JPS58223059A - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JPS58223059A
JPS58223059A JP57106516A JP10651682A JPS58223059A JP S58223059 A JPS58223059 A JP S58223059A JP 57106516 A JP57106516 A JP 57106516A JP 10651682 A JP10651682 A JP 10651682A JP S58223059 A JPS58223059 A JP S58223059A
Authority
JP
Japan
Prior art keywords
reflected wave
circuit
defect
signal
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57106516A
Other languages
Japanese (ja)
Inventor
Kazuhiro Tsumura
和弘 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57106516A priority Critical patent/JPS58223059A/en
Publication of JPS58223059A publication Critical patent/JPS58223059A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52025Details of receivers for pulse systems

Abstract

PURPOSE:To detect the size and shape of a defect at a high accuracy by the addition of a reflected wave signal corresponding to the sum of the distance to a microscopic area from transmission vibrators and the distance to the vibrators receiving reflected waves from the microscopic area. CONSTITUTION:Any vibrator 102-n is selected with a selection circuit 103 to apply a pulse thereto from a high voltage pulse generation circuit 106, an ultrasonic beam in an object 112 to be inspected is transmitted in a conical shape and reflected waves from a defect 116 received with other vibrators 102-1. A reflected wave signal is amplified sequentially with an amplification circuit 110 through a scanner 107 and memorized into a memory circuit 111. In a signal treatment circuit 113, the sum is determined between the distance to the microscropic area A set as desired from the vibrator 102-n and the distance to vibrators 102-n... from the microscopic area A and relfected wave signal within a gate period G corresponding thereto are extracted from a memory circuit 111 to be added. The microscopic area A is set sequentially for the entire flaw detection range and a similar signal processing is done to prepare an image signal.

Description

【発明の詳細な説明】 本発明は、原子力発電設備の配管等の超音波探傷装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection device for piping, etc. of nuclear power generation equipment.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に原子力発電設備の配管、原子炉圧力容器は、製作
時又は定期点検時に超音波探傷を行ない、信頼性を確保
するようにしている。
Generally, piping and reactor pressure vessels of nuclear power generation equipment are subjected to ultrasonic flaw detection during manufacturing or periodic inspection to ensure reliability.

第1図ないし第4図は従来のこの種の超音波探傷に用い
られている超音波探傷装置を示すもので、図中1は超音
波探触子である。との超音波探触子1は走査機構2によ
って互に直交するX,Y方向に移動され、所定の定歪経
路に沿って走査される。なお、この超音波探触子1は第
2図に示す如く被検査体3内に向けて斜めに超音波ビー
ムを発信し、かつその反射波を受信するように構成され
ている。
1 to 4 show conventional ultrasonic flaw detection equipment used in this type of ultrasonic flaw detection, and numeral 1 in the figures is an ultrasonic probe. The ultrasonic probe 1 is moved by the scanning mechanism 2 in mutually orthogonal X and Y directions and scanned along a predetermined constant strain path. As shown in FIG. 2, the ultrasonic probe 1 is configured to emit an ultrasonic beam obliquely into the object 3 to be inspected and to receive the reflected wave.

そこで、被検査体3内に欠陥4がある,喝合には超音波
探触子1では第3図に示す如く被検査体3の表面からの
反射波信号SI と裏面からの反射波信号S2との間妬
上記欠陥4からの反射波信号S3を受信することになる
,、そして超音液深触子1の出力は探傷器5を介して信
号処理回路6に送出される(第1図)。そこで、信号処
理回路6では超音波探触子1の出力にもとづいて被検査
体3の内部の画像信号を作成し11表示−器7に欠陥4
を画像表示させることができる。
Therefore, when there is a defect 4 in the object to be inspected 3, the ultrasonic probe 1 has a reflected wave signal SI from the front surface of the object to be inspected 3 and a reflected wave signal S2 from the back surface as shown in FIG. The reflected wave signal S3 from the defect 4 is received, and the output of the ultrasonic probe 1 is sent to the signal processing circuit 6 via the flaw detector 5 (Fig. ). Therefore, the signal processing circuit 6 creates an image signal of the inside of the object to be inspected 3 based on the output of the ultrasonic probe 1 and displays the defect 4 on the display 11.
can be displayed as an image.

なお図中8は走査機構2を制御するだめの制御回路であ
る。
Note that 8 in the figure is a control circuit for controlling the scanning mechanism 2.

