JPS61225647A - Ultrasonic flaw detection - Google Patents

Ultrasonic flaw detection

Info

Publication number
JPS61225647A
JPS61225647A JP60066782A JP6678285A JPS61225647A JP S61225647 A JPS61225647 A JP S61225647A JP 60066782 A JP60066782 A JP 60066782A JP 6678285 A JP6678285 A JP 6678285A JP S61225647 A JPS61225647 A JP S61225647A
Authority
JP
Japan
Prior art keywords
ultrasonic
point
flaw detection
specimen
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60066782A
Other languages
Japanese (ja)
Inventor
Satoshi Nagai
敏 長井
Ichiro Furumura
古村 一朗
Taiji Hirasawa
平沢 泰治
Masashi Takahashi
雅士 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60066782A priority Critical patent/JPS61225647A/en
Publication of JPS61225647A publication Critical patent/JPS61225647A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0645Display representation or displayed parameters, e.g. A-, B- or C-Scan

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To achieve a higher accuracy, by making the selection of a group of vibrators for operating an array type probe and the selection of the angle of deflection in an ultrasonic wave medium from the preset incident point of an ultrasonic wave into material to be inspected and a geometric positional relationship between the refraction angle of the ultrasonic wave at the point and the probe. CONSTITUTION:In an ultrasonic wave transmitter 10, (n) units of transmitters are selected by a trigger signal from a transmission delay setter 11 to send transmission pulses to corresponding ultrasonic vibrators 9 and ultrasonic waves are transmitted from the vibrators 9 in response thereto. On the other hand, the signals detected with the vibrators 9 are amplified 12 to be inputted into corresponding A/D converters 13. Then,a signal controller 15 selects a group of vibrators adapted to receive and transmit ultrasonic waves for a reception delay setter 14 and a setter 11 and applies a timing of outputting a trigger signal according to directions of transmitting and receiving ultrasonic beams and focal length as preset. The output of a converter 13 is memorized 16 to be inputted into a signal processor 17 and the direction of sweeping images for B scope display is determined from the angle of deflection at the preset time of transmitting and receiving ultrasonic waves to be displayed 18.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は電子式セクタ走査型超音波探傷装置を用いて金
属材料や非金属材料等の被検材内部の欠陥を探傷する超
音波探傷方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an ultrasonic flaw detection method for detecting defects inside a test material such as a metal material or a non-metal material using an electronic sector scanning type ultrasonic flaw detection device. .

[発明の技術的背預とその問題点] 金属材料や非金属材料の内部を?113!する方法とし
て、従来より超音波を用いた超音波探傷装置が一般に利
用されている。このような超音波探傷法に用いる超音波
探傷装置には、第6図に示すように超音波送受波用の複
数個振動子鮮からなるアレイ型探触子1を用い、これら
の振動子による超音波送波および受波タイミングを電子
的に11御する搬構を備えている。このような探傷法を
一般に電子走査法というがこの電子走査法には、第6図
(a )に示すように超音波送受波用の複数個の振動子
群を順次切換えながら超音波ビーム2を被検材3上で直
線状に走査する直線(リニアー)走査法と、第6図(C
)に示すように複数個の振動子群による超音波送受波タ
イミングを順次変更しながら超音波ビーム2を被検材3
の内部に扇形状に走査する扇形(セクター)走査法とが
ある。そして被検材3中の欠陥4がそれぞれ第6図(b
)および第6図(d )に示すように陰極線管(CRT
)5上の欠陥像6としてBスコープ表示される。
[Technical backbone of the invention and its problems] The inside of metallic or non-metallic materials? 113! As a method for this, an ultrasonic flaw detection device using ultrasonic waves has been commonly used. The ultrasonic flaw detection equipment used in such ultrasonic flaw detection methods uses an array type probe 1 consisting of a plurality of transducers for transmitting and receiving ultrasonic waves, as shown in Fig. 6. It is equipped with a transport structure that electronically controls ultrasonic wave transmission and reception timing. This type of flaw detection method is generally called the electronic scanning method, and as shown in Fig. 6(a), this electronic scanning method involves transmitting an ultrasonic beam 2 while sequentially switching a plurality of transducer groups for transmitting and receiving ultrasonic waves. A linear scanning method in which the specimen 3 is scanned in a straight line, and Fig. 6 (C
), the ultrasonic beam 2 is transmitted to the specimen 3 while sequentially changing the timing of ultrasonic wave transmission and reception by multiple transducer groups.
There is a sector scanning method that scans in a fan shape inside the . The defects 4 in the test material 3 are shown in Fig. 6 (b).
) and cathode ray tube (CRT) as shown in Figure 6(d).
) 5 is displayed as a defect image 6 on the B scope.

尚、第6図はアレイ型探触子1を被検材3の表面上に直
接接触させて行なう一般的な直接接触法について示した
が、水浸法あるいはシコー付探傷法などのようにアレイ
型探触子1と被検材3との間に超音波伝播媒質を介して
行なう探傷方法にも適用される。
Although FIG. 6 shows a general direct contact method in which the array type probe 1 is brought into direct contact with the surface of the test material 3, other methods such as the water immersion method or the thin-coat flaw detection method may also be used. The present invention is also applied to a flaw detection method using an ultrasonic propagation medium between the mold probe 1 and the specimen 3.

