が最大となる
ところを見つけて、欠陥部TGの傾き角を推定すること
も可能である。
By the way, in the above-described embodiment of the present invention, the inclination angle of the defective part TG is estimated using the probe 1 from an arbitrary position on the object A, but arrows B and O are shown in FIG. As shown in
Move the probe 1 in various directions on the surface of the object A, and use the same method as above to find the point where the sensitivity of the added waveform is maximum, and estimate the inclination angle of the defective part TG. It is also possible.

さらに、本発明の実施例では、欠陥部TGに対して平行
ビームUBtで送波し、欠陥部TGから反射される平行
ビームを受信側で扇形走査することによシ受信し、欠陥
、部TGの傾き角を推定しているが、第5図に示すよう
に送信波UBを欠陥部TGの任意の位置Pにフォーカス
させ、欠陥部TGからの反射波tJWを受信側で扇形走
査することよル、遅延時間、音速等から欠陥部TGの傾
き角を推定することなど、送波および受信側で平行ビー
ム、フォーカスビーム、扇形走査をわ々組みかえて、前
記同様の手法を用いて探傷すれば、欠陥部TGの傾き角
を推定することが可能となる。
Furthermore, in the embodiment of the present invention, the parallel beam UBt is transmitted to the defective part TG, and the parallel beam reflected from the defective part TG is received by scanning in a fan shape on the receiving side. In order to estimate the inclination angle of Flaw detection can be carried out using the same method described above, by changing the parallel beam, focused beam, and fan scanning on the transmitting and receiving sides, such as estimating the inclination angle of the defective part TG from the wave angle, delay time, sound velocity, etc. For example, it becomes possible to estimate the tilt angle of the defective portion TG.