以上の如く構成された従来の超音波探傷装置にあっては
、第4図に示す如く超音波探触子1から発信される超音
波ビームの走査方向前縁部が欠陥4の一端に接したとき
から、超音波ビームの走査、、方向後縁部が欠陥4の他
端から離れるまでの間中、欠陥4からの反射波信号を受
信することになる。このため、欠陥4の大きさが第4図
に破線4′で示す如く拡大されて検出され、高度な検出
精度が得られない不具合があった。
In the conventional ultrasonic flaw detection device configured as described above, as shown in FIG. The reflected wave signal from the defect 4 is received from the moment the ultrasonic beam scans until the trailing edge of the defect 4 leaves the other end of the defect 4. For this reason, the size of the defect 4 is magnified and detected as shown by the broken line 4' in FIG. 4, resulting in a problem that a high degree of detection accuracy cannot be obtained.

また、水平方向に隣接した複数の欠陥が存在する場合、
それらはつながった単一の欠陥として検出されてしまう
おそれもあった。そこで、このような問題を解決するた
めの手段として超音波ビームを細くすることが考えられ
るが、超音波ビームを細くするには限界があり、したが
って以上の装置によシ検出精度の向上を図るには、おの
ずと限界があった。
Also, if there are multiple horizontally adjacent defects,
There was also a risk that these defects would be detected as a single connected defect. Therefore, one possible way to solve this problem is to make the ultrasonic beam thinner, but there is a limit to how thin the ultrasonic beam can be made, so the above-mentioned device is used to improve the detection accuracy. naturally had its limits.

そこで、このような問題を解決するために、開口合成法
と称される信号処理法が考えられている。これは、第5
図の如く超音波探触子1ノより被検査体12の内部に向
けて円錐状又は扇状に拡がった超音波ビームを測定点P
+−Pyから発信するとともに、その反射波信号を同探
触子1ノを介して受信するものである。このとき、被検
査体12内に欠陥13があれば、第6図の如く被検査体
12の表面からの反射波信号S1 と裏面からの反−耐
波信号St との間に欠陥13からの反射波信号SSが
瑛われる。反射波信号S、の出戻位置は測定点P1−P
?に応じて変化する。したがって、被検査体12の内部
   ′に任意の微小領域14を設定し、第7図の如く
測定点P1〜Pqから微小領域14までの距離17〜l
qを求め、測定点P1〜Pyで受信した反射波に対応す
る反射波信号の中から距離tl〜t?に対応する反射波
信号を抽出してそれらの信号を加算し、かつその大きさ
を評価することによって、上記微小領域14が反射波信
号の反射源(すなわち欠陥13)であるか否かを判断す
ることができる。そして微小領域14の位置を変化させ
ることKより、被検査体12の内部全体について同様の
信号処理を行なうととができ、これによって被検査体1
2の断面像を検出することができる。そして、このよう
にして得られる被検査体12の断面像は、開口合成法を
用いな1、い従来の探傷法によって得られる断面像に比
して格段に優れた分解能を有する。したがって、水平方
向の欠陥の大きさを高精度に検出することができ、また
水平方向に隣接した複数の欠陥もそれぞれ分離した状態
で検出することができる。
Therefore, in order to solve such problems, a signal processing method called an aperture synthesis method has been considered. This is the fifth
As shown in the figure, an ultrasonic beam that spreads in a conical or fan shape from the ultrasonic probe 1 toward the inside of the object to be inspected 12 is sent to the measurement point P.
+-Py and its reflected wave signal is received via the same probe 1. At this time, if there is a defect 13 in the object to be inspected 12, as shown in FIG. A wave signal SS is transmitted. The return position of the reflected wave signal S is the measurement point P1-P
? It changes depending on. Therefore, any minute area 14 is set inside the object 12 to be inspected, and the distance 17-1 from the measurement points P1-Pq to the minute area 14 is determined as shown in FIG.
q is calculated, and the distance tl to t? is calculated from among the reflected wave signals corresponding to the reflected waves received at the measurement points P1 to Py. By extracting the reflected wave signals corresponding to the reflected wave signals, adding these signals, and evaluating the size, it is determined whether the minute area 14 is the reflection source (i.e., the defect 13) of the reflected wave signal. can do. Then, by changing the position of the minute region 14, similar signal processing can be performed on the entire interior of the object to be inspected 12, and thereby the object to be inspected 1
2 cross-sectional images can be detected. The cross-sectional image of the object to be inspected 12 obtained in this way has a much better resolution than the cross-sectional image obtained by a conventional flaw detection method that does not use the aperture synthesis method. Therefore, the size of a horizontal defect can be detected with high precision, and a plurality of horizontally adjacent defects can also be detected separately.