一方、上記探傷法にあっては、第7図に示したように、
超音波ビームr!1(音速)の異なる媒質■および■の
境界7を通過する超音波ビームはスネルの法則により境
界7で屈折する、この時境界7の法線に対する超音波ビ
ーム2の入射角αと屈折角βとの間には、媒質工の音速
C1と媒質■の音SINμ)−C1 速C2により 、□Nψ)−で7の関係にあり、入射5
角αと屈折角βとの間には直線関係にないことを示して
いる。それ故、第8図に示したようにアレイ型探触子1
と被検材3との間にIs質8を介してセクター゛壇子走
査法による超音波探傷を行なった場合、超音波ビーム2
の伝播径路は、その超音波ビームの偏向角が大きくなる
につれ境界7での屈折が増大し、直線から外れてしまう
。従って、直接接触法と同じように単に超音波ビームの
偏向角と超音波ビーム伝播時間とだけで画像表示位置信
号を作成すると、実際の超音波ビーム伝播径路と、画像
表示上の位置とは1対1に対応しないため欠陥等の位置
標定に誤差を生じるとともに?!雑な画像補正を必要と
する問題があった。
On the other hand, in the above flaw detection method, as shown in Figure 7,
Ultrasonic beam r! The ultrasonic beam passing through the boundary 7 between media ■ and ■ with different speeds of sound is refracted at the boundary 7 according to Snell's law. At this time, the incident angle α and the refraction angle β of the ultrasonic beam 2 with respect to the normal to the boundary 7 are There is a relationship of 7 between the sound speed C1 of the medium and the sound SINμ)-C1 speed C2 of the medium □Nψ)-, and the incidence 5
This shows that there is no linear relationship between the angle α and the refraction angle β. Therefore, as shown in FIG.
When ultrasonic flaw detection is performed using the sector scanning method through the Is material 8 between the
As the deflection angle of the ultrasonic beam increases, the refraction at the boundary 7 increases, and the propagation path deviates from a straight line. Therefore, if an image display position signal is created simply by the deflection angle of the ultrasound beam and the ultrasound beam propagation time, as in the direct contact method, the actual ultrasound beam propagation path and the position on the image display will be 1 Because it does not correspond to one-to-one, errors occur in positioning defects, etc.? ! There was a problem that required rough image correction.

[発明の目的] 本発明は上記問題点に鑑みてなされたものであり、アレ
イ型探触子と被検材との間に媒質を介してセクター電子
走査法による超音波探傷を行なう場合に特別な画像処理
を行なうことなく、被検材内部の情報を正確に検出し、
被検材内部の欠陥位置を高精度に知ることのできる超音
波探傷方法を提供することにある。
[Object of the Invention] The present invention has been made in view of the above-mentioned problems, and is particularly useful when performing ultrasonic flaw detection using the sector electronic scanning method via a medium between an array type probe and a test material. Accurately detects information inside the specimen material without performing extensive image processing.
An object of the present invention is to provide an ultrasonic flaw detection method that allows the location of defects inside a material to be inspected to be determined with high precision.

[発明の置型] 上記目的を達成するため、本発明による超音波探傷法で
は、アレイ型探触子の作動する超音波振動子の選定と超
音波IIL質内での超音波ビーム偏向角度の選定とを、
あらかじめ設定された、被検材への超音波ビーム入射点
とその超音波ビーム屈折角とアレイ型探触子との幾何学
的位置関係より求め、超音波ビームの偏向角度にかかわ
りなく、被検材の超音波ビーム入射点を略一点としてセ
クタ電子走査することを特徴とする。
[Standard type of the invention] In order to achieve the above object, the ultrasonic flaw detection method according to the present invention involves selecting an ultrasonic transducer for operating an array type probe and selecting an ultrasonic beam deflection angle within the ultrasonic IIL quality. and,
This is determined from the preset geometric positional relationship between the ultrasonic beam incidence point on the specimen, the refraction angle of the ultrasound beam, and the array type probe, and regardless of the deflection angle of the ultrasound beam, the It is characterized by performing sector electronic scanning with the ultrasonic beam incident point on the material as approximately one point.

[発明の実施例] 以下本発明の一実施例を図面に基づいて詳細に説明する
[Embodiment of the Invention] An embodiment of the present invention will be described in detail below based on the drawings.

第1図は本発明の一実施例を示す構成図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

アレイ型探触子1はn個の超音波振動子9を並設してな
る。これらの超音波振動子9はそれぞれ送信パルスを発
生するn個の超音波送信器10に結合されており、この
超音波送信器10は送信遅延設定器11からの送信パル
ス発生用トリガ信号によってn個全部あるいは数個の送
信器が選定されてそれぞれの対応する超音波振動子9へ
送信パルスを送り、これに応答して超音波振動子9が超
音波を送波するように構成されている。
The array type probe 1 is made up of n ultrasonic transducers 9 arranged in parallel. These ultrasonic transducers 9 are each coupled to n ultrasonic transmitters 10 that generate transmission pulses, and these ultrasonic transmitters 10 are activated by a transmission pulse generation trigger signal from a transmission delay setting device 11. All or several transmitters are selected to send transmission pulses to their corresponding ultrasonic transducers 9, and in response to this, the ultrasonic transducers 9 are configured to transmit ultrasonic waves. .

