JPH0619341B2 - Electronic scanning ultrasonic flaw detector - Google Patents
Electronic scanning ultrasonic flaw detectorInfo
- Publication number
- JPH0619341B2 JPH0619341B2 JP60252199A JP25219985A JPH0619341B2 JP H0619341 B2 JPH0619341 B2 JP H0619341B2 JP 60252199 A JP60252199 A JP 60252199A JP 25219985 A JP25219985 A JP 25219985A JP H0619341 B2 JPH0619341 B2 JP H0619341B2
- Authority
- JP
- Japan
- Prior art keywords
- transmission
- reception
- ultrasonic
- receiving
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】 [発明の技術分野] 本発明は、金属材料や非金属材料等の被検体内部の欠陥
を探傷する電子走査型超音波探傷装置に関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to an electronic scanning ultrasonic flaw detector for flaw detection inside a subject such as a metallic material or a non-metallic material.
[発明の技術的背景] 金属材料や非金属材料の被検体内部を検査する手段とし
て従来より超音波を用いた超音波探傷装置が一般に利用
されており、なかでも被検体内部の欠陥が被検体表面に
対し垂直な割れであるような場合には、第5図に示すよ
うに、超音波振動子1に楔2を取付けた斜角探触子を用
い、割れ4の面に対しできるだけ垂直に超音波ビーム5
を入射することのできる斜角探傷法が有利である。また
第6図(a)の斜視図及び第6図(c)のA−A方向の
断面図である第6図(b)に示すように、超音波送信用
および受信用それぞれ専用の超音波振動子1a,1b
を、楔2にとりつけた分割型斜角探触子において、送信
および受信超音波振動子1a,1bをお互いに若干傾む
け、探触子中心軸上でそれぞれの超音波ビーム5a,5
bを交叉させ、特定領域7の欠陥検出能を向上させる超
音波探傷方法も良く利用される。この探傷方法は、被検
体表面近傍の垂直な割れに対しても、超音波送受の合焦
領域が欠陥位置に合致した分割型斜角探触子を選定すれ
ば、通常の斜角探傷法に比らべ高い欠陥検出精度が得ら
れる。TECHNICAL BACKGROUND OF THE INVENTION An ultrasonic flaw detector using ultrasonic waves has been generally used as a means for inspecting the inside of a subject of a metallic material or a non-metallic material. When the crack is perpendicular to the surface, as shown in FIG. 5, an oblique probe with a wedge 2 attached to the ultrasonic transducer 1 is used to make the crack as perpendicular as possible to the surface of the crack 4. Ultrasonic beam 5
An oblique angle flaw detection method capable of incident light is advantageous. Further, as shown in FIG. 6 (b) which is a perspective view of FIG. 6 (a) and a sectional view taken along the line AA of FIG. 6 (c), ultrasonic waves dedicated for ultrasonic transmission and reception Transducer 1a, 1b
In the split-type bevel probe attached to the wedge 2, the transmitting and receiving ultrasonic transducers 1a and 1b are slightly tilted with respect to each other, and the ultrasonic beams 5a and 5b on the central axis of the probe, respectively.
An ultrasonic flaw detection method in which b is crossed to improve the defect detection capability of the specific area 7 is also often used. With this flaw detection method, even for vertical cracks near the surface of the subject, if a split-type bevel probe is selected so that the ultrasonic transmission / reception focusing area matches the defect position, it can be used as a normal bevel flaw detection method. Higher defect detection accuracy can be obtained.
しかしながら、その反面、第7図に示すようにlは距
離、Pを受信パワーとすると分割型探触子の距離振幅特
性は超音波送受の合焦領域でのみ反射超音波のレベルが
高く、それ以外では著しく反射超音波のレベルは小さく
なり、欠陥の検出能が悪いことを示している。従ってあ
らかじめ欠陥位置が予測できない場合には、超音波送・
受の合焦領域の異なる複数の探触子を用いる等により対
処せざるを得なく、作業性が悪くなるばかりか、検査精
度の維持を困難にしているという欠点を有していた。However, on the other hand, as shown in FIG. 7, when l is the distance and P is the reception power, the distance-amplitude characteristic of the split type probe shows that the level of reflected ultrasonic waves is high only in the focused region of ultrasonic wave transmission / reception. In other cases, the level of reflected ultrasonic waves was significantly reduced, indicating that the detectability of defects was poor. Therefore, if the defect position cannot be predicted in advance, ultrasonic wave transmission
There is no choice but to deal with the problem by using a plurality of probes having different focus areas, which not only deteriorates workability but also makes it difficult to maintain the inspection accuracy.
[発明の目的] 本発明は上記事情にもとづいてなされたものであり、被
検体の内部の欠陥が被検体表面に垂直な割れであって
も、またその欠陥がいかなる深さ位置にあっても良好な
探傷性能を有する電子走査型超音波探傷装置を提供する
ことを目的とする。[Object of the Invention] The present invention has been made based on the above-mentioned circumstances. Even if the defect inside the object is a crack perpendicular to the surface of the object, and the defect exists at any depth position. It is an object of the present invention to provide an electronic scanning ultrasonic flaw detector having good flaw detection performance.