ところが、このような開口合成法には次のような問題が
あった。すなわち優れた分解能を得るKは測定点P L
”’−P フの範囲すなわち開口を広くする方がよい。
However, such aperture synthesis method has the following problems. In other words, K for obtaining excellent resolution is the measurement point P L
It is better to widen the range of ``'-P'', that is, the aperture.

しかし、開口が広くても測定点P L−P 7で欠陥1
3の同一点からの反射波が重複して受信されない限り検
出は不可能である。すなわち、欠陥13の同一点からの
反射波が第8図(4)又は(B)のように拡散すること
が必要である。ところが、欠陥13の形状が第8図(C
)又は■)のように線状である場合には、欠酢3の両端
からの反射波はよく拡散するが、両端以外の部分では超
音波ビームの入射方向に対して正反射するため、拡散す
る反射波は殆んど得られない。そのため、第8図(C)
 、 Q))のような線状欠陥の画像は第9図のように
両端の2点のみが現われ、点欠陥との区別ができない問
題があった。
However, even if the aperture is wide, there is a defect 1 at the measurement point P L-P 7.
Detection is impossible unless three reflected waves from the same point are received redundantly. That is, it is necessary that the reflected waves from the same point of the defect 13 be diffused as shown in FIG. 8(4) or (B). However, the shape of defect 13 is as shown in Fig. 8 (C
) or ■), the reflected waves from both ends of the missing vinegar 3 are well diffused, but the parts other than both ends reflect specularly with respect to the incident direction of the ultrasonic beam, so the reflected waves are not diffused. Almost no reflected waves can be obtained. Therefore, Fig. 8(C)
, Q)) In the image of a linear defect, only two points at both ends appear as shown in FIG. 9, and there was a problem that it was impossible to distinguish it from a point defect.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情にもとづいてなされたもので
、その目的は、被検査体内の欠陥を高精度に検出でき、
線状欠陥と点欠陥を明確に区別することができる超音波
探傷装置を提供することにある。
The present invention has been made based on the above circumstances, and its purpose is to detect defects in the inspected body with high precision,
An object of the present invention is to provide an ultrasonic flaw detection device that can clearly distinguish between linear defects and point defects.

〔発明の概要〕[Summary of the invention]

本発明に係る超音波探傷装置は、超音波探触子を被検査
体上に配置して、直線状に配列された複数の撮動子のう
ち任意に選択された1の振動子より被検査体内に円錐状
又は扇状に拡がった超音波ビームを発信し、その反射波
を各振動子で受信して、各振動子より送出された反射波
信号を記憶回路に記憶させておき、超音波ビームを発信
した振動子から被検査体内に任意ビ設定された微小領域
までの距離とその微小領域から反射波を受信した各振動
子までの距離との和に対応−た反射波信号を前記記憶回
路よシ抽出してそれらを加算し、画像信号を作成するよ
うに構成されている。
The ultrasonic flaw detection device according to the present invention places an ultrasonic probe on an object to be inspected, and uses one transducer arbitrarily selected from among a plurality of linearly arranged transducers to be inspected. An ultrasound beam that spreads into the body in a conical or fan shape is emitted, the reflected waves are received by each transducer, and the reflected wave signals sent out from each transducer are stored in a memory circuit, and the ultrasound beam is The storage circuit stores a reflected wave signal corresponding to the sum of the distance from the vibrator that transmitted the signal to a minute area arbitrarily set within the body to be inspected, and the distance from that minute area to each vibrator that received the reflected wave. It is configured to extract the images and add them to create an image signal.

したがって、微小領域に欠陥がある場合の反射波信号の
みが加算され、欠・□陥の大きさ及び形状が高精度に検
出されることになる。
Therefore, only the reflected wave signals when there is a defect in a minute area are added, and the size and shape of the defect/□ defect can be detected with high precision.

〔発明の実施例〕[Embodiments of the invention]

第10図は超音波探傷装置の概略構成を示すもので、図
中101はアレイ型超音波探触子である。この探触子1
01は直線状に配列された複数の振動子10L、  、
 702.  、・・・より構成されている。そして各
振動子1θ2−+ HI 02−2 。
FIG. 10 shows a schematic configuration of an ultrasonic flaw detection device, and 101 in the figure is an array type ultrasonic probe. This probe 1
01 is a plurality of transducers 10L arranged in a straight line,
702. It is composed of... and each oscillator 1θ2−+ HI 02−2 .