一方、超音波振動子9は可逆性を有しており、圧力変化
に応じて電気信号を発生することもできる。このように
超音波振動子9は、送信器能をも有しているので、それ
ぞれの超音波振動子9で検出した受信信号は、それぞれ
対応するn個の超音波受信器12によって増幅された後
、対応するn個のA/D!換器13へ入力される。
On the other hand, the ultrasonic transducer 9 has reversibility and can also generate electrical signals in response to pressure changes. In this way, since the ultrasonic transducers 9 also have a transmitter function, the received signals detected by each ultrasonic transducer 9 are amplified by the corresponding n ultrasonic receivers 12. After that, the corresponding n A/D! The signal is input to the converter 13.

このA/D変換器13は超音波受信信号を高速でデジタ
ル変換するものであり、受信波形を忠実にデジタル役に
変換することができる。またA/D変換器13には、受
信信号のデジタル変換開始用トリガ信号が受信遅延設定
器、14からそれぞれ供給されている。このトリガ信号
を受けたn個全部あるいは一部のA/D変換器13はト
リガ信号の入力時点に同期して超音波受信波形がデジタ
ル信号波形化される。
This A/D converter 13 converts the received ultrasonic signal into digital data at high speed, and can faithfully convert the received waveform into a digital signal. Further, a trigger signal for starting digital conversion of the received signal is supplied to the A/D converter 13 from a reception delay setter 14, respectively. All or some of the n A/D converters 13 that receive this trigger signal convert the ultrasonic reception waveform into a digital signal waveform in synchronization with the input time of the trigger signal.

信号制御器15は、受信遅延設定器14、送信遅延設定
器11に対して超音波受信にかかわる振動子群と、送信
にかかわる振動子群を選択し、あらかじめ設定された超
音波ビームの送波および受波方向および焦点距離に応じ
たトリガ信号出力のタイミングを与える。
The signal controller 15 selects a transducer group involved in ultrasonic reception and a transducer group involved in transmission for the reception delay setting device 14 and the transmission delay setting device 11, and transmits a preset ultrasonic beam. and provides timing for outputting a trigger signal according to the reception direction and focal length.

また、各A/D変換器13の出力は、加算メモリ16に
波形加算されて記憶される。すなわちA/D変換器13
に一旦保持された超音波受信信号のデジタル波形は、デ
ジタル信号波形化された時点をそろえて各超音波、振動
子9による受信信号がデジタル加算されて記憶されるこ
とになる。これらの操作は信号制御器15よって制御さ
れている。
Further, the outputs of each A/D converter 13 are waveform-added and stored in an addition memory 16. That is, the A/D converter 13
The digital waveform of the ultrasonic reception signal once held is digitally added to the reception signal of each ultrasonic wave and the transducer 9 at the same time when the digital signal waveform was converted, and then stored. These operations are controlled by a signal controller 15.

加眸メモリ16の加算された受信波形は信号処理器17
に入力される。
The added received waveform in the processing memory 16 is sent to the signal processor 17.
is input.

信号処理器17は、あらかじめ設定された超音波の送波
および受波時の超音波主ビームの偏向角度により、Bス
コープ表示の画像掃引の方向を定め、画[M引信号をB
スコープ表示器18へ出力している。また、信号処理器
17は、前記受信波形の大きさに従い画am引に輝度変
調をかける。
The signal processor 17 determines the direction of the image sweep on the B scope display based on the preset deflection angle of the ultrasound main beam during ultrasound transmission and reception, and
It is output to the scope display 18. Further, the signal processor 17 applies brightness modulation to the image signal according to the magnitude of the received waveform.

この輝度変調の信号は、加算メモリ16からの加詐受信
波形を検波した波形に信号処理器17で設定された信号
弁別レベルを付し、この信号弁別レベルを越える波形の
大きさに応じて信号処理器17内で作られる。
This brightness modulation signal is obtained by attaching a signal discrimination level set by the signal processor 17 to the waveform obtained by detecting the fraudulently received waveform from the addition memory 16, and then adding a signal discrimination level set in the signal processor 17 to the waveform, and converting the signal according to the size of the waveform exceeding this signal discrimination level. It is produced within the processor 17.

このようにして、第1図に示した超音波探信装置は、送
信および受信用の超音波振動子の選定や変更、主ビーム
方向の変更毎に繰り返して上述の操作を行なう。
In this manner, the ultrasonic detection apparatus shown in FIG. 1 repeatedly performs the above-described operations each time the ultrasonic transducer for transmission and reception is selected or changed, and the main beam direction is changed.