[発明の概要] 上記目的を達成するため本発明による電子走査型超音波
探傷装置は、被検体に当てられて該被検体に送信超音波
ビームを送信し該放検体から反射した受信超音波ビーム
を受信するものであって、送信用超音波振動子群と受信
用超音波振動子群とが分離して配置してなるアレイ型2
分割探触子と、 前記被検体に送信される送信超音波ビームを発生するべ
く前記送信用超音波振動子群の各振動子夫々を送信駆動
する送信系と、 前記被検体から反射された受信超音波ビームを受信する
べく前記受信用超音波振動子群の各振動子夫々から受信
信号を受信する受信系と、 前記送信用超音波振動子群における送信開口を制御する
べく前記送信系における送信駆動される振動子数を制御
すると共に、送信超音波ビームの送信偏向角の変更制御
及び送信超音波ビームの送信集束点の変更制御を行なう
べく送信駆動される振動子の送信遅延量を制御し、前記
受信用超音波振動子群における受信開口を制御するべく
前記受信系における受信駆動される振動子数を制御する
と共に、受信超音波ビームの受信偏向角の変更制御及び
受信超音波ビームの受信集束点の変更制御を行なうべく
受信駆動される振動子の受信遅延量を制御する送受信制
御手段と、 前記被検体の超音波情報を得るべく、前記受信系を介し
て得られた受信信号を信号処理する信号処理系と、 前記送信及び受信集束点と前記送信及び受信開口とによ
る設定条件の変更に伴う受信信号の最大振幅値の変動を
補正するべく、予め測定して得られた前記送信及び受信
集束点と前記送信及び受信開口とによる設定条件毎の距
離振幅特性の最大振幅値に基づき、前記設定条件の変更
毎に、前記受信系から得られた受信信号の最大振幅値を
補正する振幅補正手段と、 前記信号処理系により得られた超音波情報を表示する表
示系と、 を具備することを特徴としている。[Summary of the Invention] In order to achieve the above object, an electronic scanning ultrasonic flaw detector according to the present invention is a reception ultrasonic beam which is applied to a subject, transmits a transmission ultrasonic beam to the subject, and reflects from the subject. And an array type 2 in which a transmitting ultrasonic transducer group and a receiving ultrasonic transducer group are separately arranged.
A division probe, a transmission system for transmitting and driving each transducer of the transmission ultrasonic transducer group to generate a transmission ultrasonic beam to be transmitted to the subject, and reception reflected from the subject. A reception system for receiving a reception signal from each transducer of the reception ultrasonic transducer group to receive an ultrasonic beam; and a transmission in the transmission system for controlling a transmission aperture in the transmission ultrasonic transducer group. In addition to controlling the number of transducers to be driven, it also controls the transmission delay amount of the transducers to be driven for transmission in order to change the transmission deflection angle of the transmission ultrasonic beam and control the transmission focusing point of the transmission ultrasonic beam. Controlling the number of transducers driven to be received in the receiving system to control the receiving aperture in the group of ultrasonic transducers for receiving, and changing the receiving deflection angle of the receiving ultrasonic beam and the receiving ultrasonic wave. Transmission / reception control means for controlling the reception delay amount of the transducer driven for reception to control the change of the reception focusing point of the system, and the reception obtained via the reception system in order to obtain the ultrasonic information of the subject. A signal processing system that performs signal processing on the signal, and was obtained in advance by measurement in order to correct the fluctuation of the maximum amplitude value of the received signal due to the change of the setting condition by the transmission and reception focusing points and the transmission and reception aperture. Based on the maximum amplitude value of the distance amplitude characteristic for each setting condition by the transmission and reception focusing point and the transmission and reception aperture, the maximum amplitude value of the reception signal obtained from the reception system is changed every time the setting condition is changed. It is characterized by comprising an amplitude correcting means for correcting, and a display system for displaying the ultrasonic wave information obtained by the signal processing system.
これらにより、超音波送波ビームおよび受波ビームのそ
れぞれの集束点位置を探触子の中心軸上の同一の点とし
た超音波の送・受信が可能になり、その時の超音波送・
受波ビームの集束領域における方位分解能特性および欠
陥検出感度特性は優れたものとなる。さらに超音波送波
・受波ビームの集束点位置を探触子の中心軸上で順次ず
らしながらくりかえし超音波の送受信を行なうと共に、
集束点位置が探触子面よれ近いときには、超音波の送・
受信に寄与する振動子群の数を少なくし、遠くなるにつ
れ振動子群の数を多くして超音波の送受信を行なうこと
により、探触子中心軸上のいかなる位置においても常に
集束された超音波ビームで探傷することが可能となり、
さらに、集束点位置に応じて超音波送受信における振動
子群の開口を変えるようにしたため、集束点位置にかか
わらず集束の強度を概略一定とすることができ、欠陥の
深さ位置にかかわらず安定した方位分解能特性および欠
陥検出感度特性が得られ、欠陥の検出能および欠陥位
置,寸法精度を高めることを可能とする。With these, it becomes possible to send and receive ultrasonic waves with the focusing point positions of the ultrasonic wave transmitting beam and the receiving wave beam at the same point on the central axis of the probe.
The lateral resolution characteristic and the defect detection sensitivity characteristic in the focused region of the received beam are excellent. Further, while repeatedly shifting the focusing point position of the ultrasonic wave transmitting / receiving beam on the central axis of the probe to transmit / receive ultrasonic waves,
When the focal point position is close to the probe surface, ultrasonic waves are transmitted.
By reducing the number of transducer groups that contribute to reception and increasing the number of transducer groups as the distance increases and transmits and receives ultrasonic waves, it is possible to always focus on the ultrasonic waves that are focused at any position on the center axis of the probe. It is possible to detect flaws with a sound beam,
Furthermore, the aperture of the transducer group in ultrasonic transmission and reception is changed according to the focal point position, so that the focusing intensity can be made approximately constant regardless of the focal point position, and stable regardless of the defect depth position. The azimuth resolution characteristic and the defect detection sensitivity characteristic are obtained, and it becomes possible to improve the detectability of the defect, the defect position, and the dimensional accuracy.
[発明の実施例] 以下、本発明の一実施例を図面にもとづいて詳細に説明
する。Embodiments of the Invention Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.