・・・は選択回路103の各切換接点104.。. . . are each switching contact 104 of the selection circuit 103. .

104−ffi +・・・及び選択接点105を介して
高圧パルス発生回路106に接続されている。また各振
動子10L+  + 102−t  r・・・はスキャ
ナー107の各切換接点10L、  、 10L、  
、・・・及び選択接点109を介して増幅回路110に
接続され、各振動子102−+  + 102−*  
+・・・により送出された反射波信号を順次増幅して配
憶回路11ノに供給するように構成されている。そして
記憶回路111には被検査体112内の画像信号を作成
する信号処理回路113が接続され、この信号処理回路
113には被検査体112内の状態を画像表示する画像
表示器114が接続されている。なお、図中115は前
記選択回路103、高圧/4’ルス発生回路106、ス
キ、ヤナ−107及び記憶回路11ノを制御する制御回
路である。
104-ffi+... and is connected to the high voltage pulse generation circuit 106 via the selection contact 105. In addition, each transducer 10L+ + 102-tr... is connected to each switching contact 10L, , 10L, of the scanner 107.
, ... and connected to the amplifier circuit 110 via the selection contact 109, and each vibrator 102-+ + 102-*
+... are configured to sequentially amplify the reflected wave signals sent out and supply them to the storage circuit 11. A signal processing circuit 113 that creates an image signal inside the object to be inspected 112 is connected to the memory circuit 111, and an image display 114 that displays the state inside the object to be inspected 112 as an image is connected to this signal processing circuit 113. ing. In the figure, reference numeral 115 is a control circuit for controlling the selection circuit 103, the high voltage/4' pulse generation circuit 106, the bias/yana 107, and the memory circuit 11.

次に、この実施例の作用を説明する。Next, the operation of this embodiment will be explained.

まず選択回路103によシ任意の振動子i o :z−
nを選択し、その振動子1o2−nに対して高圧・ぞル
ス発生回路106より高圧パルスを印加すると、選択さ
れた撮動子102−nより被検査体112内に第11図
の如く超音波ビームが円錐状又は扇状に拡がって発信さ
れる。。
First, the selection circuit 103 selects an arbitrary oscillator i o :z-
n is selected and a high voltage pulse is applied to the transducer 1o2-n from the high-voltage pulse generation circuit 106. A sound beam is transmitted in a conical or fan-like manner. .

今、被検査体112内に線状の欠陥116があり、撮動
子102−nより発信された超音波ビームがこの欠陥1
16で反射して、その反射波が他の各振動子102−1
.102−2 1・・・によシ受信され・・たとする。
Now, there is a linear defect 116 in the object to be inspected 112, and the ultrasonic beam emitted from the sensor 102-n is directed to this defect 1.
16, and the reflected wave is transmitted to each other vibrator 102-1.
.. 102-2 1... is received by...

なお増幅回路110は1つであるから振動子の数だけ超
音波ビームを発信する。そして振動子よシ送出された反
射波信号はスキャナー107を介して順次増幅回路11
0で増幅され、記憶回路111に記憶される。このとき
、振動子102−*  + 102−t  +・・・よ
り送出される反射波信号には、第11図の如く線状欠陥
1160両端よシ拡散する反射波a、bに対応する反射
波信号S、 、 Sbと、それ以外の部分で正反射する
反射波Cに対応する反射波信号S8が含まれている。そ
して前記信号処理回路113では、記憶回路111に記
憶された信号を次のように処理する。すなわち、被検査
体112内に任意の微小領域Aを第11図の如く設定し
、次に、超音波ビームを発信した振動子102−nから
微小領域Aまでの距離と、微小領域Aから各振動子10
2−I  H102−1+”’までの距離との和を求め
、この和に対応するダート期間G内における反射波信号
を記憶回路111よシ抽出して、それらを加算する。こ
のダート期間Gは、振動子102−nから超音波ビーム
が発信された時点から、微小領域Aで反射され、その反
射波が各振動子102−1+ 1172 t 、!・・
・で受波された時点までの時間に対応するものである1
、シたがって、この微小領域Aに欠陥116があれば、
第11図に示す如くダート期間G内に欠陥116からの
反射波に対応する反射波信号S8・・・が存在すること
になる。そしてそれらの反射波信号Sa・・・はすべて
加算されるので、加算された信号のレベルは高くなる。
Note that since there is only one amplifier circuit 110, it emits ultrasound beams equal to the number of transducers. The reflected wave signal sent out from the vibrator is then sequentially sent to an amplifier circuit 11 via a scanner 107.
0 and stored in the storage circuit 111. At this time, the reflected wave signals sent out from the vibrators 102-* + 102-t +... include reflected waves corresponding to reflected waves a and b that are diffused from both ends of the linear defect 1160, as shown in FIG. It includes signals S, , Sb, and a reflected wave signal S8 corresponding to a reflected wave C that is specularly reflected at other parts. The signal processing circuit 113 processes the signal stored in the storage circuit 111 as follows. That is, an arbitrary minute area A is set in the object to be inspected 112 as shown in FIG. Vibrator 10
2-I Find the sum with the distance to H102-1+"', extract the reflected wave signal within the dart period G corresponding to this sum using the storage circuit 111, and add them. This dart period G is , from the time when the ultrasonic beam is emitted from the transducer 102-n, it is reflected in the minute area A, and the reflected wave is transmitted to each transducer 102-1+1172t,!...
・corresponds to the time up to the time when the wave was received at 1
, Therefore, if there is a defect 116 in this minute area A,
As shown in FIG. 11, a reflected wave signal S8 corresponding to the reflected wave from the defect 116 exists within the dirt period G. Since all of these reflected wave signals Sa... are added, the level of the added signal becomes high.