また、超音波振動子を送信・受信用の2つに分割して、
前記同様の手法を用いて欠陥部TGの傾き角を推定する
ことも可能である。
In addition, the ultrasonic transducer is divided into two parts, one for transmitting and one for receiving.
It is also possible to estimate the inclination angle of the defective portion TG using a method similar to that described above.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば複数の超音波振動子
を並設した電子走査法による超音波ビーム送受用の探触
子と、この探触子の各超音波振動子の動作タイミングを
遅延制卸して一定方向に超音波ビームを送波させると共
に受波は各超音波振動子の受信出力を各々遅延させて加
算さぜることによシ扇形電子走査により行わせる411
]御手段と、受波した超音波の検出出力のうち被検体内
部欠陥部からの検出出力が最大レベルとなる時の前記探
触子における予め定めた二点の超音波振動子の前記受波
時の遅延時間差データをもとに扇形電子走査による受波
時の前記最大レベルとなる電子走査方向を求める手段と
、この求めた電子走査方向を表示する表示手段とよ多構
成し、被検体内の欠陥部に超音波平行ビームを入射させ
た際、前記欠陥部からの反射波は欠陥の傾きの法線に対
して入射角と等しく法線の反対側に強く反射されるが、
一部の反射波成分は欠陥面で種々の方向に散乱すると云
う点に着目し、雷、子走査法により扇形走査して欠陥部
からの反射波として最大のレベルとなる走査方向の角度
より欠陥部の傾きを知ることができることを利用して前
記制御手段によシ被検体中の欠陥に対して、任意の位置
における接触子から平行ビームを送波し、さらに受波な
扇形走査させて、欠陥の傾き角に応じた最大検出感度を
得ることができるようにし、またこのときの傾き角を前
記遅延時間のデータよル算出表示するようにしたので被
検体内の欠陥部の傾き角を容易且つ迅速に推定でき、さ
らに5本発明によれば、接触子を広範囲に移動させるこ
となく被検体表面の複雑な形状にも十分対応用能となり
、従来の探傷方法に比較しても、時間・精度の面で大幅
に向上する々どの特徴を有する超音波探傷方法および装
置を提供できる。
As detailed above, according to the present invention, there is provided a probe for transmitting and receiving ultrasonic beams using the electronic scanning method in which a plurality of ultrasonic transducers are arranged in parallel, and the operation timing of each ultrasonic transducer of this probe is controlled. The ultrasonic beam is transmitted in a fixed direction by controlling the delay, and the reception is performed by fan-shaped electronic scanning by delaying and adding the reception outputs of each ultrasonic transducer 411
] control means, and the reception of the ultrasonic transducer at two predetermined points on the probe when the detection output from the internal defect of the object among the detection output of the received ultrasonic waves reaches the maximum level. The system includes a means for determining the electronic scanning direction at which the maximum level is obtained when receiving waves by fan-shaped electronic scanning based on time delay time difference data, and a display means for displaying the determined electronic scanning direction. When a parallel ultrasonic beam is incident on a defective part, the reflected wave from the defective part is strongly reflected to the opposite side of the normal line, which is equal to the incident angle with respect to the normal line of the slope of the defect.
Focusing on the fact that some reflected wave components are scattered in various directions on the defect surface, we performed a fan-shaped scan using the lightning and child scanning method, and determined the angle in the scanning direction that gives the maximum level of reflected waves from the defect. Utilizing the fact that the inclination of the part can be known, the control means transmits a parallel beam from a contact at an arbitrary position to a defect in the object to be inspected, and further receives the wave in a fan-shaped scan, The maximum detection sensitivity can be obtained according to the tilt angle of the defect, and the tilt angle at this time is calculated and displayed based on the delay time data, making it easy to determine the tilt angle of the defect within the object. Furthermore, according to the present invention, it is possible to sufficiently deal with complex shapes on the surface of the object to be inspected without moving the contact over a wide range, and compared to conventional flaw detection methods, it takes less time and It is possible to provide an ultrasonic flaw detection method and apparatus having the following characteristics that greatly improve accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の構成図を示すブロック図、第2
図は本発明の方法の作用を説明するだめの図、第3図は
本発明の装置によって欠陥の傾き角を演算できることを
説明するための図。 第4回・第5図は本発明の詳細な説明するための図であ
る。 1・・・アレイ型探触子、2・・・超音波発信器群、3
・・・超音波受信器群、4・・・遅延時間I制御器、5
・・・遅延加算器、6・・・検波増幅器、7・・・ブラ
ウン管、8・・・信号処理器、g・・・表示器。 出願人代理人 弁理士 鈴 江 武 彦第1図
FIG. 1 is a block diagram showing the configuration of the device of the present invention, and FIG.
The figure is a diagram for explaining the operation of the method of the present invention, and FIG. 3 is a diagram for explaining that the inclination angle of a defect can be calculated by the apparatus of the present invention. The fourth part and FIG. 5 are diagrams for explaining the present invention in detail. 1... Array type probe, 2... Ultrasonic transmitter group, 3
...Ultrasonic receiver group, 4...Delay time I controller, 5
...Delay adder, 6...Detection amplifier, 7...Cathode ray tube, 8...Signal processor, g...Display device. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)複数の超音波振動子を並設した電子走査法による
超音波送受用の探触子を用い、この探触子によシ被検体
内の欠陥部に向けて一方向に超音波ビームを送波すると
ともに受波は扇形の電子走査により行い、前記被検体内
の欠陥からの反射波の受信信号が最大レベルとなる走査
方向よシ前記欠陥の傾き角を推定することを特徴とする
超音波探傷方法。
(1) Using a probe for transmitting and receiving ultrasonic waves using the electronic scanning method, in which multiple ultrasonic transducers are arranged in parallel, an ultrasonic beam is directed in one direction toward the defective part within the subject. The method is characterized in that the wave is transmitted and received by fan-shaped electronic scanning, and the inclination angle of the defect is estimated in the scanning direction in which the received signal of the reflected wave from the defect in the object has a maximum level. Ultrasonic flaw detection method.
(2)送波超音波は平行ビームを用いることを特徴とす
る特許請求の範囲第1項記載の超音波、 探傷方法。
(2) The ultrasonic flaw detection method according to claim 1, characterized in that the transmitted ultrasonic wave uses a parallel beam.
(3)送波超音波は欠陥部の任意の特定位置でフォーカ
スさせる−ことを特徴とする特許請求の範囲第1項記載
の超音波探傷方法。
(3) The ultrasonic flaw detection method according to claim 1, characterized in that the transmitted ultrasonic waves are focused at any specific position of the defective part.
(4)  複数の超音波振動子を並設した電子走査法に
よる超音波ビーム送受用の探触子と、この探触子の各超
音波振動子の動作タイミングを遅延制御して一定方向に
超音波ビームを送波させると共に受波は各超音波振動子
の受信出力音各々遅延させて加算させることにより扇形
電子走査によシ行わせる制卸手段と、受波した超音波の
検出出力のうち被検体内部欠陥部からの検出出力が最大
レベルとなる時の前記探触子における予め定めた二点の
超音波振動子の前記受波時の遅延時間差データをもとに
扇形電子走査による受波時の前記最大レベルとなる電子
走査方向を求める手段と、この求めた電子走査方向を表
示する表示手段とを備えたことを特徴とする超音波探傷
装置。
(4) A probe for transmitting and receiving ultrasonic beams using the electronic scanning method in which multiple ultrasonic transducers are arranged in parallel, and the operation timing of each ultrasonic transducer of this probe is delayed and controlled to transmit ultrasonic beams in a fixed direction. A control means for transmitting a sound wave beam and for receiving a sound wave by delaying and adding the received output sounds of each ultrasonic transducer by fan-shaped electronic scanning; Receiving waves by fan-shaped electronic scanning based on the delay time difference data of the ultrasonic transducer at two predetermined points on the probe when the detection output from the internal defect of the object reaches its maximum level. 1. An ultrasonic flaw detection apparatus comprising: means for determining an electronic scanning direction in which the maximum level is reached; and a display means for displaying the determined electronic scanning direction.
JP57116435A 1982-07-05 1982-07-05 Method and device for ultrasonic flaw detection Granted JPS597260A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57116435A JPS597260A (en) 1982-07-05 1982-07-05 Method and device for ultrasonic flaw detection
US06/510,834 US4497210A (en) 1982-07-05 1983-07-05 Phased array ultrasonic testing apparatus and testing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57116435A JPS597260A (en) 1982-07-05 1982-07-05 Method and device for ultrasonic flaw detection