第1図は本発明にかかる電子走査型超音波探傷装置の一
実施例を示す構成図である。アレイ型2分割探触子20
は、1個の探触子の中に直線状に配列された超音波送信
専用の超音波振動子群1a及び受信専用の超音波振動子
群1bを並設してなり、送信専用の超音波振動子群1a
はそれぞれ送信パルスを発生する超音波送信器群21と
結合されており、この超音波送信器群21は送信遅延設
定器22からのパルス発生用トリガ信号によって全部の
あるいは数個の送信器を選定しそれぞれの対応する超音
波振動子1aへ送信パルスを送り、これに応答して超音
波振動子1aが超音波を送波するよう構成されている。
一方送信専用の超音波振動子1aより送波された超音波
は、被検体内部で反射され、受信専用の超音波振動子1
bに到達する。この受波専用の超音波振動子1bは超音
波の音圧変化に対応した電気信号を発生し、受信機能を
有するので、それぞれの受波専用の超音波振動子1bで
検出した受信信号は、それぞれに対応する超音波受信器
群23によって増幅された後、それぞれに対応するA/
D変換器24へ入力される。FIG. 1 is a block diagram showing an embodiment of an electronic scanning ultrasonic flaw detector according to the present invention. Array type two-division probe 20
Is an ultrasonic transducer group 1a dedicated to transmitting ultrasonic waves and an ultrasonic transducer group 1b dedicated to receiving ultrasonic waves, which are linearly arranged in one probe. Transducer group 1a
Are respectively coupled to an ultrasonic transmitter group 21 for generating a transmission pulse, and this ultrasonic transmitter group 21 selects all or several transmitters by a pulse generation trigger signal from a transmission delay setting unit 22. Then, a transmission pulse is sent to each corresponding ultrasonic transducer 1a, and in response to this, the ultrasonic transducer 1a is configured to transmit an ultrasonic wave.
On the other hand, the ultrasonic wave transmitted from the ultrasonic transducer 1a dedicated to transmission is reflected inside the subject, and the ultrasonic transducer 1 dedicated to reception is used.
reach b. The ultrasonic transducer 1b dedicated to receiving waves generates an electric signal corresponding to a change in sound pressure of ultrasonic waves and has a receiving function. After being amplified by the ultrasonic receiver group 23 corresponding to each, A /
It is input to the D converter 24.
このA/D変換器24は超音波信号を高速でディジタル
信号に変換するものであり、受信波形を忠実にディジタ
ル量に変換することができる。またA/D変換器24に
は、受信信号のディジタル変換の開始用トリガ信号が、
受信遅延設定器25からそれぞれ供給されている。この
トリガ信号を受けた全部のあるいは一部のA/D変換器
24はトリガ信号の入力時点に同期して超音波受信波形
がディジタル信号化される。The A / D converter 24 converts an ultrasonic signal into a digital signal at high speed, and can faithfully convert a received waveform into a digital amount. The A / D converter 24 receives a trigger signal for starting digital conversion of the received signal,
It is supplied from the reception delay setting device 25. All or some of the A / D converters 24 that have received this trigger signal convert the ultrasonic wave reception waveform into a digital signal in synchronization with the input time of the trigger signal.
信号制御器26は、受信遅延設定器25、送信遅延設定
器22に対して超音波受信にかかわる振動子群と送信に
かかわる振動子群とを選択し、あらかじめ設定した超音
波ビームの送波および受波方向、および集束点距離に応
じたトリガ信号出力のタイミングを与える。The signal controller 26 selects, for the reception delay setting device 25 and the transmission delay setting device 22, a transducer group related to ultrasonic wave reception and a transducer group related to transmission, and sets a preset ultrasonic wave transmission and The trigger signal output timing is given according to the receiving direction and the focal point distance.
また、各A/D変換器24の出力は加算メモリ27にデ
ィジタル波形加算されて記憶される。すなわちA/D変
換器24に一旦保持された超音波受信号のディジタル波
形は、ディジタル波形化された時点をそろえて各超音波
信号専用の振動子群1bによる受信信号がディジタル加
算されて記憶されることになる。これらの操作は信号制
御器26によって制御されている。加算メモリ27の加
算された受信波形は、信号処理器28に入力される。信
号処理器28はこの加算波形を検波し、検波波形にする
と共に、信号制御器26によりあらかじめ設定された振
幅補正データーにもとづき、検波波形の信号レベルを調
整し、CRT等の波形表示器29へ出力し、Aスコープ
を表示させる。本発明の最も特徴とする構成は、送受信
制御と受信信号の振幅補正にある。すなわち、本発明の
送受信制御は、送信用超音波振動子群1aにおける送信
開口を制御するべく超音波送信器群21における送信駆
動される振動子数を制御すると共に、送信超音波ビーム
の送信偏向角の変更制御及び送信超音波ビームの送信集
束点の変更制御を行なうべく送信駆動される振動子の送
信遅延量を制御する。また、同じく本発明の受信制御
は、受信用超音波振動子群1bにおける受信開口を制御
するべく超音波受信器群23における受信駆動される振
動子数を制御すると共に、受信超音波ビームの受信偏向
角の変更制御及び受信超音波ビームの受信集束点の変更
制御を行なうべく受信駆動される振動子の受信遅延量を
制御するものである。The outputs of the respective A / D converters 24 are added to the digital waveform and stored in the addition memory 27. That is, the digital waveform of the ultrasonic wave received signal once held in the A / D converter 24 is stored by digitally adding the received signals by the transducer group 1b dedicated to each ultrasonic wave signal at the same time when they are converted into digital waveforms. Will be. These operations are controlled by the signal controller 26. The received waveforms added by the addition memory 27 are input to the signal processor 28. The signal processor 28 detects the added waveform, converts it into a detected waveform, adjusts the signal level of the detected waveform based on the amplitude correction data preset by the signal controller 26, and displays it on the waveform display 29 such as a CRT. Output and display A scope. The most characteristic configuration of the present invention resides in transmission / reception control and amplitude correction of a received signal. That is, the transmission / reception control of the present invention controls the number of transducers driven to be transmitted in the ultrasonic transmitter group 21 so as to control the transmission aperture in the transmitting ultrasonic transducer group 1a, and at the same time, the transmission deflection of the transmitting ultrasonic beam is controlled. A transmission delay amount of a transducer that is driven to transmit is controlled in order to control the angle change and the transmission focus point of the transmission ultrasonic beam. Similarly, the reception control of the present invention controls the number of transducers driven to be received in the ultrasonic wave receiver group 23 to control the reception aperture in the ultrasonic wave transducer group 1b for reception, and receives the ultrasonic wave beam for reception. This is to control the reception delay amount of the transducer driven for reception in order to control the deflection angle and control the reception focusing point of the reception ultrasonic beam.