まだ超音波ビー・ムは円錐状又は扇状に拡がったもので
あるから、第11図中に示す如く超音波ビームの発信位
置(点)とその反射波の受波位置(点)とを焦点とする
一楕円上に反射点が存在すると、そのときの反射波信号
が前記ダート期間G内に存在するととになる。しだがっ
て、同一楕円上に他の欠陥や被検査体112の裏面が存
在するとそれらか(の反射波による反射波信号がダート
期間G内に存在してしまうことになるが、上記楕円はそ
れぞれ異なる楕円定数(焦点と距離)を有するので、微
、J\領域A以外では一点で交わることはない。そこで
、微小領域゛Aに欠陥が存在しない場合、他の部分から
の反射波信号がf−)期間G内に存在しても、その加算
信号のレベルは低い。
Since the ultrasound beam is still spread out in a conical or fan shape, the focal point is the transmission position (point) of the ultrasound beam and the reception position (point) of the reflected wave, as shown in Figure 11. If a reflection point exists on one ellipse, then the reflected wave signal at that time exists within the dirt period G. Therefore, if there are other defects or the back side of the object to be inspected 112 on the same ellipse, a reflected wave signal due to the reflected wave from them will exist within the dirt period G. Since they each have different elliptic constants (focal points and distances), they do not intersect at a single point except in the microscopic region A. Therefore, if there is no defect in the microscopic region A, the reflected wave signals from other parts f-) Even if it exists within period G, the level of the addition signal is low.

よってダート期間G内の反射波信号を加算した信号レベ
ルを所定レベルでカットすれば、微小領域A以外での反
射波によるノイズを除去することができる。そして被検
査体112内における探傷範囲全体について順次、微小
領域Aを設定し、各微小領域について上記の信号処理を
行なうことによシ、探傷範囲内に存在する欠陥の位置、
形状又は被検査体112の裏面の形状等を高精度に検出
してその画像信号を作成することができる1、そして、
画像表示器114では信号処理回路113の出力にもと
づいて被検査体112内の状態を画像表示する。
Therefore, by cutting the signal level obtained by adding the reflected wave signals within the dirt period G to a predetermined level, it is possible to remove the noise caused by the reflected waves in areas other than the minute area A. Then, by sequentially setting minute areas A for the entire flaw detection range within the inspection object 112 and performing the above signal processing for each minute area, the position of the defect existing within the flaw detection range,
1 capable of detecting the shape or the shape of the back surface of the object to be inspected 112 with high precision and creating an image signal thereof;
The image display 114 displays an image of the state inside the object to be inspected 112 based on the output of the signal processing circuit 113.

なお、以上は任意に選択された1の振動子102−nよ
シ超音波ビームを発信し、その反射波を各撮動子102
−、  、102−、  、・・・で受波してそれらの
反射波信号について所定の信号処理を行なう場合を説明
したが、発信用の振動子を順次切換え、そのときに得ら
れる反射波信号も含めて同様の信号処理な行なうことも
できる。
Note that in the above, one arbitrarily selected transducer 102-n emits an ultrasonic beam, and the reflected waves are transmitted to each transducer 102-n.
-, , 102-, , ... and perform predetermined signal processing on the reflected wave signals, but the reflected wave signals obtained by sequentially switching the transmitting transducers It is also possible to perform similar signal processing including the following.