次に、第1図に示した超音波探m装置の動作を説明する
。即ち、第2図及び第5図を参照しつつ、本実施例に係
る超音波探傷方法について説明する。
Next, the operation of the ultrasonic probe shown in FIG. 1 will be explained. That is, the ultrasonic flaw detection method according to this embodiment will be explained with reference to FIGS. 2 and 5.

第2図に示すように、アレイ型探触子1の超音波放射面
と被検材3の表面とがfiの距離で平行になるように媒
質8を介してセクター電子走査を行なう場合について説
明する。即ち、アレイ型探触子1内の任意の超音波振動
子9(1)ととなりあう−個の超音波振動子群が超音波
ビーム偏向角θで超音波を放射すると、その超音波ビー
ム中心軸2は、超音波媒質8と被検材3との境界7の8
点において屈折し、屈折角βで被検材3中を伝播する。
As shown in FIG. 2, a case will be explained in which sector electronic scanning is performed via the medium 8 so that the ultrasonic emission surface of the array type probe 1 and the surface of the specimen 3 are parallel to each other at a distance of fi. do. That is, when a group of - ultrasonic transducers adjacent to an arbitrary ultrasonic transducer 9 (1) in the array probe 1 emits ultrasound at an ultrasound beam deflection angle θ, the center of the ultrasound beam The axis 2 is located at the boundary 7 between the ultrasonic medium 8 and the test material 3.
It is refracted at the point and propagates through the test material 3 at a refraction angle β.

この時アレイ型探触子1の作動する1個の超音波振動子
群の中心Aと被検材3への超音波ビーム入射点B及びア
レイ型探触子1の基準点(この場合は超音波振動子9(
i)の端部)0との関係は、入射点Bを通る被検材3表
面の法線と、アレイ型探触子1の放射面と交差する点を
Cとすると、下記式(1)、 (2)、 (3の如く示
される。
At this time, the center A of one operating ultrasonic transducer group of the array type probe 1, the ultrasonic beam incident point B on the specimen 3, and the reference point of the array type probe 1 (in this case, the ultrasonic transducer group Sound wave vibrator 9 (
The relationship between i) and 0 is expressed by the following formula (1), where C is the point where the normal to the surface of the specimen 3 passing through the incident point B intersects with the radiation surface of the array probe 1. , (2), (3).

0A=(i−”寸ゝ“=0°+0A01.(1)OA−
Jls  ・tan a           −12
)α=sln−’ (ト5inl/)      、+
+ 、。
0A=(i-"dimension"=0°+0A01.(1) OA-
Jls ・tan a -12
) α=sln-' (5inl/), +
+、.

但しLl :被検材−探触子間距離 Ct:IIA音波媒質の音速 C2:被検材の音速 d:振動子配列間隔 ここで被検材表面と探触子の超音波放射面とは平行に配
置されているので、超音波媒質8中での超音波ビーム偏
向角θと、被検材3への超音波ビーム入射角αは、同一
の値をとることから、被検材3への超音波ビーム2の屈
折角βと、超音波ビーム偏向角θ及び、その時の作動す
る超音波振動子群の範囲Jとの関係を上記式(11、(
2)、 (3)を整理して表わすと下記式(4)のよう
になる。
However, Ll: Distance between test material and probe Ct: Sound speed of IIA sound medium C2: Sound speed of test material d: Transducer array interval Here, the test material surface and the ultrasonic radiation surface of the probe are parallel Since the ultrasonic beam deflection angle θ in the ultrasonic medium 8 and the ultrasonic beam incident angle α on the test material 3 take the same value, the The relationship between the refraction angle β of the ultrasound beam 2, the ultrasound beam deflection angle θ, and the range J of the ultrasound transducer group operating at that time is expressed by the above equation (11, (
2) and (3) can be rearranged and expressed as the following equation (4).

・・・(勾 但し、[]:整数の値をとり、振動子の番号とする。...(Kagashi) However, []: Takes an integer value and is the number of the vibrator.

l:同時に作動する振動子数 θ=α擢’ (、; −th/8/) 従って、被検材3への超音波ご一11入射点Bを通る法
線とアレイ型探触子1の基準点との距離、0Cを一定値
として与えることにより、屈折角βで前記入射点Bを通
る超音波ビームを得るために必要な、作動する振動子群
及び超音波媒質8内での偏向角θは(4)式により演算
することで、決定される。
l: Number of transducers that operate simultaneously By giving the distance from the reference point, 0C, as a constant value, the deflection angle within the operating transducer group and the ultrasonic medium 8 necessary to obtain the ultrasonic beam passing through the incident point B at the refraction angle β. θ is determined by calculating according to equation (4).