また、本発明における振幅補正は、送信及び受信集束点
と送信及び受信開口とによる設定条件の変更に伴う受信
信号の最大振幅値の変動を補正するべく、予め測定して
得られた前記送信及び受信集束点と前記送信及び受信開
口とによる設定条件毎の距離振幅特性の最大振幅値に基
づき、前記設定条件の変更毎に、前記受信系から得られ
た受信信号の最大振幅値を補正するものである。Further, the amplitude correction in the present invention, the transmission and reception obtained by measuring in advance, in order to correct the fluctuation of the maximum amplitude value of the received signal due to the change of the setting condition by the transmission and reception focusing point and the transmission and reception aperture. Correcting the maximum amplitude value of the received signal obtained from the receiving system every time the setting condition is changed, based on the maximum amplitude value of the distance amplitude characteristic for each setting condition by the reception focus point and the transmission and reception apertures. Is.
このようにして第1図に示した超音波探傷装置は送信お
よび受信用の超音波振動子の選定や、送波および受波超
音波ビームの方向と集束点距離の変更毎に繰り返して上
述の操作を行なう。In this way, the ultrasonic flaw detector shown in FIG. 1 repeats the above-mentioned operation every time the ultrasonic transducers for transmission and reception are selected and the directions of the transmitted and received ultrasonic beams and the focal point distance are changed. Perform the operation.
次に、第1図に示した超音波探傷装置の動作説明につ
き、第2図,第3図,第4図を参照しつつ、本実施例に
係わる超音波探傷方法について説明する。Next, regarding the operation of the ultrasonic flaw detector shown in FIG. 1, the ultrasonic flaw detection method according to this embodiment will be described with reference to FIGS. 2, 3, and 4.
第2図に示すように超音波の送信と受信それぞれについ
て楔2に設けられたしゃへい板6により分離されて専用
のアレイ型振動子1a,1bで構成される斜角2分割探
触子を用いる場合について説明する。即ち、アレイ方向
と直角な断面における超音波ビームの伝播経路は第2図
(a)に示すように振動子1より送波された超音波ビー
ムの中心軸は、楔2を伝播し、被検体3の表面に対し入
射角αで超音波ビームは被検体3に入射する。この時、
楔2の音速Cw,被検体の音速CMとすれば、スネルの
法則により被検体3への屈折角θは次式で表わされ、一
義的に決定される。As shown in FIG. 2, an oblique angle two-divided probe composed of dedicated array type transducers 1a and 1b separated by a shield plate 6 provided on the wedge 2 is used for each of transmission and reception of ultrasonic waves. The case will be described. That is, the propagation path of the ultrasonic beam in the cross section perpendicular to the array direction is, as shown in FIG. 2A, the central axis of the ultrasonic beam transmitted from the transducer 1 propagates through the wedge 2 and The ultrasonic beam is incident on the subject 3 at an incident angle α with respect to the surface of the subject 3. At this time,
Assuming the sound velocity C w of the wedge 2 and the sound velocity C M of the subject, the refraction angle θ to the subject 3 is expressed by the following equation according to Snell's law, and is uniquely determined.
この屈折角θをできるだけ大きくすることにより、被検
体3内部の被検体表面に対し垂直な面をもつ割れなどの
欠陥4において、その欠陥面に対し超音波ビームの入射
角は垂直に近づくため、欠陥4からの超音波反射強度が
大きくなり、有利であることは良く知られている。 By increasing this refraction angle θ as much as possible, in a defect 4 such as a crack having a surface perpendicular to the surface of the object inside the object 3, the incident angle of the ultrasonic beam approaches the angle of the defect surface. It is well known that the ultrasonic reflection intensity from the defect 4 is increased, which is advantageous.
超音波送波専用振動子群1aおよび受波専用振動子群1
bによる超音波の集束は、第2図(b)で示した超音波
ビーム中心軸上でのアレイ方向の断面について考えれば
良く、それを第3図(a)に示した。Transducer group 1a for ultrasonic wave transmission and transducer group 1 for wave reception only
Focusing of the ultrasonic wave by b can be considered by considering the cross section in the array direction on the central axis of the ultrasonic beam shown in FIG. 2 (b), which is shown in FIG. 3 (a).
すなわち、第3図(a)において、アレイ型2分割探触
子の中心軸上のF点に送波超音波ビーム及び受波超音波
ビームを集束させるためには、それぞれの超音波振動波
1ai,1bjと超音波集束点Fとの伝播経路において、楔
2と被検体3との境界とのなす角αi,θiおよびα
j,θjがスネルの法則を満たすような超音波入射点
C,Dが決定されるなら、送波については、楔内伝播距
離l1i,被検体内伝播距離l2iから送波超音波ビー
ムの集束に必要なそれぞれの振動子の送波遅延時間は次
式で求めることができる。That is, in FIG. 3 (a), in order to focus the transmitted ultrasonic wave beam and the received ultrasonic wave beam at point F on the central axis of the array type two-divided probe, in order to focus each ultrasonic vibration wave 1 ai. , 1bj and the ultrasonic focus point F in the propagation path, the angles αi, θi and α formed by the boundary between the wedge 2 and the subject 3
If the ultrasonic wave incident points C and D such that j and θj satisfy Snell's law are determined, the transmitted ultrasonic wave is transmitted from the wedge propagation distance l 1 i and the subject propagation distance l 2 i. The transmission delay time of each transducer required for beam focusing can be calculated by the following equation.
但し、l1:探触子中心軸上の楔内距離 l2:探触子中心軸上の被検体内距離 CW:楔内音速 CM:被検体内音速 同様に受波超音波ビームの集束に必要なそれぞれの振動
子の受波遅延時間は次式で求められる。 However, l 1: probe center in a wedge on the axis distance l 2: distance within the object on the probe central axis C W: Kusabinai sound velocity C M: in the subject sound velocity Similarly reception ultrasonic beam The receiving delay time of each transducer required for focusing is calculated by the following equation.