Publications (2)

Publication Number Publication Date
JPS597260A true JPS597260A (en) 1984-01-14
JPH0161181B2 JPH0161181B2 (en) 1989-12-27

Family

ID=14687031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57116435A Granted JPS597260A (en) 1982-07-05 1982-07-05 Method and device for ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPS597260A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216051A (en) * 1983-05-23 1984-12-06 Hitachi Ltd Ultrasonic flaw detector using on-line variable convergent
JPS61206371A (en) * 1985-03-06 1986-09-12 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Line synchronization circuit and image display unit containing line deflection circuit
JP2009244079A (en) * 2008-03-31 2009-10-22 Tokyo Electric Power Co Inc:The Ultrasonic flaw detector for turbine blade implanted part and flaw detection method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576377A (en) * 1980-06-13 1982-01-13 Hitachi Ltd Multiplication array type ultrasonic wave searching device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576377A (en) * 1980-06-13 1982-01-13 Hitachi Ltd Multiplication array type ultrasonic wave searching device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216051A (en) * 1983-05-23 1984-12-06 Hitachi Ltd Ultrasonic flaw detector using on-line variable convergent
JPS61206371A (en) * 1985-03-06 1986-09-12 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Line synchronization circuit and image display unit containing line deflection circuit
JP2009244079A (en) * 2008-03-31 2009-10-22 Tokyo Electric Power Co Inc:The Ultrasonic flaw detector for turbine blade implanted part and flaw detection method using the same

Also Published As

Publication number Publication date
JPH0161181B2 (en) 1989-12-27

Similar Documents

Publication Publication Date Title
EP0545714A1 (en) Aberration correction using beam data from a phased array ultrasonic scanner
JP4808334B2 (en) Ultrasound-based quantitative motion measurement using speckle size estimation
EP0146073A2 (en) Ultrasonic diagnosing apparatus
JPH03188841A (en) Ultrasonic diagnostic device
US11408861B2 (en) Transducer and transducer arrangement for ultrasonic probe systems, ultrasonic probe system and inspection method
KR0180057B1 (en) Three dimensional image acquiring apparatus of ultrasonic system
US4702112A (en) Ultrasonic phase reflectoscope
JPH03500454A (en) Ultrasonic reflection transmission imaging method and device excluding artificial structures
JP2001108661A (en) Method and apparatus for ultrasonically detecting flaw
JPS6326343B2 (en)
JPS597260A (en) Method and device for ultrasonic flaw detection
JP4633268B2 (en) Ultrasonic flaw detector
JP2007327747A (en) Ultrasonic flaw inspection method and device
JPS6228869B2 (en)
JPH0619341B2 (en) Electronic scanning ultrasonic flaw detector
JP3202969B2 (en) Wave receiver
JPH1114611A (en) Electronic scanning system ultrasonic inspection equipment
JPS61253458A (en) Ultrasonic flaw detection
JP2612890B2 (en) Ultrasonic flaw detection method
JPS5960354A (en) Ultrasonic flaw detector
KR20210086323A (en) Device for inspecting defects using nondestructive method
JPS6367564A (en) Ultrasonic flaw detecting device
JPH0440360A (en) Ultrasonic flaw detecting method for composite material
JPS59109860A (en) Ultrasonic flaw detector
JP3088614B2 (en) Array flaw detection method and device therefor