また、発信用の振動子を複数個選択し、それぞれの振動
子に印加する高圧パルスを微小時間ずつ遅延させること
によってそれらの振動子より発信される超音波ビームを
いったん集束させたのち、円錐状又は扇状に拡散させる
ようにすれば、超音波ビームの発信エネルギを増大する
ととができる。
In addition, by selecting multiple transducers for transmission and delaying the high-voltage pulses applied to each transducer by a small amount of time, the ultrasonic beams emitted from those transducers are focused, and then Alternatively, if the ultrasonic beam is diffused in a fan shape, the transmission energy of the ultrasonic beam can be increased.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明に係る超音波探傷装置は、
超音波探触子を被検査体上に配置して、直線状に配列さ
れた複数の振動子のうち任意に選択された1の振動子よ
り円錐状又は扇状に拡がった超音波ビームを発信し、そ
の反射波を各振動子で受信して、各振動子より送出され
た反射波信号を記憶回路に記憶きせておき、′超音波ビ
ームを発信した振動子から被検査体内に任意に設定され
た微小領域までの距離とその微小領域から反射波を受信
した各振動子までの距離との和に対応した反射波信号を
前記記憶回路よシ抽出してそれらを加算し、画像信号を
作成するように構成され、これによって被検査体内の欠
陥を高精度に検出することができ、線状欠陥と点欠陥と
の区別や、隣接した複数の欠陥なども明確に検出するこ
とができるなど、優れた効果を得ることができる。
As detailed above, the ultrasonic flaw detection device according to the present invention includes:
An ultrasonic probe is placed on the object to be inspected, and an ultrasonic beam that spreads in a conical or fan shape is emitted from one transducer arbitrarily selected from a plurality of transducers arranged in a straight line. , the reflected waves are received by each transducer, and the reflected wave signals sent out from each transducer are stored in a memory circuit. The storage circuit extracts a reflected wave signal corresponding to the sum of the distance to the minute area and the distance from the minute area to each vibrator that received the reflected wave, and adds them to create an image signal. This makes it possible to detect defects within the object to be inspected with high precision, and has excellent features such as being able to distinguish between linear defects and point defects, and clearly detecting multiple adjacent defects. You can get the same effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は従来例を示すもので、第1図は概
略構成図、第2図は超音波ビームの発信方向を示す図、
第3図は超音波探触子より送出される反射波信号の波形
図、第4図は欠陥とその検出状態を示す図、第5図ない
し第9図は開口合成法による背景技術を示すもので、第
5図は欠陥とその検出状態を示す図、第6図は超音波探
触子よシ送出される反射波信号の波形図、第7図は欠陥
と測定点との位置関係を示す図、第8図(4)〜の)は
欠陥の形状と反射波の拡散状態との関係を示す図、第9
図は線状欠陥の画像を示す図、第10図ないし第11図
は本発明の一実施例を示すもので、第10図は概略構成
図、第11は欠陥とその検出状態を示す図である。 101・・・アレイ型超音波探傷装置、1θ2−1゜1
0L、、・・・、 102−nメ・、・・・撮動子、1
11・・・記憶回路、113・・・信号処理回路、11
4・・・画像表示器、116・・・線状欠陥。 第2図 第3図 第4図 第5図 第6閏 (A)(B) 3
Figures 1 to 4 show conventional examples, where Figure 1 is a schematic configuration diagram, Figure 2 is a diagram showing the transmission direction of the ultrasonic beam,
Figure 3 is a waveform diagram of the reflected wave signal sent out from the ultrasonic probe, Figure 4 is a diagram showing defects and their detection status, and Figures 5 to 9 show the background technology using the aperture synthesis method. Fig. 5 shows the defect and its detection state, Fig. 6 shows the waveform of the reflected wave signal sent by the ultrasonic probe, and Fig. 7 shows the positional relationship between the defect and the measurement point. Figures 8 (4) to 8) are diagrams showing the relationship between the shape of the defect and the diffusion state of reflected waves.
The figure shows an image of a linear defect, Figures 10 and 11 show an embodiment of the present invention, Figure 10 is a schematic diagram, and Figure 11 is a diagram showing defects and their detection status. be. 101...Array type ultrasonic flaw detection device, 1θ2-1゜1
0L,..., 102-nme... Camera, 1
11... Memory circuit, 113... Signal processing circuit, 11
4... Image display device, 116... Linear defect. Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Leap (A) (B) 3

Claims (1)

【特許請求の範囲】[Claims] 一直線状に配列された複数の振動子のうち任意に選択さ
れた1の振動子より被検査体の内部に円錐状又は扇状に
拡がった超音波ビームを発信しその反射波を各振動子で
受信する超音波探触子と、各振動子より送出された反射
波信号を記憶する配憶回路と、超音波ビームを発信した
振動子から被検査体内に任意に設定された微小領域まで
α距離とその微小領域から反射波を受信した各振動子ま
での距離との和に対応した反射波信号を前記記憶回路よ
シ抽出してそれらを加算し画像信号を作成する信号処理
回路と、この信号処理回路の出力にもとづいて被検査体
内の状態を画像表示する画像表示器とを具備したことを
特徴とする超音波探傷装置。
An ultrasonic beam that spreads in a conical or fan shape is emitted from one randomly selected transducer out of multiple transducers arranged in a straight line, and the reflected waves are received by each transducer. An ultrasonic probe that transmits an ultrasonic beam, a storage circuit that stores reflected wave signals sent out from each transducer, and an α distance and a A signal processing circuit that extracts a reflected wave signal corresponding to the sum of the distances from the minute area to each vibrator that received the reflected wave from the storage circuit and adds them to create an image signal; An ultrasonic flaw detection device comprising: an image display device that displays an image of the internal state of a body to be inspected based on the output of a circuit.
JP57106516A 1982-06-21 1982-06-21 Ultrasonic flaw detector Pending JPS58223059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57106516A JPS58223059A (en) 1982-06-21 1982-06-21 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57106516A JPS58223059A (en) 1982-06-21 1982-06-21 Ultrasonic flaw detector

Publications (1)

Publication Number Publication Date
JPS58223059A true JPS58223059A (en) 1983-12-24

Family

ID=14435572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57106516A Pending JPS58223059A (en) 1982-06-21 1982-06-21 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPS58223059A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9668714B2 (en) 2010-04-14 2017-06-06 Maui Imaging, Inc. Systems and methods for improving ultrasound image quality by applying weighting factors
US9883848B2 (en) 2013-09-13 2018-02-06 Maui Imaging, Inc. Ultrasound imaging using apparent point-source transmit transducer
US9986969B2 (en) 2012-08-21 2018-06-05 Maui Imaging, Inc. Ultrasound imaging system memory architecture
US9986975B2 (en) 2006-09-14 2018-06-05 Maui Imaging, Inc. Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging
US10064605B2 (en) 2012-08-10 2018-09-04 Maui Imaging, Inc. Calibration of multiple aperture ultrasound probes
US10130333B2 (en) 2006-10-25 2018-11-20 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
US10206662B2 (en) 2009-04-14 2019-02-19 Maui Imaging, Inc. Calibration of ultrasound probes
US10226234B2 (en) 2011-12-01 2019-03-12 Maui Imaging, Inc. Motion detection using ping-based and multiple aperture doppler ultrasound
CN109521404A (en) * 2018-10-12 2019-03-26 上海交通大学 The evaluation of accuracy and system of vibration measurement based on fmcw radar
US10267913B2 (en) 2013-03-13 2019-04-23 Maui Imaging, Inc. Alignment of ultrasound transducer arrays and multiple aperture probe assembly
US10401493B2 (en) 2014-08-18 2019-09-03 Maui Imaging, Inc. Network-based ultrasound imaging system
US10617384B2 (en) 2011-12-29 2020-04-14 Maui Imaging, Inc. M-mode ultrasound imaging of arbitrary paths
US10675000B2 (en) 2007-10-01 2020-06-09 Maui Imaging, Inc. Determining material stiffness using multiple aperture ultrasound
US10835208B2 (en) 2010-04-14 2020-11-17 Maui Imaging, Inc. Concave ultrasound transducers and 3D arrays
US10856846B2 (en) 2016-01-27 2020-12-08 Maui Imaging, Inc. Ultrasound imaging with sparse array probes