但し超音波振動子と集束点を通る音線径路においてスネ
ルの法則を満足する楔2と被検体3との境界での入射点
C,Dを求める式は陰関数となり直接計算により求める
ことはできないので、試行的に入射点C,Dを与え となる時の入射点C,Dを決定している。 However, the formulas for obtaining the incident points C and D at the boundary between the wedge 2 and the subject 3 that satisfy Snell's law in the sound ray path that passes through the ultrasonic transducer and the focusing point are implicit functions and cannot be obtained by direct calculation. Therefore, the incident points C and D are given on a trial basis. The incident points C and D are determined.
このようにして求められた超音波送受信タイミングであ
る送・受信遅延時間を、信号制御器26により送信遅延
時間設定器22および受信遅延時間設定器25へ設定し
超音波の送受信を行なうと、集束点Fで集束された送波
超音波ビームと受波超音波ビームとは集束点Fで交差す
る。従って第3図(b)(c)に示すように検出感度特
性31および方位分解能特性32は、電子集束を行なわ
ない通常の2分割探触子の場合31a,32a(破線で
示す)に比べ、電子集束を行なったアレイ型の2分割探
触子の場合31b,32b(実線で示す)は集束点近傍
で秀れた特性が得られる。しかし、集束点より外れるに
つれそれは悪くなるので、欠陥の位置があらかじめ推定
できない場合には、集束領域外の位置の欠陥に対しては
十分な検出能力が得られることになる。When the transmission / reception delay time, which is the ultrasonic transmission / reception timing obtained in this way, is set in the transmission delay time setting device 22 and the reception delay time setting device 25 by the signal controller 26 and ultrasonic waves are transmitted / received, the focus is converged. The transmitted ultrasonic beam and the received ultrasonic beam focused at the point F intersect at the focusing point F. Therefore, as shown in FIGS. 3B and 3C, the detection sensitivity characteristic 31 and the azimuth resolution characteristic 32 are different from those of the normal two-division probe 31a and 32a (shown by broken lines) in which electron focusing is not performed. In the case of the array-type two-division probe with electron focusing, excellent characteristics can be obtained in the vicinity of the focusing points 31b and 32b (shown by solid lines). However, it becomes worse as the position deviates from the focus point, so that if the position of the defect cannot be estimated in advance, sufficient detection capability can be obtained for the defect at the position outside the focus region.
そこで、第4図(a)に示すようにに、探触子の中心軸
上に沿って集束点をF1,F2……Fnと段階的に順次
送信遅延設定器22におよび受信遅延設定器25へ超音
波送受信タイミングを設定・変更し、超音波の送受信を
行なう。これにより被検体内部のいかなる深さ位置の欠
陥に対しても集束された超音波ビームにより検査するこ
とができる。Therefore, as shown in FIG. 4 (a), the focusing points are sequentially set to F 1 , F 2 ... F n along the center axis of the probe by the transmission delay setting unit 22 and the reception delay. The ultrasonic wave transmission / reception timing is set / changed in the setter 25 to transmit / receive ultrasonic waves. As a result, a defect at any depth position inside the subject can be inspected by the focused ultrasonic beam.
さらに、欠陥深さ位置が浅いとき、すなわち集束点距離
が短かい場合にはアレイ型振動子1の作動する振動子数
少なくても十分な集束特性が得られるのと、集束点距離
が長くなる場合には、良好な集束特性を得るためには、
作動する振動子数多くしてやらなければならないため、
集束点変更に伴なう超音波送受遅延時間設定・変更と同
時に、信号制御器26は、あらかじめ設定されて振動子
開口補正データーにもとづき、作動する超音波振動子群
1a,1bの選定と変更とを送信遅延設定器22、受信
遅延設定器25に対して行なう。Further, when the defect depth position is shallow, that is, when the focusing point distance is short, sufficient focusing characteristics can be obtained even with a small number of transducers of the array-type transducer 1 operating, and when the focusing point distance is long. In order to obtain good focusing characteristics,
Since we have to do many oscillators that work,
At the same time as setting / changing the ultrasonic transmission / reception delay time associated with the change of the focus point, the signal controller 26 selects and changes the ultrasonic transducer group 1a, 1b to be operated based on the transducer aperture correction data set in advance. And are performed on the transmission delay setting device 22 and the reception delay setting device 25.
また、信号制御器26は、集束点の変更および超音波振
動子群の開口の変更に伴なう最大受信号レベルの変動を
補正するため、あらかじめ測定して得られた各集束条件
における距離振幅特性の最大値にもとづき、その最大振
幅値が集束条件にかかわらず略一定となるよう集束点の
変更毎に信号処理器28に対し振幅補正データーを設定
・変更する。Further, the signal controller 26 corrects the fluctuation of the maximum received signal level due to the change of the focus point and the change of the aperture of the ultrasonic transducer group, so that the distance amplitude under each focus condition obtained by measurement in advance is corrected. Based on the maximum value of the characteristic, the amplitude correction data is set / changed in the signal processor 28 every time the focus point is changed so that the maximum amplitude value becomes substantially constant regardless of the focus condition.
これにより見かけ上の超音波送受集束領域41は、探触
子中心軸上に軸集束されたのと等価になり、欠陥の深さ
位置にかかわりなく優れた方位分解能及び検出感度特性
が得られることになる。As a result, the apparent ultrasonic transmission / reception focusing region 41 is equivalent to being focused on the center axis of the probe, and excellent lateral resolution and detection sensitivity characteristics can be obtained regardless of the depth position of the defect. become.
なお、第4図(b)は総合検出感度特性31(t)を説
明する図であり、それは各集束条件における超音波送受
の距離振幅特性31(1)〜31(n)の包絡線をとる
形で表わすことができ、欠陥深さ位置にかかわらず、略
一定の検出感度で探傷可能であることを示している。Note that FIG. 4 (b) is a diagram for explaining the total detection sensitivity characteristic 31 (t), and it takes the envelope of the distance amplitude characteristics 31 (1) to 31 (n) of ultrasonic wave transmission / reception under each focusing condition. It can be represented by a shape, indicating that flaw detection can be performed with substantially constant detection sensitivity regardless of the defect depth position.