これにより、信号制御器15は、超音波の送受信に先立
ち、前述の′aIllを行ない、作動する振動子群9の
選択を行なうよう、送信遅延設定器11及び受信遅延設
定器14の送信パルス発生用トリが信号の出力及び受信
信号のデジタル変換開始用トリガ信号の出力を制御する
と共に、所定超音波ビーム偏向角θとなるよう作動する
振動子群それぞれの超音波送受信のタイミングを送信遅
延設定器11及び受信遅延設定器14へ設定し、送信パ
ルス発生用トリが信号の出力タイミング及び受信信号の
デジタル変換開始用トリが信号の出力タイミングを制御
する動作を行なう。このようにして、被検材3への超音
波ビーム屈折角βを順次変更し前述の動作を繰返すこと
で第3図に示すように超音波ビーム2の被検材3への入
射点Bを定点としたセクタ電子走査が行なわれる。
As a result, the signal controller 15 generates transmission pulses for the transmission delay setter 11 and the reception delay setter 14 so as to perform the above-mentioned 'aIll' and select the transducer group 9 to be activated, prior to transmission and reception of ultrasonic waves. A transmission delay setting device controls the output of the signal and the output of the trigger signal for starting the digital conversion of the received signal, and also sets the timing of ultrasonic transmission and reception of each transducer group that operates so that a predetermined ultrasonic beam deflection angle θ is achieved. 11 and reception delay setter 14, the transmission pulse generation trigger controls the signal output timing, and the reception signal digital conversion start trigger controls the signal output timing. In this way, by sequentially changing the refraction angle β of the ultrasonic beam to the test material 3 and repeating the above operation, the incident point B of the ultrasonic beam 2 to the test material 3 can be set as shown in FIG. Fixed-point sector electronic scanning is performed.

なお、超音波の受信に於いて、第2図に示した、作動す
る超音波振動子群の略中央点Aにおける超音波の送信の
タイミングと受信のタイミングを同一時刻とすると、加
算メモリ16でデジタル波形加算受信信号には、Δ点か
ら超音波ビーム入射点8間の超音波媒948内の超音波
ビーム路程弁が含まれており、かつ、超音波ビーム偏向
角θによってそのビーム路程長さが異なるため、画像表
示に於ける画像掃引信号作成のための信号処理が複雑に
なってしまう。
In receiving the ultrasonic waves, if the timing of transmitting and receiving the ultrasonic waves at approximately the center point A of the operating ultrasonic transducer group shown in FIG. The digital waveform addition received signal includes an ultrasonic beam path valve in the ultrasonic medium 948 between the point Δ and the ultrasonic beam incident point 8, and the beam path length is determined by the ultrasonic beam deflection angle θ. As a result, signal processing for creating an image sweep signal in image display becomes complicated.

そこで、信号制御器15は、受信信号設定器14に対し
、前述の超音波ビーム偏向角θとするのに必要な、作動
する振動子群それぞれからの受信信号のデジタル変換開
始用トリが信号の出力タイミングに、AB間距離を往復
伝播するのに要する時間tabだけ遅らせるよう受信遅
延時間にバイアスを加える。
Therefore, the signal controller 15 instructs the received signal setter 14 to set the trigger for starting the digital conversion of the received signals from each of the operating transducer groups, which is necessary to set the above-mentioned ultrasonic beam deflection angle θ. A bias is added to the reception delay time so that the output timing is delayed by the time tab required for round-trip propagation over the AB distance.

この受信遅延時間のバイアスtabは、アレイ型探触子
面と被検材表面間距離1!と、超音波ビーム偏向角θに
より下記(5)式、で示される。
The bias tab of this reception delay time is the distance between the array type probe surface and the surface of the test material 1! and the ultrasonic beam deflection angle θ are expressed by the following equation (5).

但しθ−α 従って、上式の演算を超音波ビーム入射点B、及び偏向
角θの設定あるいは変更毎に上記式4)の演算と併せて
信号制御器15で行ない、受信遅延設定器14への受信
遅延時間の設定を行なうことで、波形加算メモリ16で
デジタル波形加算された受信信号波形は、超音波ビーム
入射点Bを起点とした被検材3内の超音波受信信号だけ
となる。
However, θ−α Therefore, the calculation of the above equation is performed in the signal controller 15 along with the calculation of the above equation 4) every time the ultrasonic beam incident point B and the deflection angle θ are set or changed, and the signal is sent to the reception delay setting device 14. By setting the reception delay time, the received signal waveform digitally added in the waveform addition memory 16 becomes only the ultrasonic received signal in the specimen 3 starting from the ultrasonic beam incident point B.

すなわち、超音波ビー11入射点Bを中心とした直接接
触法でのセクタ電子走査と等価な動作を行なうことにな
る。
In other words, an operation equivalent to sector electronic scanning using the direct contact method centered on the incident point B of the ultrasonic beam 11 is performed.

ここで、信号処理器17は、加算メモリ16からの受信
信号波形の入力に対応したBスコープ表示器18への画
像掃引信号を発生させる場合、直接接触法での画像砕引
信号の発生と同じように、下記式(6)i7)によりB
スコープ表示器18へのX軸、およびY軸信号を被検材
3への超音波ビーム屈折角βと波形加算メモリ16内に
記憶されている受信信号の時間軸T(超音波ビーム入射
点Bからのビーム路程に相当)から生成する。
Here, when the signal processor 17 generates an image sweep signal to the B scope display 18 corresponding to the input of the received signal waveform from the addition memory 16, it generates the image sweep signal in the same way as the image sweep signal in the direct contact method. According to the following formula (6)i7), B
The X-axis and Y-axis signals to the scope display 18 are converted to the ultrasonic beam refraction angle β to the specimen 3 and the time axis T of the received signal (ultrasonic beam incident point B (equivalent to the beam path from).