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9986975B2 (en) 2006-09-14 2018-06-05 Maui Imaging, Inc. Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging
US10130333B2 (en) 2006-10-25 2018-11-20 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
US10675000B2 (en) 2007-10-01 2020-06-09 Maui Imaging, Inc. Determining material stiffness using multiple aperture ultrasound
US11051791B2 (en) * 2009-04-14 2021-07-06 Maui Imaging, Inc. Calibration of ultrasound probes
US10206662B2 (en) 2009-04-14 2019-02-19 Maui Imaging, Inc. Calibration of ultrasound probes
JP2020014857A (en) * 2010-02-18 2020-01-30 マウイ イマギング,インコーポレーテッド Point source transmission and speed-of-sound correction using multi-aperture ultrasound imaging
US10835208B2 (en) 2010-04-14 2020-11-17 Maui Imaging, Inc. Concave ultrasound transducers and 3D arrays
US11172911B2 (en) 2010-04-14 2021-11-16 Maui Imaging, Inc. Systems and methods for improving ultrasound image quality by applying weighting factors
US9668714B2 (en) 2010-04-14 2017-06-06 Maui Imaging, Inc. Systems and methods for improving ultrasound image quality by applying weighting factors
US10226234B2 (en) 2011-12-01 2019-03-12 Maui Imaging, Inc. Motion detection using ping-based and multiple aperture doppler ultrasound
US10617384B2 (en) 2011-12-29 2020-04-14 Maui Imaging, Inc. M-mode ultrasound imaging of arbitrary paths
US10064605B2 (en) 2012-08-10 2018-09-04 Maui Imaging, Inc. Calibration of multiple aperture ultrasound probes
US11253233B2 (en) 2012-08-10 2022-02-22 Maui Imaging, Inc. Calibration of multiple aperture ultrasound probes
US9986969B2 (en) 2012-08-21 2018-06-05 Maui Imaging, Inc. Ultrasound imaging system memory architecture
US10267913B2 (en) 2013-03-13 2019-04-23 Maui Imaging, Inc. Alignment of ultrasound transducer arrays and multiple aperture probe assembly
US10653392B2 (en) 2013-09-13 2020-05-19 Maui Imaging, Inc. Ultrasound imaging using apparent point-source transmit transducer
US9883848B2 (en) 2013-09-13 2018-02-06 Maui Imaging, Inc. Ultrasound imaging using apparent point-source transmit transducer
US10401493B2 (en) 2014-08-18 2019-09-03 Maui Imaging, Inc. Network-based ultrasound imaging system
US10856846B2 (en) 2016-01-27 2020-12-08 Maui Imaging, Inc. Ultrasound imaging with sparse array probes
CN109521404B (en) * 2018-10-12 2020-09-04 上海交通大学 FMCW radar-based vibration measurement accuracy evaluation method and system
CN109521404A (en) * 2018-10-12 2019-03-26 上海交通大学 The evaluation of accuracy and system of vibration measurement based on fmcw radar

Similar Documents

Publication Publication Date Title
US10401328B2 (en) Synthetic data collection method for full matrix capture using an ultrasound array
US10895557B2 (en) Linear-scan ultrasonic inspection apparatus and linear-scan ultrasonic inspection method
JPS58223059A (en) Ultrasonic flaw detector
US4730495A (en) Ultrasonic reflex transmission imaging method and apparatus
CN103901108A (en) Phased-array ultrasonic detection method for interfacial de-bonding of composite material
Bazulin Comparison of systems for ultrasonic nondestructive testing using antenna arrays or phased antenna arrays
WO2020191972A1 (en) Nature determination system and nature determination method for ultrasonically detected defect
US3780572A (en) Ultrasonic inspection apparatus
JPS6255626B2 (en)
EP1736799B1 (en) Ultrasonic transmission/reception condition optimization method, corresponding program, and ultrasonic diagnostic apparatus
JPH03122563A (en) Ultrasonic flaw detection apparatus
JPS6157017B2 (en)
JPH04200539A (en) Ultrasonic wave probe and blood flow measuring instrument
Shulgina et al. Method of processing data of acoustic array
JPS6014166A (en) Method and device for ultrasonic flaw detection
CN113324916B (en) Laser ultrasonic tomography device and method for strain clamp
JPH1114611A (en) Electronic scanning system ultrasonic inspection equipment
Hoyle et al. Virtual source aperture imaging for the detection and sizing of vertically aligned flaws in non-destructive testing
KR100543736B1 (en) Ultrasonic imaging method
JP2619409B2 (en) Ultrasound diagnostic equipment
WO2023220810A1 (en) Combining multiple ultrasonic beam skews
JPS61253458A (en) Ultrasonic flaw detection
Zhang et al. Image Analysis of Indications in Fillet Welding by Phased Array Ultrasonic Technique
JPS5935619B2 (en) Ultrasound diagnostic device for abdominal diagnosis
JPS5935618B2 (en) Ultrasound diagnostic equipment