以上説明した実施例では、楔つきの斜角2分割探触子を
用いる場合について説明したが、垂直2分割型あるいは
楔のかわりに液体を用いる水浸探傷法においても適用で
きるものであり、本発明に含まれるものである。In the embodiment described above, the case of using the oblique angle two-division probe with a wedge has been described, but the present invention can be applied to a vertical two-division type or a water immersion flaw detection method in which a liquid is used instead of the wedge. Are included in.
なお上述の説明においては、超音波の受信号波形を高速
のA/D変換を行ないディジタル量での波形加算を行な
うようにした場合について説明したが、CCD(Charge
Coupled Device)やアナログ遅延線等を用いたアナ
ログ量での波形加算を行なうようにしても同様に実現で
きることは言うまでもない。In the above description, the case where the received signal waveform of ultrasonic waves is subjected to high-speed A / D conversion and waveform addition is performed in a digital amount has been described.
It goes without saying that the same can be realized by performing waveform addition with an analog amount using a Coupled Device) or an analog delay line.
[発明の効果] 以上実施例にもとづいて詳細に説明したように、本発明
は、被検体に当てられて該被検体に送信音波ビームを送
信し該被検体から反射した受信超音波ビームを受信する
ものであって、送信用超音波振動子群と受信用超音波振
動子群とが分離して配置してなるアレイ型2分割探触子
と、 前記被検体に送信される送信超音波ビームを発生するべ
く前記送信用超音波振動子群の各振動子夫々を送信駆動
する送信系と、 前記被検体から反射された受信超音波ビームを受信する
べく前記受信用超音波振動子群の各振動子夫々から受信
信号を受信する受信系と、 前記送信用超音波振動子群における送信開口を制御する
べく前記送信系における送信駆動される振動子数を制御
すると共に、送信超音波ビームの送信偏向角の変更制御
及び送信超音波ビームの送信集束点の変更制御を行なう
べく送信駆動される振動子の送信遅延量を制御し、前記
受信用超音波振動子群における受信開口を制御するべく
前記受信系における受信駆動される振動子数を制御する
と共に、受信超音波ビームの受信偏向角の変更制御及び
受信超音波ビームの受信集束点の変更制御を行なうべく
受信駆動される振動子の受信遅延量を制御する送受信制
御手段と、 前記被検体の超音波情報を得るべく、前記受信系を介し
て得られた受信信号を信号処理する信号処理系と、 前記送信及び受信集束点と前記送信及び受信開口とによ
る設定条件の変更に伴う受信信号の最大振幅値の変動を
補正するべく、予め測定して得られた前記送信及び受信
集束点と前記送信及び受信開口とによる設定条件毎の距
離振幅特性の最大振幅値に基づき、前記設定条件の変更
毎に、前記受信系から得られた受信信号の最大振幅値を
補正する振幅補正手段と、 前記信号処理系により得られた超音波情報を表示する表
示系と、 を具備する電子走査型超音波探傷装置である。[Effects of the Invention] As described in detail with reference to the above embodiments, the present invention applies a transmission acoustic beam to a subject and receives a reception ultrasonic beam reflected from the subject. An array type two-division probe in which a transmitting ultrasonic transducer group and a receiving ultrasonic transducer group are separately arranged, and a transmitting ultrasonic beam transmitted to the subject. A transmission system for transmitting and driving each transducer of the transmission ultrasonic transducer group, and each of the reception ultrasonic transducer group for receiving the reception ultrasonic beam reflected from the subject. A reception system for receiving a reception signal from each of the transducers, and controlling the number of transducers driven to be transmitted in the transmission system to control the transmission aperture in the transmission ultrasonic transducer group, and transmitting the transmission ultrasonic beam Deflection angle change control and transmission The reception delay in the reception system is controlled so as to control the transmission delay amount of the transducer that is driven to transmit to control the change of the transmission focusing point of the ultrasonic beam and to control the reception aperture in the ultrasonic transducer group for reception. A transmission / reception control unit that controls the number of transducers and also controls the reception delay amount of the transducers that are driven to receive to change the reception deflection angle of the reception ultrasonic beam and change the reception focusing point of the reception ultrasonic beam. A signal processing system for processing the received signal obtained through the receiving system in order to obtain the ultrasonic information of the subject, and the setting conditions of the transmitting and receiving focusing points and the transmitting and receiving apertures. In order to correct the fluctuation of the maximum amplitude value of the received signal due to the change, the maximum of the distance amplitude characteristic for each setting condition by the transmission and reception focusing points obtained by measuring in advance and the transmission and reception aperture An amplitude correction unit that corrects the maximum amplitude value of the reception signal obtained from the reception system every time the setting condition is changed based on the width value, and a display system that displays the ultrasonic information obtained by the signal processing system. And an electronic scanning ultrasonic flaw detector.
このような構成を有する本発明によれば、アレイ型の2
分割探触子を用い、超音波送受波ビームを探触子の中心
軸上で集束・交叉させると共に、その集束・交叉点位置
を探触子中心軸上で段階的に繰返し設定・変更させ、さ
らに集束点の設定変更毎に、超音波送受信にかかわるそ
れぞれの振動子群の選定・変更を行ない、見かけ上、探
触子中心軸上で軸集させたのと等価な、集束領域が得ら
れるようにしたので、被検体内部のいかなる深さ位置に
ある欠陥に対しても集束超音波ビームにより検出するこ
とができるという利点がある。According to the present invention having such a configuration, the array type 2
Using a divided probe, the ultrasonic transmission / reception beam is focused / crossed on the central axis of the probe, and the focusing / crossing point position is repeatedly set / changed stepwise on the central axis of the probe. Furthermore, each time the focus point setting is changed, each transducer group involved in ultrasonic wave transmission / reception is selected / changed, and a focus area that is apparently equivalent to focusing on the center axis of the probe can be obtained. Since this is done, there is an advantage that defects at any depth position inside the subject can be detected by the focused ultrasonic beam.