X−T−sinβ           ・・・(aY
−T−cosβ           ・・・(7)従
って、信号処理器17は波形加算メモリの出力に同期し
て画像掃引信号X、YをBスコープ表示器18に送出す
ると共に、加算波形の信号強度で、Bスコープ表示器1
8への画像掃引信号を輝度変調させ、被検材3内への超
音波ビームのセクタ走査に対応したBスコープ画像の表
示を得るも切である。
X-T-sinβ...(aY
-T-cosβ (7) Therefore, the signal processor 17 sends out the image sweep signals X and Y to the B scope display 18 in synchronization with the output of the waveform addition memory, and at the same time, with the signal strength of the addition waveform, B scope display 1
It is also possible to display a B-scope image corresponding to sector scanning of the ultrasonic beam into the specimen 3 by modulating the brightness of the image sweep signal to the specimen 8.

以上説明した実施例では、アレイ型探触子1の超音波放
射面と被検材3表面との局を11の距離で平行に保ち超
音波媒質8を介してセクタ電子走査を行なう場合につい
て説明したが、第4図に示すように、アレイ型探触子1
の超音波放射面と被検材3の表面とのなす角をψとした
場合、あるいは、第5図に示すように、被検材3の表面
が半径Rの曲率を有する場合に於いても、アレイ型探触
子1の基準点Oと被検材3への超音波ビーム入射点Bと
の幾何学的な位置関係を明らかにし、前述の式(イ)お
よび式(5)を若干変更するだけで適用できるものであ
る。
In the embodiment described above, the case where the ultrasonic emission surface of the array type probe 1 and the surface of the specimen 3 are kept parallel to each other at a distance of 11 and sector electronic scanning is performed via the ultrasonic medium 8 is explained. However, as shown in Fig. 4, the array type probe 1
When the angle between the ultrasonic radiation surface of , the geometrical positional relationship between the reference point O of the array type probe 1 and the ultrasonic beam incidence point B on the specimen 3 was clarified, and the above-mentioned equations (a) and (5) were slightly modified. It can be applied by simply doing so.

すなわち、第5図に示すアレイ型探触子1の超音波放射
面と被検材3の表面とのなす角がφであ゛ る場合の超
音波入射点Bと被検材3内への屈折角βと超音波ts質
8内の超音波ビーム偏向角θと、その時の作動する超音
波振動子群の範囲Jとの関係は、式四を下記式(8)の
ように修正することで得られる。
That is, when the angle between the ultrasonic emission surface of the array type probe 1 and the surface of the test material 3 shown in FIG. The relationship between the refraction angle β, the ultrasonic beam deflection angle θ in the ultrasonic beam quality 8, and the range J of the ultrasonic transducer group that operates at that time is determined by modifying equation 4 as shown in equation (8) below. It can be obtained with

・・・(8) 但し[]は整数の値をとり振動子NOとするmは同時に
作動する振動子数 また、超音波受信時の受信遅延時間のバイアスtabは
、上記式(5)を下記式■のように変形することができ
る。
...(8) However, [ ] takes an integer value and is the transducer NO. m is the number of transducers that operate simultaneously. Also, the bias tab of the reception delay time when receiving ultrasonic waves is calculated by converting the above formula (5) to the following: It can be transformed as shown in formula (■).

・・・■ 但しθ−α−ψ 尚、第5図に示した曲率を有する探傷表面状についても
その曲率中心Pと被検材への超音波ビーム入射点Bを結
ぶ直線を入射点Bに対する法線と考えれば、それに直角
な接1i17’ とアレイ型探触子1との位W1関係は
、第4図に示した場合と同じになり、従って、式(8)
及び、式■がそのまま適用できるものであり、本発明に
含まれるものである。
・・・■ However, θ−α−ψ Also, regarding the surface shape of the flaw detection surface having the curvature shown in Fig. 5, the straight line connecting the center of curvature P and the point of incidence of the ultrasonic beam on the specimen material B should be connected to the point of incidence B. If considered as a normal line, the relationship W1 between the tangent 1i17' perpendicular to it and the array type probe 1 is the same as shown in Fig. 4, and therefore, equation (8)
And formula (2) can be applied as is and is included in the present invention.

なお上述の説明においては、超音波の受信信号波形を高
速アナログ・デジタル変換し、デジタル量での波形加算
を行なうようにした場合について説明したが、COD 
(Charge Coupled  Devi−ce)
や遅延線等を用いたアナログ倦での波形加算をおこなう
ようにしても同様に実現できることはいうまでもない。
In the above explanation, the received ultrasonic signal waveform is subjected to high-speed analog-to-digital conversion and waveform addition is performed in digital quantities.
(Charge Coupled Device)
It goes without saying that the same effect can be achieved by performing waveform addition using an analog circuit using a delay line or the like.

さらに、本発明によればアレイ型探触子(1)基準点0
と被検材3の表面との距離JL1を0とした探傷方法す
なわち直接接触法でのセクター走査にも使用できる得る
ものであり、切換で使用するようにしても良く、電子集
束法を併用しても同様の効果が御られるものである。
Furthermore, according to the present invention, the array type probe (1) reference point 0
It can also be used for sector scanning in the direct contact method, which is a flaw detection method in which the distance JL1 between the surface and the surface of the test material 3 is set to 0. It can also be used by switching, and it can also be used in conjunction with the electron focusing method. The same effect can be obtained even if

[発明の効果] 以上実施例に基づいて詳細に説明したように、本発明に
よれば、アレイ型探触子と被検材表面との間に超音波媒
質を介してセクター電子走査を行なった場合においても
、超音波ビームが超音波媒質と被検材との境界を通過す
ることによる屈折角にかかわらず被検材への超音波ビー
ムの入射点を略一定とするようにアレイ型探触子の作動
する振動子群の選定と、超音波媒質内の超音波ビーム偏
向角を被検材への屈折角に応じて求めるように補正する
ようにしたので、特別な画像処理を行なう必要をな(し
て被検材への超音波ビームの入射点が、超音波ビームの
偏向角にかかわらず、一定点をとることから、アレイ型
探触子の基準点と超音波反射源との幾何学的な位W11
Il係が容易に知り得、超音波反tI4mとなる欠陥等
の性状を迅速に精度良く評価できることを可能とした超
音波探傷法が提供できるもので“ある。
[Effects of the Invention] As described above in detail based on the embodiments, according to the present invention, sector electronic scanning is performed via an ultrasonic medium between an array type probe and the surface of a test material. Even in cases where the ultrasonic beam passes through the boundary between the ultrasonic medium and the test material, an array-type probe is used so that the point of incidence of the ultrasonic beam on the test material remains approximately constant regardless of the refraction angle. The selection of the group of transducers operated by the transducer and the deflection angle of the ultrasonic beam in the ultrasonic medium are corrected according to the angle of refraction toward the specimen, eliminating the need for special image processing. (The point of incidence of the ultrasonic beam on the specimen is a constant point regardless of the deflection angle of the ultrasonic beam, so the geometry of the reference point of the array probe and the ultrasonic reflection source is Academic rank W11
It is possible to provide an ultrasonic flaw detection method that can be easily known by the Il staff and can quickly and accurately evaluate the properties of defects that have an ultrasonic anti-tI of 4m.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる超音波探傷法を実施する装置の
一実施例の構成図、第2図乃至第5図は同実施例の作用
を説明するためのもので第2図はアレイ型探触子の超音
波放射面と被検材の表面とが平行になるように媒質を介
してセクター電子走査を行なう場合の説明図、第3図は
超音波ビームの被検材への入射点を定点としたセクタ電
子走査を行なう場合の説明図、第4図及び第5図は夫々
アレイ型探触子の超音波放射面と被検材の表面とか角ψ
の場合のセクター電子走査を説明する図、第6図乃至第
8図は従来の超音波探傷法を説明するためのもので第6
図はアレイ型探触子を被検材の表面上に直接接触させて
行な・う一般的な直接接触法について示す図、第7図は
超音波伝播速度(音速)の異なる媒質工および■の境界
を通過する超音波ビームの様子を説明するための図、第
8図はアレイ型探触子と被検材との間にa質を介してセ
クター電子走査法による超音波探傷を行なう場合の説明
図である。 2・・・超音波ビーム、3・・・被検材、8・・・超音
波媒質、9・・・超音波振動子、11・・・信号制御器
、18・・・Bスコープ表示器、O・・・アレイ型探触
子基準点、B・・・超音波ビーム入射点、Jll・・・
アレイ型探触子・被検材間距離、α・・・入射角、β・
・・屈折角、θ・・・超音波媒質的偏向角、φ・・・探
触子傾き角。 出願人代理人 弁理士 鈴江武彦 第2図 第3図 第 第7図 第8図 6図 (a) (C) (b) (d)
Fig. 1 is a block diagram of an embodiment of an apparatus for carrying out ultrasonic flaw detection according to the present invention, and Figs. 2 to 5 are for explaining the operation of the embodiment, and Fig. 2 is an array type An explanatory diagram when performing sector electronic scanning through a medium so that the ultrasonic emission surface of the probe and the surface of the specimen are parallel. Figure 3 shows the point of incidence of the ultrasonic beam on the specimen. Figures 4 and 5 are explanatory diagrams for performing sector electronic scanning with fixed point .
Figures 6 to 8 are for explaining the sector electronic scanning in the case of the conventional ultrasonic flaw detection method.
The figure shows a general direct contact method in which an array type probe is brought into direct contact with the surface of the material being tested. Figure 8 is a diagram to explain the state of the ultrasonic beam passing through the boundary of FIG. 2... Ultrasonic beam, 3... Test material, 8... Ultrasonic medium, 9... Ultrasonic vibrator, 11... Signal controller, 18... B scope indicator, O...Array type probe reference point, B...Ultrasonic beam incidence point, Jll...
Distance between array type probe and test material, α...Incidence angle, β...
...Refraction angle, θ... Ultrasonic medium deflection angle, φ... Probe tilt angle. Applicant's representative Patent attorney Takehiko Suzue Figure 2 Figure 3 Figure 7 Figure 8 Figure 6 (a) (C) (b) (d)

Claims (2)

【特許請求の範囲】[Claims] (1)被検材表面に超音波媒質を介して配置されたアレ
イ型探触子の各振動子による超音波送波及び受波のタイ
ミングを電子制御し、上記被検材内部を扇形に走査して
Bスコープ画像を表示し、上記被検材内部の欠陥を探傷
する超音波探傷方法において、上記被検材への超音波ビ
ームの入射点が超音波ビーム偏向方向にかかわりなく略
一定となるよう、上記アレイ型探触子の作動する振動子
群の選定と、超音波媒質内偏向角の選定とを、所望する
被検材への超音波ビーム屈折角毎に上記アレイ型探触子
と上記被検材への超音波入射点との幾何学的な位置関係
により求めて与えることを特徴とする超音波探傷方法。
(1) Electronically controls the timing of ultrasonic wave transmission and reception by each vibrator of an array type probe placed on the surface of the specimen via an ultrasonic medium, and scans the inside of the specimen in a fan shape. In an ultrasonic flaw detection method in which a B-scope image is displayed to detect defects inside the test material, the point of incidence of the ultrasonic beam on the test material is approximately constant regardless of the ultrasonic beam deflection direction. In this way, the selection of the transducer group that the array type probe operates on and the selection of the deflection angle in the ultrasonic medium are performed for each ultrasonic beam refraction angle toward the desired specimen material. An ultrasonic flaw detection method characterized in that the flaw detection is determined based on the geometrical positional relationship with the point of incidence of the ultrasonic waves on the material to be inspected.
(2)超音波の受波のタイミングの選定は、作動する超
音波振動子群の略中央と被検材への超音波ビーム入射点
間距離とを往復伝搬するのに必要な時間だけ超音波媒質
内超音波ビーム偏向に必要な受信遅延時間にバイアスし
て夫々の超音波振動子の受波タイミングとして選定する
と共に被検材への入射点をBスコープ表示における画像
掃引の基点として選定することを特徴とする特許請求の
範囲第(1)項記載の超音波探傷方法。
(2) The timing of receiving the ultrasonic waves should be selected so that the ultrasonic waves are only transmitted for the time necessary for reciprocal propagation between the approximate center of the operating ultrasonic transducer group and the distance between the ultrasonic beam incident point on the specimen material. Select the reception timing of each ultrasonic transducer by biasing the reception delay time required for intra-medium ultrasonic beam deflection, and select the point of incidence on the specimen as the base point of image sweep in the B scope display. An ultrasonic flaw detection method according to claim (1), characterized in that:
JP60066782A 1985-03-30 1985-03-30 Ultrasonic flaw detection Pending JPS61225647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60066782A JPS61225647A (en) 1985-03-30 1985-03-30 Ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066782A JPS61225647A (en) 1985-03-30 1985-03-30 Ultrasonic flaw detection

Publications (1)

Publication Number Publication Date
JPS61225647A true JPS61225647A (en) 1986-10-07

Family

ID=13325778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066782A Pending JPS61225647A (en) 1985-03-30 1985-03-30 Ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPS61225647A (en)

Similar Documents

Publication Publication Date Title
US3911730A (en) Ultrasonic transducer probe system
JPS599555A (en) Ultrasonic flaw detector
JPH0319504B2 (en)
CN110118822B (en) Ultrasonic flaw detection device and ultrasonic flaw detection method
GB2048476A (en) Method and apparatus for ultrasonic imaging using a line source and a linear receiver array
JPH03500454A (en) Ultrasonic reflection transmission imaging method and device excluding artificial structures
JPS58223059A (en) Ultrasonic flaw detector
JPS6215216B2 (en)
JP5863591B2 (en) Ultrasonic inspection equipment
JPH0619341B2 (en) Electronic scanning ultrasonic flaw detector
JPS61225647A (en) Ultrasonic flaw detection
JP7341793B2 (en) Ultrasonic flaw detection equipment, method and reactor internal structure maintenance method
JPS59151057A (en) Ultrasonic flaw detector
JPH04200539A (en) Ultrasonic wave probe and blood flow measuring instrument
JPS61253458A (en) Ultrasonic flaw detection
JPS6014166A (en) Method and device for ultrasonic flaw detection
JPS597260A (en) Method and device for ultrasonic flaw detection
JP2612890B2 (en) Ultrasonic flaw detection method
KR100543736B1 (en) Ultrasonic imaging method
JPS61155755A (en) Ultrasonic flaw detector
JPS60170764A (en) Ultrasonic flaw detector for turbine disk
JPH0550705B2 (en)
JP2947969B2 (en) Solder part display method, solder part inspection method and apparatus therefor
JPS60220857A (en) Ultrasonic flaw detecting device
JPS62112059A (en) Ultrasonic flaw inspection device