また、超音波ビームの集束点位置にかかわらず、略一定
の集束程度とするように、集束位置に応じ作動する超音
波振動子群の開口を変更するとともに、各集束深さでの
距離振幅特性の最大振幅データにもとづく感度補正を各
集束点位置毎に行なうよう構成されているので、方位分
解能および、検出感度特性が、被検体内部の深さ位置に
かかわらず略一定とすることができ、欠陥の位置を正確
に検出することができるという実用上極めて有利な電子
走査型超音波探傷装置が提供できるものである。Also, regardless of the focal point position of the ultrasonic beam, the aperture of the ultrasonic transducer group that operates according to the focal position is changed so that the focal point is approximately constant, and the distance amplitude characteristic at each focal depth is Since it is configured to perform the sensitivity correction based on the maximum amplitude data for each focus point position, the azimuth resolution and the detection sensitivity characteristics can be made substantially constant regardless of the depth position inside the subject, It is possible to provide an electronic scanning type ultrasonic flaw detector which is extremely advantageous in practical use and can accurately detect the position of a defect.
第1図〜第4図はいずれも本発明の一実施例の電子走査
型超音波探傷装置を説明するための図であって、第1図
は超音波探傷装置の構成図、第2図は本実施例で用いら
れるアレイ型の斜角2分割探触子を説明する図、第3図
はアレイ型斜角2分割探触子の超音波送受を説明する
図、第4図は本実施例の作用を説明する図、第5図〜第
7図は夫々従来の超音波探傷方法を説明する図である。 1……超音波振動子、2……楔、3……被検材、4……
欠陥、5……超音波ビーム、6……しゃへい板、20…
…アレイ型2分割探触子、21……超音波送信器群、2
2……送信遅延設定器、23……超音波受信器群、24
……A/D変換器、25……受信遅延設定器、26……
信号制御器、27……加算メモリ、28……信号処理
器、29……波形表示器。1 to 4 are all diagrams for explaining an electronic scanning ultrasonic flaw detector according to one embodiment of the present invention. FIG. 1 is a configuration diagram of the ultrasonic flaw detector, and FIG. FIG. 3 is a diagram illustrating an array-type oblique-angle two-division probe used in this embodiment, FIG. 3 is a diagram illustrating ultrasonic wave transmission / reception of an array-type oblique-angle two-division probe, and FIG. 4 is this embodiment. FIG. 5 to FIG. 7 are diagrams for explaining the operation of the above, and FIGS. 5 to 7 are diagrams for explaining the conventional ultrasonic flaw detection method. 1 ... Ultrasonic transducer, 2 ... Wedge, 3 ... Test material, 4 ...
Defect, 5 ... Ultrasonic beam, 6 ... Shield plate, 20 ...
... array type two-division probe, 21 ... ultrasonic transmitter group, 2
2 ... Transmission delay setting device, 23 ... Ultrasonic wave receiver group, 24
... A / D converter, 25 ... reception delay setting device, 26 ...
Signal controller, 27 ... Addition memory, 28 ... Signal processor, 29 ... Waveform display.
Claims (1)
ビームを送信し該被検体から反射した受信超音波ビーム
を受信するものであって、送信用超音波振動子群と受信
用超音波振動子群とが分離して配置してなるアレイ型2
分割探触子と、 前記被検体に送信される送信超音波ビームを発生するべ
く前記送信用超音波振動子群の各振動子夫々を送信駆動
する送信系と、 前記被検体から反射された受信超音波ビームを受信する
べく前記受信用超音波振動子群の各振動子夫々から受信
信号を受信する受信系と、 前記送信用超音波振動子群における送信開口を制御する
べく前記送信系における送信駆動される振動子数を制御
すると共に、送信超音波ビームの送信偏向角の変更制御
及び送信超音波ビームの送信集束点の変更制御を行なう
べく送信駆動される振動子の送信遅延量を制御し、前記
受信用超音波振動子群における受信開口を制御するべく
前記受信系における受信駆動される振動子数を制御する
と共に、受信超音波ビームの受信偏向角の変更制御及び
受信超音波ビームの受信集束点の変更制御を行なうべく
受信駆動される振動子の受信遅延量を制御する送受信制
御手段と、 前記被検体の超音波情報を得るべく、前記受信系を介し
て得られた受信信号を信号処理する信号処理系と、 前記送信及び受信集束点と前記送信及び受信開口とによ
る設定条件の変更に伴う受信信号の最大振幅値の変動を
補正するべく、予め測定して得られた前記送信及び受信
集束点と前記送信及び受信開口とによる設定条件毎の距
離振幅特性の最大振幅値に基づき、前記設定条件の変更
毎に、前記受信系から得られた受信信号の最大振幅値を
補正する振幅補正手段と、 前記信号処理系により得られた超音波情報を表示する表
示系と、 を具備する電子走査型超音波探傷装置。1. A method for transmitting a transmission ultrasonic beam to a subject and receiving a reception ultrasonic beam reflected from the subject, comprising: Array type 2 in which ultrasonic transducers are arranged separately
A division probe, a transmission system for transmitting and driving each transducer of the transmission ultrasonic transducer group to generate a transmission ultrasonic beam to be transmitted to the subject, and reception reflected from the subject. A reception system for receiving a reception signal from each transducer of the reception ultrasonic transducer group to receive an ultrasonic beam; and a transmission in the transmission system for controlling a transmission aperture in the transmission ultrasonic transducer group. In addition to controlling the number of transducers to be driven, it also controls the transmission delay amount of the transducers to be driven for transmission in order to change the transmission deflection angle of the transmission ultrasonic beam and control the transmission focusing point of the transmission ultrasonic beam. Controlling the number of transducers driven to be received in the receiving system to control the receiving aperture in the group of ultrasonic transducers for receiving, and changing the receiving deflection angle of the receiving ultrasonic beam and the receiving ultrasonic wave. Transmission / reception control means for controlling the reception delay amount of the transducer driven for reception to control the change of the reception focusing point of the system, and the reception obtained via the reception system in order to obtain the ultrasonic information of the subject. A signal processing system that performs signal processing on the signal, and was obtained in advance by measurement in order to correct the fluctuation of the maximum amplitude value of the received signal due to the change of the setting condition by the transmission and reception focusing points and the transmission and reception aperture. Based on the maximum amplitude value of the distance amplitude characteristic for each setting condition by the transmission and reception focusing point and the transmission and reception aperture, the maximum amplitude value of the reception signal obtained from the reception system is changed every time the setting condition is changed. An electronic scanning ultrasonic flaw detector, comprising: an amplitude correction unit that corrects; and a display system that displays ultrasonic information obtained by the signal processing system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60252199A JPH0619341B2 (en) | 1985-11-11 | 1985-11-11 | Electronic scanning ultrasonic flaw detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60252199A JPH0619341B2 (en) | 1985-11-11 | 1985-11-11 | Electronic scanning ultrasonic flaw detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62112060A JPS62112060A (en) | 1987-05-23 |
JPH0619341B2 true JPH0619341B2 (en) | 1994-03-16 |
Family
ID=17233877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60252199A Expired - Lifetime JPH0619341B2 (en) | 1985-11-11 | 1985-11-11 | Electronic scanning ultrasonic flaw detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0619341B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008256719A (en) * | 2002-10-31 | 2008-10-23 | Hitachi-Ge Nuclear Energy Ltd | Ultrasonic flaw detector |
WO2016024475A1 (en) * | 2014-08-12 | 2016-02-18 | 三菱重工業株式会社 | Ultrasonic flaw-detection method and device for blade groove in turbine rotor disc |
JP2018004522A (en) * | 2016-07-06 | 2018-01-11 | 株式会社Ihi | Ultrasonic flaw detection device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60239013D1 (en) | 2001-11-14 | 2011-03-03 | Toshiba Kk | ULTRASONOGRAPH WITH CALCULATION OF THE BREAKDOWN OF ULTRASONIC WAVES |
JP4835341B2 (en) * | 2006-09-13 | 2011-12-14 | 大同特殊鋼株式会社 | Ultrasonic flaw detection method |
JP5709357B2 (en) * | 2009-02-26 | 2015-04-30 | 三菱重工業株式会社 | Ultrasonic flaw detection apparatus and ultrasonic flaw detection method |
US9213019B2 (en) * | 2011-11-18 | 2015-12-15 | General Electric Company | Method of determining a size of a defect using an ultrasonic linear phased array |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4835883A (en) * | 1971-09-09 | 1973-05-26 | ||
JPS52151277A (en) * | 1976-06-11 | 1977-12-15 | Hitachi Medical Corp | Variable focus ultrasonic camera system |
-
1985
- 1985-11-11 JP JP60252199A patent/JPH0619341B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008256719A (en) * | 2002-10-31 | 2008-10-23 | Hitachi-Ge Nuclear Energy Ltd | Ultrasonic flaw detector |
JP2009186489A (en) * | 2002-10-31 | 2009-08-20 | Hitachi-Ge Nuclear Energy Ltd | Ultrasonic flaw detector |
JP2012027037A (en) * | 2002-10-31 | 2012-02-09 | Hitachi-Ge Nuclear Energy Ltd | Ultrasonic flaw detector and ultrasonic flaw detection method |
WO2016024475A1 (en) * | 2014-08-12 | 2016-02-18 | 三菱重工業株式会社 | Ultrasonic flaw-detection method and device for blade groove in turbine rotor disc |
JP2016040529A (en) * | 2014-08-12 | 2016-03-24 | 三菱重工業株式会社 | Device and method for ultrasonic flaw detection of blade groove part of turbine rotor disk |
US10845341B2 (en) | 2014-08-12 | 2020-11-24 | Mitsubishi Heavy Industries Compressor Corporation | Ultrasonic flaw-detection method and apparatus for blade groove in turbine rotor disc |
JP2018004522A (en) * | 2016-07-06 | 2018-01-11 | 株式会社Ihi | Ultrasonic flaw detection device |
Also Published As
Publication number | Publication date |
---|---|
JPS62112060A (en) | 1987-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2546641B1 (en) | Ultrasonic flaw detector and ultrasonic flaw detection method for objects having a complex surface shape | |
JPS599555A (en) | Ultrasonic flaw detector | |
JPH03500454A (en) | Ultrasonic reflection transmission imaging method and device excluding artificial structures | |
EP0293803B1 (en) | Fan-shape scanning ultrasonic flaw detecting apparatus | |
JPH0619341B2 (en) | Electronic scanning ultrasonic flaw detector | |
JP3635453B2 (en) | Ultrasonic shear wave oblique angle flaw detection method and apparatus | |
JPS6326343B2 (en) | ||
JPH069562B2 (en) | Ultrasonic diagnostic equipment | |
JP4633268B2 (en) | Ultrasonic flaw detector | |
JP2501488B2 (en) | Ultrasonic testing of pipes | |
JPS59151057A (en) | Ultrasonic flaw detector | |
JPS6356946B2 (en) | ||
JPH04200539A (en) | Ultrasonic wave probe and blood flow measuring instrument | |
JP2021032756A (en) | Ultrasonic flaw detector and method, and in-furnace structure preservation method | |
JPS6014166A (en) | Method and device for ultrasonic flaw detection | |
JP2612890B2 (en) | Ultrasonic flaw detection method | |
JPH0311734Y2 (en) | ||
JPS61253458A (en) | Ultrasonic flaw detection | |
JPH1114611A (en) | Electronic scanning system ultrasonic inspection equipment | |
JPS597260A (en) | Method and device for ultrasonic flaw detection | |
KR100543736B1 (en) | Ultrasonic imaging method | |
JPH0324623B2 (en) | ||
JPS61225647A (en) | Ultrasonic flaw detection | |
JPS6367564A (en) | Ultrasonic flaw detecting device | |
KR840001818B1 (en) | Ultrasonic diagnosis apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |