JP2001108661A - Method and apparatus for ultrasonically detecting flaw - Google Patents

Method and apparatus for ultrasonically detecting flaw

Info

Publication number
JP2001108661A
JP2001108661A JP29179399A JP29179399A JP2001108661A JP 2001108661 A JP2001108661 A JP 2001108661A JP 29179399 A JP29179399 A JP 29179399A JP 29179399 A JP29179399 A JP 29179399A JP 2001108661 A JP2001108661 A JP 2001108661A
Authority
JP
Japan
Prior art keywords
vibrating elements
flaw detection
ultrasonic
elements
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29179399A
Other languages
Japanese (ja)
Other versions
JP3606132B2 (en
Inventor
Tetsuya Amano
哲也 天野
Koji Yamada
浩司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP29179399A priority Critical patent/JP3606132B2/en
Publication of JP2001108661A publication Critical patent/JP2001108661A/en
Application granted granted Critical
Publication of JP3606132B2 publication Critical patent/JP3606132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for ultrasonically detecting a flaw capable of detecting the flaw with sufficient sensitivity, detecting with a variable opening width in response to a status, scanning to detect the flaw by generating a small unnecessary echo. SOLUTION: The method for ultrasonically detecting a flaw comprises the steps of arranging a plurality (n) of vibrating elements 1 in an array state on an oblique surface of an oblique flaw detecting wedge 2, selecting a plurality (m) of the elements (n>m) of a continued array of the plurality (n) of the elements, setting an opening width D of the element decided according to a total sum of the widths and the interval of the plurality)m) of the elements in the wedge oblique direction if a ultrasonic wave is transmitted and received by the selected plurality (m) of the elements so as to satisfy the formula A, and controlling a combining timing of received signals by an exciting timing controlling and receiving delay time controller of a pulser group 5 by a transmitting delay time controller 6 when transmitted and received by the plurality (m) of the elements (9 to 11, 14, 15).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の振動素子を
アレイ状に配列して超音波の送受信を行い、被検体の探
傷を行う超音波探傷方法及びその装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method and apparatus for transmitting and receiving ultrasonic waves by arranging a plurality of vibrating elements in an array to detect flaws on an object.

【0002】[0002]

【従来の技術】鋼材など材料や溶接部の内部に存在する
きずを非破壊検査する手段として、超音波探傷法が広く
用いられている。この超音波探傷法は、被検体の表面か
ら超音波を入射し、内部のきずから反射した超音波を受
信して検査を行う方法である。従来広く行われている超
音波探傷では、垂直用、斜角用など探傷目的に応じた探
触子が用いられており、一般に、市販品の探触子は、1
つの振動子で構成されるものが多い。
2. Description of the Related Art Ultrasonic flaw detection is widely used as a means for non-destructively inspecting a material such as steel or a flaw existing inside a welded portion. The ultrasonic flaw detection method is a method in which an ultrasonic wave is incident from the surface of a subject and an ultrasonic wave reflected from an internal flaw is received to perform an inspection. Conventionally, in ultrasonic testing which has been widely performed, a probe suitable for a flaw detection purpose such as a vertical type or an oblique type is used.
Many are composed of two vibrators.

【0003】なお、微少な振動素子を複数配列し、それ
ぞれの振動素子で超音波の送受信を行うアレイ型探触子
を用いた超音波探傷技術がある。このアレイ型探触子を
用いた超音波探傷では、例えば特開平9−33500号
公報や特開平9−292374号公報などに示されるよ
うに、各アレイ素子の送受信のタイミングを制御して、
被検体内の超音波ビームを所定位置(焦点位置)に収束
(フォーカスイング)させるものである。
There is an ultrasonic flaw detection technique using an array-type probe in which a plurality of minute vibration elements are arranged and each of the vibration elements transmits and receives ultrasonic waves. In the ultrasonic flaw detection using this array probe, for example, as shown in JP-A-9-33500 and JP-A-9-292374, the transmission and reception timing of each array element is controlled,
This is for converging (focusing) the ultrasonic beam in the subject to a predetermined position (focal position).

【0004】[0004]

【発明が解決しようとする課題】従来広く用いられてい
る超音波探傷方法を用いて、厚い鋼板の探傷など超音波
のビーム路程が大きくなる場合や、超音波の減衰が大き
な材料の超音波探傷を行う場合、超音波ビームの広がり
や超音波の材料中での減衰により、きずから反射する超
音波が微弱となり、良好なSN比で探傷ができないとい
う問題が生じている。そのため、振動子面積の大きな超
音波探触子を使用して探傷が行われているが、従来タイ
プのように1つの振動子で送受信を行う場合、印加電圧
等の関係で駆動可能な振動子の大きさに限界があった。
また1つの振動子の場合、被検体中の音場は振動子の大
きさ(振動子面積)に直接に支配され、音場の制御は不
可能である。一方、アレイ型探触子を用いる場合には、
前述の特開平9−33500号公報や特開平9−292
374号公報などに代表されるように、各アレイ素子の
送受信のタイミングを制御して超音波ビームを収束させ
る発明においては、超音波ビームの焦点位置もしくはこ
の近傍位置において検出精度の向上のみを目指したもの
であった。
In the case where the beam path of the ultrasonic wave is large, such as the flaw detection of a thick steel plate, or the ultrasonic flaw detection of a material having a large attenuation of the ultrasonic wave, using the conventionally widely used ultrasonic flaw detection method. When performing the method, there is a problem that the ultrasonic wave reflected from the flaw is weakened due to the spread of the ultrasonic beam and the attenuation of the ultrasonic wave in the material, and the flaw detection cannot be performed with a good SN ratio. For this reason, flaw detection is performed using an ultrasonic probe having a large transducer area. However, when transmission and reception are performed by a single transducer as in the conventional type, a transducer that can be driven due to applied voltage and the like is used. There was a limit to the size of
In the case of one vibrator, the sound field in the subject is directly controlled by the size (vibrator area) of the vibrator, and control of the sound field is impossible. On the other hand, when using an array type probe,
The above-mentioned JP-A-9-33500 and JP-A-9-292
As typified by Japanese Patent No. 374, for example, in the invention in which the transmission / reception timing of each array element is controlled to converge the ultrasonic beam, the aim is only to improve the detection accuracy at or near the focal position of the ultrasonic beam. It was.

【0005】前記超音波のビーム路程が大きくなる場合
や被検体内での超音波の減衰が大きくなる場合の超音波
探傷法としては、一般に振動子面積や振動子開口幅を大
きくする方が良いとされているが、所要探傷範囲をカバ
ーするために必要なビーム路程に対して、どの程度に大
きくしたらよいのかが不明のため、従来は試行錯誤を繰
り返していた。従って所望のビーム路程で超音波探傷を
行うために必要とする振動子面積や振動子開口幅の合理
的な基準が求められていた。また上記振動子面積や振動
子開口幅が大きくなった場合においても、被検体内のき
ずを精度良く検出できるように、被検体内における超音
波ビームの広がりを制御可能とすることも要望されてい
た。
In the case of the ultrasonic flaw detection method in which the beam path of the ultrasonic wave is large or the attenuation of the ultrasonic wave in the subject is large, it is generally better to increase the area of the vibrator or the opening width of the vibrator. However, since it is not clear how much the beam path required to cover the required flaw detection range should be increased, conventionally, trial and error has been repeated. Therefore, a rational standard for the transducer area and the transducer aperture width required for performing ultrasonic inspection in a desired beam path has been required. Further, even when the transducer area and the transducer aperture width are increased, it is also demanded to be able to control the spread of the ultrasonic beam in the subject so that flaws in the subject can be accurately detected. Was.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1に係る
超音波探傷方法は、斜角探傷用くさびを介して被検体探
傷面より超音波を屈折入射させて被検体の探傷を行う超
音波探傷方法において、前記斜角探傷用くさびの傾斜面
に複数nの振動素子をアレイ状に配列し、該複数nの振
動素子のうちから連続した配列の複数m(但しn>m)
の振動素子を選択し、該選択された複数mの振動素子に
より一度に超音波の送受信を行う場合に、くさび傾斜方
向における前記複数mの各振動素子の幅及び間隔の総和
で決まる振動素子開口幅Dが、前記被検体探傷面におけ
る超音波の入射角をα、屈折角をθ、斜角探傷範囲また
は斜角探傷の対象位置により決定されるビーム路程を
L、被検体内を伝搬する超音波の波長をλとすると、次
式(A)を満足するように前記複数mの振動素子を設定
するものである。
According to a first aspect of the present invention, there is provided an ultrasonic flaw detection method for detecting a flaw of a subject by refracting and injecting ultrasonic waves from a flaw detection surface through an oblique flaw detection wedge. In the ultrasonic flaw detection method, a plurality of n vibrating elements are arranged in an array on an inclined surface of the wedge for oblique flaw detection, and a plurality m (where n> m) of a continuous array of the plurality of n vibrating elements is provided.
When a plurality of the vibrating elements are selected and ultrasonic waves are transmitted and received at a time by the selected plurality of m vibrating elements, the vibrating element aperture determined by the sum of the widths and intervals of the plurality of m vibrating elements in the wedge tilt direction. The width D is α, the incident angle of the ultrasonic wave on the inspection surface of the subject is α, the refraction angle is θ, the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection is L, Assuming that the wavelength of the sound wave is λ, the plurality of m vibrating elements are set so as to satisfy the following expression (A).

【0007】[0007]

【数5】 (Equation 5)

【0008】本発明の請求項2に係る超音波探傷方法
は、前記請求項1に係る超音波探傷方法において、前記
設定された複数mの各振動素子をそれぞれ励振する際
に、前記複数mの各振動素子毎にその励振タイミングを
制御し、また前記複数mの各振動素子がそれぞれ受波し
た信号を合成する際に、前記複数mの各振動素子毎の受
波信号の合成タイミングを制御し、前記被検体内に形成
される超音波音場を所望の形状とするように制御するも
のである。
The ultrasonic flaw detection method according to a second aspect of the present invention is the ultrasonic flaw detection method according to the first aspect, wherein each of the plurality of m set vibrating elements is excited when each of the plurality of m vibration elements is excited. The excitation timing is controlled for each of the vibration elements, and when synthesizing the signals received by the plurality of m vibration elements, the synthesis timing of the reception signals for each of the plurality m of vibration elements is controlled. And controlling the ultrasonic sound field formed in the subject to have a desired shape.

【0009】本発明の請求項3に係る超音波探傷方法
は、被検体探傷面より超音波を垂直に入射させて被検体
の探傷を行う超音波探傷方法において、前記被検体探傷
面に複数nの振動素子をアレイ状に配列し、該複数nの
振動素子のうちから連続した配列の複数m(但しn>
m)の振動素子を選択し、該選択された複数mの振動素
子により一度に超音波の送受信を行う場合に、アレイ状
配列方向における前記複数mの各振動素子の幅及び間隔
の総和で決まる振動素子開口幅Dが、前記被検体の探傷
範囲または斜角探傷の対象位置により決定される探傷面
からの深さをd、被検体内を伝搬する超音波の波長をλ
とすると、次式(B)を満足するように前記複数mの振
動素子を設定するものである。
According to a third aspect of the present invention, there is provided an ultrasonic flaw detection method in which ultrasonic waves are vertically incident on a flaw detection surface of an object to detect a flaw of the object. Are arranged in an array, and a plurality m (where n>
When selecting the m) vibrating elements and transmitting / receiving ultrasonic waves at a time by the selected plurality of m vibrating elements, it is determined by the sum of the widths and the intervals of the plurality of m vibrating elements in the array direction. The opening width D of the vibrating element is d, the depth from the flaw detection surface determined by the flaw detection range or the target position of the oblique flaw detection, and the wavelength of the ultrasonic wave propagating in the subject is λ.
Then, the plurality of m vibrating elements are set so as to satisfy the following equation (B).

【0010】[0010]

【数6】 (Equation 6)

【0011】本発明の請求項4に係る超音波探傷方法
は、前記請求項3に係る超音波探傷方法において、前記
設定された複数mの各振動素子をそれぞれ励振する際
に、前記複数mの各振動素子毎にその励振タイミングを
制御し、また前記複数mの各振動素子がそれぞれ受波し
た信号を合成する際に、前記複数mの各振動素子毎の受
波信号の合成タイミングを制御し、前記被検体内に形成
される超音波音場を所望の形状とするように制御するも
のである。
The ultrasonic flaw detection method according to a fourth aspect of the present invention is the ultrasonic flaw detection method according to the third aspect, wherein each of the plurality of m set vibrating elements is excited when each of the plurality of m vibration elements is excited. The excitation timing is controlled for each of the vibration elements, and when synthesizing the signals received by the plurality of m vibration elements, the synthesis timing of the reception signals for each of the plurality m of vibration elements is controlled. And controlling the ultrasonic sound field formed in the subject to have a desired shape.

【0012】本発明の請求項5に係る超音波探傷装置
は、斜角探傷用くさびを介して被検体探傷面より超音波
を屈折入射させて被検体の探傷を行う超音波探傷装置に
おいて、前記斜角探傷用くさびの傾斜面に複数nの振動
素子をアレイ状に配列して構成した斜角接触子と、前記
斜角探触子のアレイ状に配列された複数nの振動素子の
うちから連続した配列の複数m(但しn>m)の振動素
子を選択し、該選択された複数mの振動素子により一度
に超音波の送受信を行う場合に、くさび傾斜方向におけ
る前記複数mの各振動素子の幅及び間隔の総和で決まる
振動素子開口幅Dが、前記被検体探傷面における超音波
の入射角をα、屈折角をθ、斜角探傷範囲または斜角探
傷の対象位置により決定されるビーム路程をL、被検体
内を伝搬する超音波の波長をλとすると、次式(A)を
満足するように前記複数mの振動素子を設定する設定手
段と、前記設定手段により設定された複数mの各振動素
子をそれぞれ励振する際に、前記複数mの各振動素子毎
にその励振タイミングを制御し、また前記複数mの各振
動素子がそれぞれ受波した信号を合成する際に、前記複
数mの各振動素子毎の受波信号の合成タイミングを制御
し、前記被検体内に形成される超音波音場を所望の形状
とするように制御する音場制御手段とを備えたものであ
る。
An ultrasonic flaw detector according to a fifth aspect of the present invention is the ultrasonic flaw detector which flaw-detects an object by refracting an ultrasonic wave from a surface to be inspected through a wedge for oblique flaw detection. An oblique contact formed by arranging a plurality of n vibrating elements in an array on an inclined surface of a wedge for oblique flaw detection, and a plurality of n vibrating elements arranged in an array of the oblique probe. When a plurality of m (where n> m) vibrating elements in a continuous array are selected and ultrasonic waves are transmitted and received at a time by the selected plurality of m vibrating elements, each vibration of the plurality of m in the wedge tilt direction is performed. The vibration element aperture width D determined by the sum of the element widths and intervals is determined by the incident angle α of the ultrasonic wave on the inspection surface of the subject, the refraction angle θ, the oblique flaw detection range or the oblique flaw detection target position. The beam path is L, and the ultrasonic wave propagating in the subject Assuming that the wavelength is λ, setting means for setting the plurality of m vibrating elements so as to satisfy the following expression (A), and when exciting each of the plurality m of vibrating elements set by the setting means, The excitation timing is controlled for each of the plurality of m vibration elements, and when the signals received by each of the plurality of m vibration elements are synthesized, the synthesis timing of the received signal for each of the plurality m of vibration elements And a sound field control means for controlling an ultrasonic sound field formed in the subject to have a desired shape.

【0013】[0013]

【数7】 (Equation 7)

【0014】本発明の請求項6に係る超音波探傷装置
は、被検体探傷面より超音波を垂直に入射させて被検体
の探傷を行う超音波探傷装置において、前記被検体探傷
面に複数mの振動素子をアレイ状に配列して構成した垂
直探触子と、前記垂直探触子のアレイ状に配列された複
数nの振動素子のうちから連続した配列の複数m(但し
n>m)の振動素子を選択し、該選択された複数mの振
動素子により一度に超音波の送受信を行う場合に、アレ
イ配列方向における前記複数mの各振動素子の幅及び間
隔の総和で決まる振動素子開口幅Dが、前記被検体の探
傷範囲または対象とする探傷位置により決定される探傷
面からの深さをd、被検体内を伝搬する超音波の波長を
λとすると、次式(B)を満足するように前記複数mの
振動素子を設定する設定手段と、前記設定手段により設
定された複数mの各振動素子をそれぞれ励振する際に、
前記複数mの各振動素子毎にその励振タイミングを制御
し、また前記複数mの各振動素子がそれぞれ受波した信
号を合成する際に、前記複数mの各振動素子毎の受波信
号の合成タイミングを制御し、前記被検体内に形成され
る超音波音場を所望の形状とするように制御する音場制
御手段とを備えたものである。
An ultrasonic flaw detector according to a sixth aspect of the present invention is an ultrasonic flaw detector for detecting an object by vertically irradiating an ultrasonic wave from the object flaw detection surface. A vertical probe in which the vibrating elements are arranged in an array, and a plurality m (where n> m) of a continuous array of a plurality of n vibrating elements arranged in an array of the vertical probe When a plurality of the vibrating elements are selected and ultrasonic waves are transmitted and received at a time by the selected plurality of m vibrating elements, the vibrating element aperture determined by the sum of the widths and intervals of the plurality of m vibrating elements in the array arrangement direction. Assuming that the width D is d from the flaw detection surface determined by the flaw detection range of the subject or the flaw detection position of interest, and λ is the wavelength of the ultrasonic wave propagating in the subject, the following equation (B) is obtained. Set the plurality of m vibrating elements to satisfy A constant section, each vibration element of the plurality m set by the setting means when excited, respectively,
When the excitation timing is controlled for each of the plurality of m vibrating elements, and when the signals received by each of the plurality of m vibrating elements are combined, the received signal of each of the plurality of m vibrating elements is combined. Sound field control means for controlling timing so as to control an ultrasonic sound field formed in the subject to have a desired shape.

【0015】[0015]

【数8】 (Equation 8)

【0016】[0016]

【発明の実施の形態】実施形態1 実施形態1では、送受波兼用の斜角探傷用アレイ探触子
を用いた例を示している。図1は本発明の実施形態1に
係る超音波探傷装置の構成図である。図1において、1
は複数n個(例えば後述する32個)の振動素子であ
り、ここでは各振動素子の形状は短冊形で、寸法は同一
とする。そしてこの短冊形の短辺がくさび2の傾斜方向
と一致する配列により、n個の振動素子1はくさび2の
傾斜面に一定間隔でアレイ状に配置される。2はくさ
び、3はダンパ材、4は上記1〜3を含む斜角アレイ探
触子である。5はパルサ群であり、前記斜角アレイ探触
子4に含まれる複数n個の各振動素子1を個別に励振す
るn個のパルサを含んでいる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Embodiment 1 shows an example in which an array probe for oblique flaw detection which is used for both transmission and reception is used. FIG. 1 is a configuration diagram of an ultrasonic flaw detector according to Embodiment 1 of the present invention. In FIG. 1, 1
Is a plurality of (for example, 32) vibration elements described later. Here, each of the vibration elements has a rectangular shape and the same dimensions. The n vibrating elements 1 are arranged at regular intervals on the inclined surface of the wedge 2 in an array by an arrangement in which the short sides of the rectangular shape coincide with the inclination direction of the wedge 2. Reference numeral 2 denotes a wedge, reference numeral 3 denotes a damper material, and reference numeral 4 denotes an oblique array probe including the above-described 1 to 3. Reference numeral 5 denotes a pulser group, which includes n pulsers that individually excite the plurality of n vibrating elements 1 included in the oblique array probe 4.

【0017】6は送信用遅延時間制御器であり、送信時
の各パルサの励振タイミングを制御できるように、デー
タ処理装置10から入力するトリガパルスに対して、制
御装置9から各パルサ毎に個別に指示された遅延時間を
付与するための複数n個の遅延時間可変素子を含んでい
る。7は受信用遅延時間制御器であり、受信時に、複数
n個の各振動素子による受波信号を合成する際の合成タ
イミングを制御できるように、受信時にn個の振動素子
1が出力する各受信信号に対して、制御装置9から各振
動素子毎に個別に指示されたn個の遅延時間を付与する
ための複数n個の遅延時間可変素子を含んでいる。
Reference numeral 6 denotes a transmission delay time controller, which individually controls each pulser from the controller 9 in response to a trigger pulse input from the data processor 10 so that the excitation timing of each pulser at the time of transmission can be controlled. Includes a plurality of n variable delay time elements for giving the specified delay time. Reference numeral 7 denotes a reception delay time controller, which controls the output of the n vibrating elements 1 at the time of reception so as to control the synthesis timing when synthesizing the received signals by the plurality of n vibrating elements at the time of reception. The control unit 9 includes a plurality of n delay time variable elements for giving n delay times individually specified for each vibration element to the received signal.

【0018】8は受信器であり、受信用遅延時間制御器
7の各出力を受信用振動素子選択切替装置15を介して
合成して入力し、所定帯域内の信号を所定ゲインで増幅
後、検波したビデオ信号をデータ処理装置10へ供給す
る。9は制御装置であり、パルサ群5及び受信器8に対
して、超音波の送信及び受信の制御を行うのと共に、送
信用遅延時間制御器6内のn個の各遅延時間可変素子及
び受信用遅延時間制御器7内のn個の各遅延時間可変素
子に対して、パソコン11から指示された通りの遅延時
間となるように個別の制御を行い、さらに送信用振動素
子選択切替装置14及び受信用振動素子選択切替装置1
5の各振動素子毎の選択切替制御をも行う。10はデー
タ処理装置であり、送信用振動素子選択切替装置14を
介して送信用遅延時間制御器6にトリガパルスを出力
し、受信器8からの入力信号による探傷データの処理を
行う。11はパソコンであり、制御装置9及びデータ処
理装置10を制御する。12は被検体内の超音波、13
は被検体である。
Numeral 8 denotes a receiver, which combines the respective outputs of the receiving delay time controller 7 via the receiving vibrating element selection switching device 15 and inputs them, amplifies a signal within a predetermined band with a predetermined gain, The detected video signal is supplied to the data processing device 10. Reference numeral 9 denotes a control device, which controls transmission and reception of ultrasonic waves to the pulsar group 5 and the receiver 8, and controls each of the n delay time variable elements and reception devices in the transmission delay time controller 6. Each of the n delay time variable elements in the delay time controller 7 is individually controlled so as to have a delay time as instructed from the personal computer 11, and further, the transmission vibration element selection switching device 14 and Resonating element selection switching device 1
The selection switching control for each of the vibrating elements 5 is also performed. Reference numeral 10 denotes a data processing device that outputs a trigger pulse to the transmission delay time controller 6 via the transmission vibration element selection switching device 14 and performs processing of flaw detection data based on an input signal from the receiver 8. Reference numeral 11 denotes a personal computer, which controls the control device 9 and the data processing device 10. 12 is an ultrasonic wave in the subject, 13
Is the subject.

【0019】14,15はそれぞれ送信用、受信用の振
動素子選択切替装置であり、制御装置9から回路接続位
置が指示された選択制御信号を受理し、アレイ状に配列
された複数n個の振動素子のうちから連続した配列位置
として指示された複数m個(但しn>m、例えば後述す
る10個、16個等)の各振動素子の回路は接続し、そ
の他の各振動素子の回路は非接続とするように選択切替
えを行う。いまn=32としてアレイの配列順に、各振
動素子に#1,#2,#3,…,#32と番号を付与し
ておき、m=10とすると、走査探傷を行う場合、送信
用、受信用の振動素子選択切替装置は、例えば、1回目
の選択指示では#1〜#10の振動素子群を接続し、2
回目の選択指示では#2〜#11の振動素子群を接続
し、第3回目の選択指示では#3〜#12の振動素子群
を接続するというように、選択接続位置をアレイ配列に
従って順次ずらせる(走査させる)。
Numerals 14 and 15 denote transmitting and receiving vibrating element selection switching devices, respectively, which receive a selection control signal indicating a circuit connection position from the control device 9 and provide a plurality of n number of n arranged in an array. The circuits of a plurality m (where n> m, for example, 10 or 16 described later) of the vibrating elements designated as a continuous array position among the vibrating elements are connected, and the circuits of the other vibrating elements are connected. Selection switching is performed so as to disconnect. Now, assuming that n = 32, numbers # 1, # 2, # 3,..., # 32 are assigned to the respective vibrating elements in the order of arrangement of the array. The receiving vibration element selection switching device connects the vibration element groups # 1 to # 10 in the first selection instruction,
The selection connection positions are sequentially shifted in accordance with the array arrangement such that the vibration element groups # 2 to # 11 are connected in the third selection instruction, and the vibration element groups # 3 to # 12 are connected in the third selection instruction. (Scan).

【0020】そしてアレイ状に配列された複数n個の振
動素子のうちから一度の超音波の送受信に使用する連続
した配列位置の複数m個の振動素子の設定法は、本発明
に係る所定の振動素子開口幅Dを満足するように設定さ
れるものであり、その詳細は後述する。なお、図1にお
いては、送信用振動素子選択切替器14と受信用振動素
子選択切替器15は別個の構成になっているが、両方の
振動素子選択切替器を一つにして送受兼用としてもよ
い。
A method for setting a plurality of m vibrating elements in a continuous arrangement position used for transmitting and receiving a single ultrasonic wave from a plurality of n vibrating elements arranged in an array is a predetermined method according to the present invention. This is set so as to satisfy the vibration element opening width D, and details thereof will be described later. In FIG. 1, the transmission vibration element selection switch 14 and the reception vibration element selection switch 15 have different configurations. However, both of the vibration element selection switches can be combined into one for both transmission and reception. Good.

【0021】図4は本発明に係る斜角探傷時の駆動素子
群の開口幅決定方法の根拠となる仮想振動子開口幅の説
明図である。図4において、媒質Aはくさび(くさび角
度はαとする)、媒質Bは被検体である。12は媒質B
内で一定ビーム幅の超音波であり、この超音波の進行方
向は、実際とは逆方向の媒質Aから媒質Bへの方向とす
る。媒質A内と媒質B内とで超音波の伝搬速度が異なる
と、媒質Aと媒質Bとの境界面において、スネルの法則
に従った屈折が生じる。いま、この境界面で屈折が生じ
ないと仮定すると、境界面のP′点からQ′点の範囲に
わたり、媒質Bから媒質Aへ直進した超音波12のビー
ムは、くさび傾斜面のP点からQ点の範囲に到達する。
いま、くさび傾斜面のP点とQ点との間に単一の振動子
を設けたとして、このP点とQ点の間の距離(即ち振動
子開口幅)をDとする。なおこの振動子からの超音波が
実際に媒質Aから媒質Bへ屈折して入射する場合の入射
角はα(くさび角度αに等しい)、屈折角はθとする。
FIG. 4 is an explanatory diagram of a virtual vibrator opening width which is the basis of the method for determining the opening width of the drive element group during oblique flaw detection according to the present invention. In FIG. 4, a medium A is a wedge (a wedge angle is α), and a medium B is a subject. 12 is medium B
The ultrasonic wave has a constant beam width in the inside, and the traveling direction of the ultrasonic wave is a direction from the medium A to the medium B in a direction opposite to the actual direction. If the propagation speed of the ultrasonic wave is different between the medium A and the medium B, refraction occurs at the interface between the medium A and the medium B according to Snell's law. Now, assuming that refraction does not occur at this boundary surface, the beam of the ultrasonic wave 12 that has traveled straight from the medium B to the medium A over the range from the point P 'to the point Q' of the boundary surface is shifted from the point P on the wedge inclined surface. The point Q range is reached.
Now, assuming that a single vibrator is provided between the point P and the point Q on the wedge inclined surface, the distance between the point P and the point Q (namely, the vibrator aperture width) is D. When the ultrasonic wave from the vibrator is actually refracted from the medium A and enters the medium B, the incident angle is α (equal to the wedge angle α), and the refraction angle is θ.

【0022】いま、P点から、Q点〜Q′点を通る直線
に直角に交るように垂線を引き、その交点をRとする。
またP点とR点との間の距離をD′とする。このD′
は、図4において、実際の振動子開口幅Dを、超音波が
媒質A,Bを直進すると考えた場合の超音波伝搬方向と
直角な面(波面)に投影したビーム幅であるので、本発
明では、これを仮想振動子開口幅と称する。この仮想振
動子開口幅D′は、くさび角度(即ち媒質Aの入射角)
をα、媒質Bの屈折角をθとすると、図4の直角三角形
PQRを参照して、次式(1)で表せる。 D′=Dcos(θ−α) … (1) なお、上記D′は、入射角α、屈折角θ、くさび傾斜面
上の振動子開口幅Dの斜角探触子を用いた場合に、実際
の媒質B内における超音波ビーム幅であるDcosθ/cos
αとは異なるものであることを付記する。
Now, a perpendicular line is drawn from the point P so as to intersect at right angles with a straight line passing through the points Q to Q '.
The distance between the point P and the point R is D '. This D '
In FIG. 4, the actual transducer aperture width D is the beam width projected on a plane (wavefront) perpendicular to the ultrasonic wave propagation direction when the ultrasonic waves are considered to travel straight through the media A and B. In the present invention, this is referred to as a virtual vibrator aperture width. The virtual oscillator aperture width D 'is the wedge angle (that is, the incident angle of the medium A).
Let α be the refraction angle of the medium B and θ be the refraction angle of the medium B, with reference to the right triangle PQR in FIG. D ′ = Dcos (θ−α) (1) The above D ′ is obtained by using an oblique angle probe having an incident angle α, a refraction angle θ, and a transducer opening width D on a wedge inclined surface. Dcosθ / cos, which is the actual ultrasonic beam width in the medium B
Note that this is different from α.

【0023】次に本発明における振動素子開口幅(本発
明では複数の振動素子を用いるので振動素子開口幅とい
うが、単一の振動子の場合は振動子開口幅という)を規
定する基準式について説明する。現在、線収束、点収束
等の収束型と呼ばれる超音波探触子が市販されている
が、これらの探触子は、振動子に1次元又は2次元の曲
率を直接設けるか、または振動子の音響放射面に音響レ
ンズを設けて超音波を収束させている。一般に収束型探
触子の場合、収束効果が得られるのは、探触子の近距離
音場限界距離以内であるといわれており、円形振動子の
場合、近距離音場限界距離x0は次式(2)で表されて
いる。 x0=D2/4λ=D2f/4C … (2) ここで、D,λ,f,Cは次の通りである。 D:円形振動子の直径 λ:伝搬媒質中の超音波の波長 f:伝搬媒質中の超音波の周波数 C:伝搬媒質中の超音波の速度
Next, a reference formula for defining the vibration element opening width in the present invention (the vibration element opening width because a plurality of vibration elements are used in the present invention, but the vibration element opening width in the case of a single vibrator). explain. At present, ultrasonic probes called convergence types such as line convergence and point convergence are commercially available, and these probes are provided with a one-dimensional or two-dimensional curvature directly on a transducer, or with a transducer. The ultrasonic wave is converged by providing an acoustic lens on the acoustic radiating surface. It is generally said that the focusing effect is obtained within the short-range sound field limit distance of the probe in the case of the convergent probe, and the short-range sound field limit distance x 0 of the circular transducer is It is expressed by the following equation (2). x 0 = D 2 / 4λ = D 2 f / 4C (2) where D, λ, f, and C are as follows. D: diameter of circular oscillator λ: wavelength of ultrasonic wave in propagation medium f: frequency of ultrasonic wave in propagation medium C: velocity of ultrasonic wave in propagation medium

【0024】また、収束効果が得られる、すなわち、音
場の制御が可能であるのは、振動子の近距離音場限界距
離以内であることから、斜角探傷範囲または斜角探傷の
対象位置により決定されるビーム路程をLとすると、L
は次式(3)となる。 L≦x0 … (3) ここで本発明においては、前記式(2)における円形振
動子の直径Dの代りに、前記式(1)で示される仮想振
動素子開口幅D′を用いることを考える。そして式
(1)〜(3)をまとめて整理すると次式(4)のよう
な結果が得られる。
Further, since the convergence effect is obtained, that is, the sound field can be controlled within the short-range sound field limit distance of the vibrator, the oblique flaw detection range or the target position of the oblique flaw detection Let L be the beam path determined by
Is given by the following equation (3). L ≦ x 0 (3) In the present invention, the virtual vibration element opening width D ′ represented by the above equation (1) is used instead of the diameter D of the circular vibrator in the above equation (2). Think. When the expressions (1) to (3) are put together and arranged, a result as shown in the following expression (4) is obtained.

【0025】[0025]

【数9】 (Equation 9)

【0026】ただし、式(4)中のLには、くさび内の
透過距離のパラメータが含まれていないが、このパラメ
ータを例えばkとすると、式(3)は次式(3′)とな
る。 L+k≦x0 … (3′) 式(3′)を用いると式(4)は次式(4′)となる。
However, L in equation (4) does not include the parameter of the transmission distance in the wedge, but when this parameter is k, for example, equation (3) becomes the following equation (3 '). . L + k ≦ x 0 (3 ′) Using the expression (3 ′), the expression (4) becomes the following expression (4 ′).

【0027】[0027]

【数10】 (Equation 10)

【0028】従って(L+k)の代りにLを使用して
も、式(4)の本質的意味は変化しない。なお、斜角探
傷でなく、実施形態2で述べる垂直探傷の場合は、式
(4)において、θ=α=0とすればよい。
Therefore, even if L is used instead of (L + k), the essential meaning of equation (4) does not change. In the case of the vertical flaw detection described in the second embodiment instead of the oblique flaw detection, θ = α = 0 may be set in Expression (4).

【0029】図1のように複数n個の振動素子1をアレ
イ状に配置した斜角探触子4を用い、この複数n個の振
動素子のうちから連続した配列位置の複数m個(但しn
>m)の振動素子を選択し、この選択された複数m個の
振動素子により一度に超音波の送受信を行う場合に、本
発明に係る所定の振動素子開口幅Dを満足するように前
記複数m個の振動素子を設定する方法を説明する。まず
図1の短冊形振動子1のうち、一度の送受信で駆動する
複数の振動素子による開口幅Dは下記の基準に従う。即
ち、くさび傾斜方向における複数n個の振動素子のう
ち、一度の送受信で駆動する連続した配列の素子数をm
とすると、このm個の各振動素子の幅(短冊形振動素子
1の短辺の幅)及び間隔の総和で決まる振動素子群とし
ての開口幅Dは、くさび角度をα、被検体13内への屈
折角をθとして、斜角探傷範囲または斜角探傷の対象位
置により決定されるビーム路程をL、被検体13内を伝
搬する超音波の波長をλとした場合、前記式(4)を満
足するよう選択する。たとえば、複数配列した振動素子
のくさび傾斜方向の幅は一定でaとし、配列の間隔も全
て一定でbとすると、一度の送受信で駆動する振動素子
数mは、次式(5)を満足するよう選択することにな
る。
As shown in FIG. 1, an oblique probe 4 having a plurality of n vibrating elements 1 arranged in an array is used. n
> M), and when ultrasonic waves are transmitted and received at a time by the selected plurality of m vibrating elements, the plurality of vibrating elements are selected so as to satisfy a predetermined vibrating element opening width D according to the present invention. A method for setting m vibrating elements will be described. First, the aperture width D of a plurality of vibrating elements driven by one transmission / reception in the rectangular vibrator 1 of FIG. 1 complies with the following criteria. That is, of the plurality of n vibrating elements in the wedge tilt direction, the number of elements in a continuous array driven by one transmission / reception is m.
Then, the opening width D as a vibrating element group determined by the sum of the width of each of the m vibrating elements (the width of the short side of the strip-shaped vibrating element 1) and the interval is such that the wedge angle is α, Is defined as θ, the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection is L, and the wavelength of the ultrasonic wave propagating in the subject 13 is λ. Choose to be satisfied. For example, assuming that the width of the plurality of vibrating elements in the wedge inclination direction is constant at a and the intervals of the arrangement are all constant b, the number m of vibrating elements driven by one transmission / reception satisfies the following equation (5). You will choose

【0030】[0030]

【数11】 [Equation 11]

【0031】パソコン11は、まず前記式(4)の振動
素子開口幅Dを満足するように一度の送受信で駆動され
る連続した配列の振動素子の素子数mを前記式(5)に
より算出する。そしてこの算出した駆動素子数mのデー
タを制御装置9へ供給すると共に、決定された駆動素子
開口幅を用いて探傷する際に、きず検出感度や検出分解
能等を向上させるために、被検体13内に形成される超
音波音場を収束させて所望の形状となるように、送信用
遅延時間制御器6及び受信用遅延時間制御器7内の各遅
延時間可変素子に付与すべき各遅延時間を予め算出し
て、これを音場制御データとして制御装置9に与えてお
く。上記被検体13内における好ましい収束音場として
は、斜角探傷範囲をカバーするのに必要なビーム路程の
長、短や、探傷位置(振動素子からの距離)の既知、未
知等によって、超音波ビームを比較的ゆるやかに収束さ
せる(あまり超音波ビームを絞らない)場合と、かなり
超音波ビームを絞って所望の探傷位置におけるビーム径
を小さくする場合等があり、探傷仕様に基づき所望の形
状の超音波音場が適宜選択される。
First, the personal computer 11 calculates the number m of vibrating elements in a continuous array driven by one transmission / reception so as to satisfy the vibrating element opening width D of the above equation (4) by the above equation (5). . The data of the calculated number m of driving elements is supplied to the control device 9 and, when flaw detection is performed using the determined opening width of the driving elements, the object 13 is used to improve the flaw detection sensitivity and detection resolution. Each delay time to be given to each delay time variable element in the transmission delay time controller 6 and the reception delay time controller 7 so that the ultrasonic sound field formed therein is converged into a desired shape. Is calculated in advance and given to the control device 9 as sound field control data. The preferred convergent sound field in the subject 13 is determined by the length or shortness of the beam path required to cover the oblique flaw detection range, the known or unknown flaw detection position (distance from the vibration element), or the like. There are a case where the beam is converged relatively slowly (the ultrasonic beam is not so narrowed down) and a case where the ultrasonic beam is narrowed down considerably to reduce the beam diameter at a desired flaw detection position. An ultrasonic sound field is appropriately selected.

【0032】制御装置9は、パソコン11から予め供給
されている駆動素子数m及び音場制御データに基づき、
超音波の走査探傷を行う場合には、その走査順序に従い
同時駆動振動素子群の位置と順番を決定する。例えばア
レイの配列順に各振動素子に#1,#2,…,#nの番
号を付与しておき、1回目の探傷では#1〜#mの振動
素子群、2回目の探傷では#2〜#(m+1)の振動素
子群、3回目の探傷では#3〜#(m+2)の振動素子
群を選択するというように決めておく。そして制御装置
9は、走査探傷の場合に上記のように決定した同時駆動
振動素子群の位置と順番とに基づき超音波送信時には、
その時点での同時駆動振動素子群のみを送信回路に接続
させるように送信用振動素子選択切替器14に選択制御
信号を供給すると共に、パルサ群5内の各パルサに対す
る入力トリガパルスに個別の遅延時間を付与する送信用
遅延時間制御器6内のm個の各遅延時間可変素子に対し
て、指示された音場制御データの通り各遅延時間を制御
する。その結果、パルサ群5内の各パルサがそれぞれ励
振するm個の振動素子1の各励振タイミングが制御さ
れ、所望の送信音場が形成される。
Based on the number m of driving elements and sound field control data supplied from the personal computer 11 in advance, the control device 9
When performing ultrasonic scanning flaw detection, the position and order of the simultaneously driven vibration element group are determined according to the scanning order. For example, numbers # 1, # 2,..., #N are assigned to the respective vibrating elements in the array order, and the vibrating element groups # 1 to #m in the first flaw detection and # 2 to # 2 in the second flaw detection. It is determined that the vibration element group of # (m + 1) and the vibration element groups of # 3 to # (m + 2) are selected in the third inspection. Then, the control device 9 transmits the ultrasonic wave based on the position and the order of the simultaneous driving vibration element group determined as described above in the case of scanning flaw detection,
A selection control signal is supplied to the transmission vibration element selection switch 14 so that only the simultaneously driven vibration element group at that time is connected to the transmission circuit, and an individual trigger pulse for each pulser in the pulser group 5 is individually delayed. Each of the m delay time variable elements in the transmission delay time controller 6 for giving time is controlled in accordance with the designated sound field control data. As a result, the respective excitation timings of the m vibrating elements 1 excited by the respective pulsars in the pulsar group 5 are controlled, and a desired transmission sound field is formed.

【0033】また制御装置9は、超音波受信時には、そ
の時点での同時駆動振動素子群に含まれるm個の振動素
子1の各受信信号にそれぞれ個別の遅延時間を付与する
受信用遅延時間制御器7内の各遅延時間可変素子に対し
て、指示された音場データの通り各遅延時間を制御する
と共に、その時点での同時駆動振動素子群のみを受信部
8に接続させるように受信用振動素子選択切替器15に
選択制御信号を供給する。その結果、受信用遅延時間制
御器7の出力は、受信時に使用する振動素子の出力のみ
が選択接続され、この接続されたm個の遅延受波信号が
受信器8に供給される。このようにしてm個の各振動素
子毎の受波信号の合成タイミングが制御され、所望の受
信音場が形成される。
In addition, the control device 9 controls the reception delay time control for giving an individual delay time to each of the reception signals of the m vibration elements 1 included in the simultaneously driven vibration element group at the time of receiving the ultrasonic wave. For each delay time variable element in the device 7, each delay time is controlled according to the designated sound field data, and only the simultaneously driven vibration element group at that time is connected to the reception unit 8. A selection control signal is supplied to the vibration element selection switch 15. As a result, the output of the reception delay time controller 7 is selectively connected only to the output of the vibrating element used at the time of reception, and the connected m delayed reception signals are supplied to the receiver 8. In this way, the synthesis timing of the received signals for each of the m vibrating elements is controlled, and a desired received sound field is formed.

【0034】受信器8では、この合成入力信号に対し
て、前記式(4)の波長λを中心周波数とする所定周波
数帯域の信号を所定ゲインで増幅後、検波したビデオ信
号をデータ処理装置10に供給する。データ処理装置1
0では、この入力ビデオ信号からきずデータの抽出、き
ず位置及び寸法の算出等の処理を行い、この処理結果を
パソコン11に通知する。パソコン11は、この通知情
報を図示しない表示器に表示したり、プリンタや記録計
に出力する。
The receiver 8 amplifies a signal of a predetermined frequency band having a center frequency of the wavelength λ of the above equation (4) with a predetermined gain with respect to the synthesized input signal, and then converts the detected video signal into a data processing device 10. To supply. Data processing device 1
At 0, processing such as extraction of flaw data from the input video signal, calculation of flaw position and size, and the like are performed, and the processing result is notified to the personal computer 11. The personal computer 11 displays the notification information on a display (not shown) or outputs the notification information to a printer or a recorder.

【0035】このように図1の実施形態1では、前記式
(4)の振動素子開口幅を満足するように、くさび傾斜
面にアレイ配置される複数nの振動素子うち必要とする
連続配列素子数mを選択することにより、厚い鋼板の探
傷など、超音波ビーム路程が大きくなる場合や超音波の
減衰が大きな材料の探傷を行う場合にも高感度での探傷
ができるうえ、状況に応じて振動子開口幅を可変とする
ことができるため、板厚等の被検体の状況変化に対応す
ることができる。またアレイ配列された複数nの振動素
子のうちから連続した配列の複数mの振動素子を選択す
る際に、これらの選択位置を前記アレイ配列に従って順
次ずらせて選択することにより高速で走査探傷を行うこ
とができる。また送受信に使用する各振動素子のパルス
励振タイミング及び受信信号の波形合成タイミングを制
御して、被検体内での超音波ビームの広がりを制御する
ことで、超音波の広がりに起因する不要なエコーの発生
が抑制され、且つ欠陥部を精度良く検出することができ
る。なお複数n個の各振動素子の寸法は、同一であって
も同一でなくとも、選択された振動素子m個によって所
定の振動素子開口幅を満たせばよい。
As described above, in the first embodiment shown in FIG. 1, a continuous array element required among a plurality of n elements arranged in an array on the wedge inclined surface so as to satisfy the opening width of the vibration element of the above equation (4). By selecting a few meters, it is possible to detect flaws with high sensitivity even when the path of the ultrasonic beam is large, such as flaw detection of a thick steel plate, or when flaw detection is performed on a material with a large attenuation of ultrasonic waves. Since the aperture width of the vibrator can be made variable, it is possible to cope with a change in the state of the subject such as a plate thickness. When selecting a plurality of m vibrating elements in a continuous array from a plurality of n vibrating elements arranged in an array, scanning flaw detection is performed at a high speed by sequentially selecting the selected positions in accordance with the array arrangement. be able to. Also, by controlling the pulse excitation timing of each transducer used for transmission and reception and the waveform synthesis timing of the received signal to control the spread of the ultrasonic beam within the subject, unnecessary echoes caused by the spread of the ultrasonic waves are controlled. Is suppressed, and a defective portion can be detected with high accuracy. The dimensions of the plurality of n vibrating elements may or may not be the same as long as the selected vibrating element opening width is satisfied by m selected vibrating elements.

【0036】図2は本発明の実施形態1に係る図1と異
なる超音波探触子の例を示す図である。図2は、図1の
短冊形振動素子1の代りに、正方形又は矩形の振動素子
を行方向と列方向にマトリックス状(2次元的)に配置
したものである。このマトリックス状配置では、振動素
子開口幅と全体の振動素子面積の両方の調整が容易とな
る(図のDとWの調整により)。また図1の超音波探触
子では、ビーム収束は、くさび傾斜方向の1次元方向の
みに制御されるが、図2の超音波探触子では、ビーム収
束は、くさび傾斜方向とその直角方向の2次元方向に制
御が可能となる。
FIG. 2 is a view showing an example of an ultrasonic probe different from FIG. 1 according to the first embodiment of the present invention. FIG. 2 shows a square or rectangular vibrating element arranged in a matrix (two-dimensionally) in the row and column directions instead of the strip-shaped vibrating element 1 of FIG. In this matrix arrangement, it is easy to adjust both the vibration element opening width and the entire vibration element area (by adjusting D and W in the drawing). In the ultrasonic probe of FIG. 1, the beam convergence is controlled only in the one-dimensional direction of the wedge tilt direction, but in the ultrasonic probe of FIG. 2, the beam convergence is controlled in the wedge tilt direction and the direction perpendicular to the wedge tilt direction. Can be controlled in two-dimensional directions.

【0037】実施形態2 実施形態2では、送受波兼用の垂直探傷用アレイ探触子
を用いた例を示している。図3は本発明の実施形態2に
係る超音波探傷装置の構成図である。図3では、図1の
斜角アレイ探触子4の代りに垂直アレイ探触子4Aを用
いてる点のみが、図1と異なり、その他は図1と同一の
構成になっている。
Embodiment 2 Embodiment 2 shows an example in which an array probe for vertical flaw detection which is used for both transmission and reception is used. FIG. 3 is a configuration diagram of an ultrasonic flaw detector according to Embodiment 2 of the present invention. FIG. 3 differs from FIG. 1 only in that a vertical array probe 4A is used instead of the oblique array probe 4 in FIG. 1, and the other configuration is the same as that in FIG.

【0038】図3の垂直探傷の場合には、斜角探傷範囲
または斜角探傷の対象位置により決定されるビーム路程
Lが、探傷範囲または対象とする探傷位置により決定さ
れる探傷面からの深さdとなり、超音波の入射角α、屈
折角θが共に0となるため、一度の送受信で駆動する連
続した配列の複数の各短冊形振動子1の短辺の幅及び間
隔の総和で決定される振動素子開口幅Dは、被検体13
内を伝搬する超音波の波長をλとすると、次式(6)と
なるよう選択すればよい。
In the case of the vertical flaw detection shown in FIG. 3, the beam path L determined by the oblique flaw detection range or the target position of the bevel flaw detection is determined by the depth from the flaw detection surface determined by the flaw detection range or the target flaw detection position. Since the incident angle α and the refraction angle θ of the ultrasonic wave are both 0, the width is determined by the sum of the widths and the intervals of the short sides of the plurality of strip-shaped vibrators 1 in a continuous array driven by one transmission / reception. The vibration element opening width D to be measured is
Assuming that the wavelength of the ultrasonic wave propagating through the inside is λ, it may be selected so as to satisfy the following equation (6).

【0039】[0039]

【数12】 (Equation 12)

【0040】それ以外の構成および作用、効果は図1の
場合と同じである。なお、垂直探傷の場合も、振動素子
の配列を2次元的に配列したマトリックス型探触子を用
いて2次元方向のビーム制御が可能である。
The other structure, operation and effect are the same as those in FIG. Also in the case of vertical flaw detection, beam control in two-dimensional directions can be performed using a matrix probe in which vibrating elements are two-dimensionally arranged.

【0041】次に、図1の超音波探傷装置による斜角探
傷試験結果を説明する。ここでは、試験片として、厚さ
120mmの鋼製ブロックに、探傷面から深さ100m
mの位置にφ3mmの横向きのドリル穴を加工した試験
片を用いた場合の斜角探傷試験結果を示す。この試験で
は、通常の斜角探傷と同様にくさびを用いて試験片中に
横波が入射する構成とし、超音波周波数5MHzを用い
た。また、くさびはポリスチレン製のものを用い、くさ
び角度は試験片中で屈折角度が70°になるような角度
で42.7°とした。
Next, the results of the oblique flaw detection test using the ultrasonic flaw detector of FIG. 1 will be described. Here, as a test piece, a steel block having a thickness of 120 mm was placed at a depth of 100 m from the flaw detection surface.
The results of the oblique flaw detection test using a test piece in which a φ3 mm horizontal drill hole was machined at the position of m are shown. In this test, a transverse wave was introduced into the test piece by using a wedge as in the case of ordinary angle beam testing, and an ultrasonic frequency of 5 MHz was used. The wedge was made of polystyrene, and the wedge angle was 42.7 ° such that the refraction angle in the test piece was 70 °.

【0042】図5は、振動素子の開口幅Dを変化させ、
超音波音場を収束制御した場合と、しない場合での上記
試験片横穴でのビーム広がりの測定例を示す図である。
この場合、斜角探傷範囲または斜角探傷の対象位置によ
り決定されるビーム路程Lは、きず位置を対象として、
L=100mm/cos 70°≒292mmとなり、試験
片中の横波音速を3230m/sとすると超音波波長λ
は0.65mmとなる。これらのL=292mm、λ=
0.65mm、α=42.7°、θ=70°を用いて計
算される必要最小限の開口幅DをDmin とすると、D
min は式(4)に基づき、次式(7)のように求められ
る。なお、探傷範囲を試験片全体とする場合には、L=
120mm/cos 70°≒351mmとすればよい。
FIG. 5 shows that the opening width D of the vibrating element is changed,
It is a figure which shows the example of a measurement of the beam spread in the said test piece side hole in the case where the convergence control of the ultrasonic sound field is carried out, and the case where it is not carried out.
In this case, the beam path L determined by the oblique flaw detection range or the target position of the oblique flaw detection is based on the flaw position.
L = 100 mm / cos 70 ° ≒ 292 mm, and the shear wave velocity in the test piece is assumed to be 3230 m / s.
Is 0.65 mm. These L = 292 mm, λ =
Assuming that the minimum required opening width D calculated using 0.65 mm, α = 42.7 °, and θ = 70 ° is D min , D
min is obtained as in the following equation (7) based on the equation (4). When the flaw detection range is the entire test piece, L =
120 mm / cos 70 ° ≒ 351 mm.

【0043】[0043]

【数13】 (Equation 13)

【0044】図5において、横軸はくさび傾斜方向にお
ける一度の送受信で駆動する連続した配列の複数の各振
動素子の幅及び間隔の総和で決まる振動素子開口幅D
を、上記Dmin で除した値D/Dmin を、縦軸は各条件
での横穴のエコーピークを0dBとしたときの、−6d
Bのビーム幅Wb-6dBを上記Dmin で除した値Wb-6dB
/Dmin を示している。また図の黒丸は音場制御あり、
白丸は音場制御なしの場合である。図5により、D/D
min が1以下、すなわち、振動素子開口幅DがDmin
り小さい場合においては、Wb-6dB/Dmin が大きくビ
ーム幅が広い。また、音場制御の有無でビーム幅に差が
なく、音場の制御が有効でないことがわかる。一方、D
/Dmin が1より大きい場合は、音場制御ありの場合ビ
ーム幅が狭くなり、音場制御なしの場合ビーム幅が広く
なり、音場制御の有無でビーム幅の違いが明白である。
従って音場制御を行う場合、振動素子開口幅Dは式
(4)を満足させるように設定する必要がある。
In FIG. 5, the horizontal axis represents the vibration element opening width D determined by the sum of the widths and the intervals of a plurality of vibration elements in a continuous array driven by one transmission / reception in the wedge tilt direction.
And the value D / D min obtained by dividing the above D min, and the vertical axis when the echo peak of the transverse hole at each condition and 0 dB, -6D
The value Wb- 6dB obtained by dividing the beam width Wb- 6dB of B by the above Dmin.
/ D min . The black circles in the figure have sound field control,
Open circles are for the case without sound field control. According to FIG.
When min is 1 or less, that is, when the vibrating element opening width D is smaller than D min , Wb -6 dB / D min is large and the beam width is wide. In addition, there is no difference in beam width depending on the presence or absence of the sound field control, which indicates that the sound field control is not effective. On the other hand, D
When / D min is greater than 1, the beam width becomes narrower with sound field control, and the beam width becomes wider without sound field control, and the difference in beam width is apparent with and without sound field control.
Therefore, when performing sound field control, it is necessary to set the vibration element opening width D so as to satisfy Expression (4).

【0045】次に、厚さ120mmの鋼製ブロックに、
探傷面から深さ100mmの位置にφ3mmの横向きの
ドリル穴を加工した試験片、および、厚さ60mmの鋼
製ブロックに、探傷面から深さ40mmの位置にφ3m
mの横向きのドリル穴を加工した試験片の2種類を用い
た試験を行った。この試験では、通常の斜角探傷と同様
にくさびを用いて試験片中に横波が入射する構成とし、
超音波周波数5MHzを用いた。また、くさびはポリス
チレン製のものを用い、くさび角度は試験片中で屈折角
度が70゜になるような角度で42.7゜とした。
Next, into a 120 mm thick steel block,
A test piece with a horizontal drill hole of 3 mm at a depth of 100 mm from the flaw detection surface and a steel block of 60 mm in thickness, and a φ3 m at a position of 40 mm depth from the flaw detection surface
A test was performed using two types of test pieces having a horizontal drill hole of m. In this test, a transverse wave was injected into the test piece using a wedge as in normal angle beam testing,
An ultrasonic frequency of 5 MHz was used. The wedge was made of polystyrene, and the wedge angle was 42.7 ° such that the refraction angle in the test piece was 70 °.

【0046】これらの試験片では、斜角探傷範囲または
斜角探傷の対象位置により決定されるビーム路程Lは、
きず位置を対象とした場合、それぞれ以下のようにな
る。 60mm試験片の場合:L=40mm/cos 70゜≒1
17mm 120mm試験片の場合:L=100mm/cos 70゜
≒292mm 一方、斜角探傷範囲または斜角探傷位置により決定され
るビーム路程Lは、試験片全体を対象とした場合、それ
ぞれ以下のようになる。 60mm試験片の場合:L=60mm/cos 70゜≒1
75mm 120mm試験片の場合:L=120mm/cos 70゜
≒351mm また、試験片中の横波音遠を3230m/sとすると超
音波波長λは0.65mmとなる。上記のL、λ=0.
65mm、α=42.7゜、θ=70゜を用いて計算さ
れる必要最小限の開口幅DをDmin とすると、Dmin
式(4)に基づき、それぞれの試験片および斜角探傷対
象位置に対し次式(8)〜(11)のようになる。
In these test pieces, the beam path L determined by the oblique flaw detection range or the target position of the oblique flaw detection is:
When the target is the flaw position, the result is as follows. In the case of a 60 mm test piece: L = 40 mm / cos 70 ゜ ≒ 1
17 mm 120 mm test piece: L = 100 mm / cos 70 ゜ ≒ 292 mm On the other hand, the beam path L determined by the oblique flaw detection range or the oblique flaw detection position is as follows when the entire test piece is targeted. Become. In the case of a 60 mm test piece: L = 60 mm / cos 70 ゜ ≒ 1
In the case of a test piece of 75 mm and 120 mm: L = 120 mm / cos 70 ゜ ≒ 351 mm Further, when the shear wave distance in the test piece is set to 3230 m / s, the ultrasonic wavelength λ is 0.65 mm. The above L, λ = 0.
65 mm, alpha = 42.7 degrees, if the opening width D of the minimum required to be calculated and D min using a theta = 70 °, D min is based on equation (4), each of the test pieces and angle beam The following expressions (8) to (11) are obtained for the target position.

【0047】[0047]

【数14】 [Equation 14]

【0048】試験片中での屈折角70゜、周波数5MH
zの場合で、振動素子配列ピッチ2mm、振動素子配列
数32の斜角アレイ探触子を用いた場合、上記式(8)
〜(11)の値に基づき、それぞれの場合における同時
駆動振動素子数は以下のようになる。 上記のような同時駆動素子数の範囲で、被検体内に形成
される超音波音場が所望の形状となるように、同時駆動
を行う連続した配列の振動素子の数とその配列位置とを
32個のアレイ配列された振動素子のうちから選択すれ
ばよく、音場制御における素子数の選択肢が拡がる。仮
に同時駆動素子を10素子として走査探傷を行う場合、
走査ステップの精粗に応じて、同時駆動振動素子群の選
択位置を、超音波の送受信のたびに、前者のときには、
例えば(#1〜#10)、(#2〜#11)、(#3〜
#12)、…と順次ずらし、後者のときには、例えば
(#1〜#10)、(#4〜#13)、(#7〜#1
6)、…と順次ずらすことにより、高速に超音波の入射
点の移動が可能となる。
Refraction angle in test piece 70 °, frequency 5MH
In the case of z, when an oblique array probe having a vibrating element array pitch of 2 mm and a vibrating element array number of 32 is used, the above equation (8) is obtained.
Based on the values of (11) to (11), the number of simultaneously driven vibration elements in each case is as follows. In the range of the number of simultaneously driven elements as described above, the number and the arrangement position of the continuously arrayed vibrating elements that are simultaneously driven so that the ultrasonic sound field formed in the subject has a desired shape. What is necessary is just to select from the 32 vibrating elements arranged in an array, and the choice of the number of elements in sound field control is expanded. If scanning flaw detection is performed with 10 simultaneous driving elements,
In accordance with the fineness of the scanning step, the selected position of the simultaneous driving vibration element group is changed every time ultrasonic waves are transmitted and received.
For example, (# 1 to # 10), (# 2 to # 11), (# 3 to
# 12),..., And in the latter case, for example, (# 1 to # 10), (# 4 to # 13), (# 7 to # 1)
6), it is possible to move the incident point of the ultrasonic wave at high speed by sequentially shifting the positions.

【0049】なお、実施形態1と2は斜角探傷と垂直探
傷とが異なるのみで、その他は同様に動作するので、実
施形態2においても、実施形態1と同様の効果が得られ
る。
The first and second embodiments operate in the same manner except that the oblique flaw detection and the vertical flaw detection are different, and the second embodiment has the same effect as the first embodiment.

【0050】[0050]

【発明の効果】以上のように本発明によれば、斜角探傷
用くさびを介して被検体探傷面より超音波を屈折入射さ
せて被検体の探傷を行う超音波探傷方法およびその装置
において、前記斜角探傷用くさびの傾斜面に複数nの振
動素子をアレイ状に配列し、該複数nの振動素子のうち
から連続した配列の複数m(但しn>m)の振動素子を
選択し、該選択された複数mの振動素子により一度に超
音波の送受信を行う場合に、くさび傾斜方向における前
記複数mの各振動素子の幅及び間隔の総和で決まる振動
素子開口幅Dが、前記被検体探傷面における超音波の入
射角をα、屈折角をθ、斜角探傷範囲または斜角探傷の
対象位置により決定されるビーム路程をL、被検体内を
伝搬する超音波の波長をλとすると、次式(A)を満足
するように前記複数mの振動素子を設定するようにした
ので、斜角探傷において、厚い鋼板の探傷など、超音波
ビーム路程が大きくなる場合や超音波の減衰が大きな材
料の探傷を行う場合にも高感度での探傷ができるうえ、
状況に応じて振動子開口幅を可変とすることができるた
め、板厚等の被検体の状況変化に対応することができ
る。また斜角探傷において、アレイ配列された複数nの
振動素子のうちから連続した配列の複数mの振動素子を
選択する際に、これらの選択位置を前記アレイ配列に従
って順次ずらせて選択することにより高速で走査探傷を
行うことができる。
As described above, according to the present invention, there is provided an ultrasonic flaw detection method and apparatus for refracting ultrasonic waves from a flaw detection surface through a wedge for oblique flaw detection to detect a flaw in a subject. A plurality of n vibration elements are arranged in an array on the inclined surface of the oblique flaw detection wedge, and a plurality of m (where n> m) vibration elements in a continuous array are selected from the plurality of n vibration elements, When transmitting and receiving ultrasonic waves at a time by the selected plurality of m vibrating elements, the vibrating element opening width D determined by the sum of the width and the interval of each of the plurality m of vibrating elements in the wedge tilt direction is the subject. Assuming that the incident angle of the ultrasonic wave on the inspection surface is α, the refraction angle is θ, the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection is L, and the wavelength of the ultrasonic wave propagating in the subject is λ. , So that the following expression (A) is satisfied. The high-sensitivity flaw detection is also used when oblique flaw detection is used, such as flaw detection of thick steel plates, when the path of the ultrasonic beam is large, or when flaw detection is performed on a material with a large attenuation of ultrasonic waves. Can be
Since the vibrator aperture width can be made variable according to the situation, it is possible to cope with a change in the situation of the subject such as the plate thickness. Further, in the oblique flaw detection, when a plurality of m vibrating elements in a continuous array are selected from a plurality of n vibrating elements arranged in an array, the selected positions are sequentially shifted according to the array arrangement to select the selected vibrating elements. Can perform scanning flaw detection.

【0051】[0051]

【数15】 (Equation 15)

【0052】また本発明によれば、前記斜角探傷におい
て、前記設定された複数mの各振動素子をそれぞれ励振
する際に、前記複数mの各振動素子毎にその励振タイミ
ングを制御し、また前記複数mの各振動素子がそれぞれ
受波した信号を合成する際に、前記複数mの各振動素子
毎の受波信号の合成タイミングを制御し、前記被検体内
に形成される超音波音場を所望の形状とするように制御
するので、超音波の広がりに起因する不要なエコーの発
生が抑止され、且つ欠陥部の精度の良い検出が可能とな
る。
According to the present invention, in the oblique flaw detection, when exciting each of the plurality of m set vibrating elements, the exciting timing is controlled for each of the plurality of m vibrating elements. When synthesizing the signals received by the plurality of m vibrating elements, respectively, controlling the synthesis timing of the received signal for each of the plurality m of vibrating elements, the ultrasonic sound field formed in the subject Is controlled so as to have a desired shape, the generation of unnecessary echoes due to the spread of the ultrasonic waves is suppressed, and the defect can be accurately detected.

【0053】また本発明によれば、被検体探傷面より超
音波を垂直に入射させて被検体の探傷を行う超音波探傷
方法およびその装置において、前記被検体探傷面に複数
nの振動素子をアレイ状に配列し、該複数nの振動素子
のうちから連続した配列の複数m(但しn>m)の振動
素子を選択し、該選択された複数mの振動素子により一
度に超音波の送受信を行う場合に、アレイ状配列方向に
おける前記複数mの各振動素子の幅及び間隔の総和で決
まる振動素子開口幅Dが、前記被検体の探傷範囲または
対象とする探傷位置により決定される探傷面からの深さ
をd、被検体内を伝搬する超音波の波長をλとすると、
次式(B)を満足するように前記複数mの振動素子を設
定するようにしたので、垂直探傷において、厚い鋼板の
探傷など、超音波ビーム路程が大きくなる場合や超音波
の減衰が大きな材料の探傷を行う場合にも高感度での探
傷ができるうえ、状況に応じて振動子開口幅を可変とす
ることができるため、板厚等の被検体の状況変化に対応
することができる。また垂直探傷において、アレイ配列
された複数nの振動素子のうちから連続した配列の複数
mの振動素子を選択する際に、これらの選択位置を前記
アレイ配列に従って順次ずらせて選択することにより高
速で走査探傷を行うことができる。
Further, according to the present invention, in the ultrasonic flaw detection method and apparatus for detecting a flaw of a subject by vertically irradiating ultrasonic waves from the flaw detection face of the subject, a plurality of n vibrating elements are provided on the flaw detection face of the subject. A plurality of m (where n> m) vibrating elements in a continuous array are selected from the plurality of n vibrating elements arranged in an array, and ultrasonic waves are transmitted and received at a time by the selected plurality of m vibrating elements. Is performed, the vibrating element opening width D determined by the sum of the widths and the intervals of the plurality of m vibrating elements in the array direction is a flaw detection surface determined by the flaw detection range of the subject or the flaw detection position of interest. , And the wavelength of the ultrasonic wave propagating in the subject is λ.
Since the plurality of m vibrating elements are set so as to satisfy the following expression (B), a material having a large ultrasonic beam path or a large ultrasonic attenuation such as a flaw detection of a thick steel plate in vertical flaw detection. In addition to the flaw detection described above, flaw detection can be performed with high sensitivity, and the aperture width of the vibrator can be changed according to the situation, so that it is possible to cope with a change in the situation of the subject such as a plate thickness. Also, in vertical flaw detection, when selecting a plurality of m vibrating elements in a continuous array from a plurality of n vibrating elements arranged in an array, the selected positions are sequentially shifted according to the array arrangement to select them. Scan flaw detection can be performed.

【0054】[0054]

【数16】 (Equation 16)

【0055】また本発明によれば、前記垂直探傷におい
て、前記設定された複数mの各振動素子をそれぞれ励振
する際に、前記複数mの各振動素子毎にその励振タイミ
ングを制御し、また前記複数mの各振動素子がそれぞれ
受波した信号を合成する際に、前記複数mの各振動素子
毎の受波信号の合成タイミングを制御し、前記被検体内
に形成される超音波音場を所望の形状とするように制御
するので、超音波の広がりに起因する不要なエコーの発
生が抑止され、且つ欠陥部の精度の良い検出が可能とな
る。
According to the present invention, in the vertical flaw detection, when exciting each of the plurality of m set vibrating elements, the exciting timing is controlled for each of the plurality of m vibrating elements. When synthesizing the signals received by each of the plurality of m vibrating elements, it controls the synthesis timing of the received signals for each of the plurality of m vibrating elements, and generates an ultrasonic sound field formed in the subject. Since control is performed so as to obtain a desired shape, generation of unnecessary echoes due to the spread of ultrasonic waves is suppressed, and accurate detection of a defective portion becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1に係る超音波探傷装置の構
成図である。
FIG. 1 is a configuration diagram of an ultrasonic flaw detector according to Embodiment 1 of the present invention.

【図2】本発明の実施形態1に係る図1と異なる超音波
探触子の例を示す図である。
FIG. 2 is a diagram illustrating an example of an ultrasonic probe different from FIG. 1 according to the first embodiment of the present invention.

【図3】本発明の実施形態2に係る超音波探傷装置の構
成図である。
FIG. 3 is a configuration diagram of an ultrasonic flaw detector according to Embodiment 2 of the present invention.

【図4】本発明に係る斜角探傷時の仮想振動子開口幅の
説明図である。
FIG. 4 is an explanatory diagram of a virtual vibrator opening width during oblique flaw detection according to the present invention.

【図5】振動素子開口幅を変化させ、超音波音場を収束
制御した場合としない場合での超音波ビーム広がりの測
定例を示す図である。
FIG. 5 is a diagram showing an example of measuring the spread of an ultrasonic beam in a case where the aperture width of a vibrating element is changed and convergence control is performed on an ultrasonic sound field.

【符号の説明】[Explanation of symbols]

1 振動素子 2 くさび 3 ダンパ材 4 斜角アレイ探触子 4A 垂直アレイ探触子 5 パルサ群 6 送信用遅延時間制御器 7 受信用遅延時間制御器 8 受信器 9 制御装置 10 データ処理装置 11 パソコン 12 超音波 13 被検体 14 送信用振動素子選択切替装置 15 受信用振動素子選択切替装置 DESCRIPTION OF SYMBOLS 1 Vibration element 2 Wedge 3 Damper material 4 Angled array probe 4A Vertical array probe 5 Pulser group 6 Transmission delay time controller 7 Reception delay time controller 8 Receiver 9 Control device 10 Data processing device 11 Personal computer 12 Ultrasound 13 Subject 14 Transmitting vibration element selection switching device 15 Reception vibration element selection switching device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 斜角探傷用くさびを介して被検体探傷面
より超音波を屈折入射させて被検体の探傷を行う超音波
探傷方法において、 前記斜角探傷用くさびの傾斜面に複数nの振動素子をア
レイ状に配列し、該複数nの振動素子のうちから連続し
た配列の複数m(但しn>m)の振動素子を選択し、該
選択された複数mの振動素子により一度に超音波の送受
信を行う場合に、くさび傾斜方向における前記複数mの
各振動素子の幅及び間隔の総和で決まる振動素子開口幅
Dが、前記被検体探傷面における超音波の入射角をα、
屈折角をθ、斜角探傷範囲または斜角探傷の対象位置に
より決定されるビーム路程をL、被検体内を伝搬する超
音波の波長をλとすると、次式(A)を満足するように
前記複数mの振動素子を設定することを特徴とする超音
波探傷方法。 【数1】
1. An ultrasonic flaw detection method for flaw detection of a subject by refracting ultrasonic waves from a flaw detection surface through a wedge for bevel flaw detection, wherein a plurality of n are provided on an inclined surface of the wedge for bevel flaw detection. The vibrating elements are arranged in an array, and a plurality of m (where n> m) vibrating elements in a continuous arrangement are selected from the plurality of n vibrating elements, and the selected plurality of m vibrating elements are used at a time. When transmitting and receiving a sound wave, the vibration element opening width D determined by the sum of the width and the interval of each of the plurality of m of vibration elements in the wedge tilt direction is α, the incident angle of the ultrasonic wave on the inspection surface of the subject, α,
Assuming that the refraction angle is θ, the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection is L, and the wavelength of the ultrasonic wave propagating in the subject is λ, the following equation (A) is satisfied. An ultrasonic flaw detection method, wherein the plurality of m vibrating elements are set. (Equation 1)
【請求項2】 前記設定された複数mの各振動素子をそ
れぞれ励振する際に、前記複数mの各振動素子毎にその
励振タイミングを制御し、また前記複数mの各振動素子
がそれぞれ受波した信号を合成する際に、前記複数mの
各振動素子毎の受波信号の合成タイミングを制御し、前
記被検体内に形成される超音波音場を所望の形状とする
ように制御することを特徴とする請求項1記載の超音波
探傷方法。
2. Exciting each of the plurality of m set vibrating elements, controlling excitation timing of each of the plurality of m set vibrating elements, and setting the plurality of m set of vibrating elements to receive signals. When synthesizing the obtained signals, controlling the synthesizing timing of the received signals for each of the plurality of m vibrating elements, and controlling the ultrasonic sound field formed in the subject to have a desired shape. The ultrasonic flaw detection method according to claim 1, wherein:
【請求項3】 被検体探傷面より超音波を垂直に入射さ
せて被検体の探傷を行う超音波探傷方法において、 前記被検体探傷面に複数nの振動素子をアレイ状に配列
し、該複数nの振動素子のうちから連続した配列の複数
m(但しn>m)の振動素子を選択し、該選択された複
数mの振動素子により一度に超音波の送受信を行う場合
に、アレイ状配列方向における前記複数mの各振動素子
の幅及び間隔の総和で決まる振動素子開口幅Dが、前記
被検体の探傷範囲または対象とする探傷位置により決定
される探傷面からの深さをd、被検体内を伝搬する超音
波の波長をλとすると、次式(B)を満足するように前
記複数mの振動素子を設定することを特徴とする超音波
探傷方法。 【数2】
3. An ultrasonic flaw detection method for flaw detection of a subject by vertically irradiating ultrasonic waves from a flaw detection surface of the subject, wherein a plurality of n vibrating elements are arranged in an array on the flaw detection surface of the subject. When selecting a plurality of m (where n> m) vibrating elements in a continuous array from the n vibrating elements and transmitting / receiving ultrasonic waves at a time by the selected plurality of m vibrating elements, an array-like arrangement is used. The vibration element opening width D determined by the sum of the width and the interval of each of the plurality of m vibration elements in the direction is d, the depth from the flaw detection surface determined by the flaw detection range of the subject or the flaw detection position of interest, and d Assuming that the wavelength of the ultrasonic wave propagating in the sample is λ, the ultrasonic detecting method is characterized in that the plurality of m vibrating elements are set so as to satisfy the following expression (B). (Equation 2)
【請求項4】 前記設定された複数mの各振動素子をそ
れぞれ励振する際に、前記複数mの各振動素子毎にその
励振タイミングを制御し、また前記複数mの各振動素子
がそれぞれ受波した信号を合成する際に、前記複数mの
各振動素子毎の受波信号の合成タイミングを制御し、前
記被検体内に形成される超音波音場を所望の形状とする
ように制御することを特徴とする請求項3記載の超音波
探傷方法。
4. When exciting each of the plurality of m set vibrating elements, the excitation timing is controlled for each of the plurality of m vibrating elements, and each of the plurality m of vibrating elements receives a signal. When synthesizing the obtained signals, controlling the synthesizing timing of the received signals for each of the plurality of m vibrating elements, and controlling the ultrasonic sound field formed in the subject to have a desired shape. 4. The ultrasonic flaw detection method according to claim 3, wherein:
【請求項5】 斜角探傷用くさびを介して被検体探傷面
より超音波を屈折入射させて被検体の探傷を行う超音波
探傷装置において、 前記斜角探傷用くさびの傾斜面に複数nの振動素子をア
レイ状に配列して構成した斜角接触子と、 前記斜角探触子のアレイ状に配列された複数nの振動素
子のうちから連続した配列の複数m(但しn>m)の振
動素子を選択し、該選択された複数mの振動素子により
一度に超音波の送受信を行う場合に、くさび傾斜方向に
おける前記複数mの各振動素子の幅及び間隔の総和で決
まる振動素子開口幅Dが、前記被検体探傷面における超
音波の入射角をα、屈折角をθ、斜角探傷範囲または斜
角探傷の対象位置により決定されるビーム路程をL、被
検体内を伝搬する超音波の波長をλとすると、次式
(A)を満足するように前記複数mの振動素子を設定す
る設定手段と、 前記設定手段により設定された複数mの各振動素子をそ
れぞれ励振する際に、前記複数mの各振動素子毎にその
励振タイミングを制御し、また前記複数mの各振動素子
がそれぞれ受波した信号を合成する際に、前記複数mの
各振動素子毎の受波信号の合成タイミングを制御し、前
記被検体内に形成される超音波音場を所望の形状とする
ように制御する音場制御手段とを備えたことを特徴とす
る超音波探傷装置。 【数3】
5. An ultrasonic flaw detector which performs flaw detection on a subject by refracting ultrasonic waves from a flaw detection surface of a subject through a wedge for bevel flaw detection, wherein a plurality of n are provided on an inclined surface of the wedge for bevel flaw detection. A bevel contact in which the vibrating elements are arranged in an array, and a plurality m (where n> m) of a plurality of continuous vibrating elements among a plurality of n vibrating elements arranged in an array of the bevel probe When a plurality of the vibrating elements are selected and ultrasonic waves are transmitted and received at a time by the selected plurality of m vibrating elements, the vibrating element aperture determined by the sum of the widths and intervals of the plurality of m vibrating elements in the wedge tilt direction. The width D is α, the incident angle of the ultrasonic wave on the inspection surface of the subject is α, the refraction angle is θ, the beam path determined by the oblique flaw detection range or the target position of the oblique flaw detection is L, Assuming that the wavelength of the sound wave is λ, the following expression (A) is satisfied. Setting means for setting the plurality of m vibration elements as described above, and when exciting each of the plurality of m vibration elements set by the setting means, controlling the excitation timing for each of the plurality m of vibration elements, Further, when synthesizing the signals received by the plurality of m vibrating elements, respectively, controlling the synthesizing timing of the received signal for each of the plurality m of vibrating elements, the ultrasonic sound formed in the subject And a sound field control means for controlling a field to have a desired shape. (Equation 3)
【請求項6】 被検体探傷面より超音波を垂直に入射さ
せて被検体の探傷を行う超音波探傷装置において、 前記被検体探傷面に複数nの振動素子をアレイ状に配列
して構成した垂直探触子と、 前記垂直探触子のアレイ状に配列された複数nの振動素
子のうちから連続した配列の複数m(但しn>m)の振
動素子を選択し、該選択された複数mの振動素子により
一度に超音波の送受信を行う場合に、アレイ配列方向に
おける前記複数mの各振動素子の幅及び間隔の総和で決
まる振動素子開口幅Dが、前記被検体の探傷範囲または
対象とする探傷位置により決定される探傷面からの深さ
をd、被検体内を伝搬する超音波の波長をλとすると、
次式(B)を満足するように前記複数mの振動素子を設
定する設定手段と、 前記設定手段により設定された複数mの各振動素子をそ
れぞれ励振する際に、前記複数mの各振動素子毎にその
励振タイミングを制御し、また前記複数mの各振動素子
がそれぞれ受波した信号を合成する際に、前記複数mの
各振動素子毎の受波信号の合成タイミングを制御し、前
記被検体内に形成される超音波音場を所望の形状とする
ように制御する音場制御手段とを備えたことを特徴とす
る超音波探傷装置。 【数4】
6. An ultrasonic flaw detector for detecting a test object by vertically irradiating an ultrasonic wave from a test surface of the test object, wherein a plurality of n vibration elements are arranged in an array on the test surface of the test object. A vertical probe, and a plurality of m (where n> m) vibrating elements in a continuous array are selected from the plurality of n vibrating elements arranged in an array of the vertical probes, and the selected plurality of vibrating elements are selected. When transmitting and receiving ultrasonic waves at a time by m vibrating elements, the vibrating element aperture width D determined by the sum of the width and the interval of each of the plurality of m vibrating elements in the array direction is the flaw detection range or target of the subject. Assuming that the depth from the flaw detection surface determined by the flaw detection position is d, and the wavelength of the ultrasonic wave propagating in the subject is λ,
Setting means for setting the plurality of m vibrating elements so as to satisfy the following expression (B); and when exciting the plurality of m vibrating elements set by the setting means, respectively, The excitation timing is controlled for each of the plurality of m vibrating elements, and when the signals received by the plurality of m vibrating elements are respectively combined, the combining timing of the received signals for each of the plurality m of vibrating elements is controlled. An ultrasonic flaw detector comprising: a sound field control unit that controls an ultrasonic sound field formed in a sample to have a desired shape. (Equation 4)
JP29179399A 1999-10-14 1999-10-14 Ultrasonic flaw detection method and apparatus Expired - Lifetime JP3606132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29179399A JP3606132B2 (en) 1999-10-14 1999-10-14 Ultrasonic flaw detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29179399A JP3606132B2 (en) 1999-10-14 1999-10-14 Ultrasonic flaw detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2001108661A true JP2001108661A (en) 2001-04-20
JP3606132B2 JP3606132B2 (en) 2005-01-05

Family

ID=17773513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29179399A Expired - Lifetime JP3606132B2 (en) 1999-10-14 1999-10-14 Ultrasonic flaw detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3606132B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005351864A (en) * 2004-06-14 2005-12-22 Toshiba Corp Three-dimensional ultrasonic imaging apparatus
JP2009293980A (en) * 2008-06-03 2009-12-17 Hitachi Ltd Ultrasonic flaw inspection device and method
US7867734B2 (en) 2004-10-26 2011-01-11 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody having modified sugar chain
US7871613B2 (en) 2004-08-24 2011-01-18 Chugai Seiyaku Kabushiki Kaisha Adjuvant therapy with the use of anti-glypican 3 antibody
US7919086B2 (en) 2004-07-09 2011-04-05 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody
JP2011163798A (en) * 2010-02-05 2011-08-25 Ryoden Shonan Electronics Kk Bolt inspection device
JP2015075360A (en) * 2013-10-07 2015-04-20 三菱重工業株式会社 Probe, ultrasonic flaw detection device and ultrasonic flaw detection control method
US9102739B2 (en) 2005-10-14 2015-08-11 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
US20210086282A1 (en) * 2019-09-24 2021-03-25 Kabushiki Kaisha Toshiba Processing system, processing method, and storage medium
WO2023210122A1 (en) * 2022-04-28 2023-11-02 三菱重工業株式会社 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121771A1 (en) * 2004-06-14 2005-12-22 Kabushiki Kaisha Toshiba Three-dimensional ultrasonic imaging device
US8020445B2 (en) 2004-06-14 2011-09-20 Kabushiki Kaisha Toshiba Three-dimensional ultrasonic imaging device
JP4564286B2 (en) * 2004-06-14 2010-10-20 株式会社東芝 3D ultrasonic imaging device
JP2005351864A (en) * 2004-06-14 2005-12-22 Toshiba Corp Three-dimensional ultrasonic imaging apparatus
US7919086B2 (en) 2004-07-09 2011-04-05 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody
US7871613B2 (en) 2004-08-24 2011-01-18 Chugai Seiyaku Kabushiki Kaisha Adjuvant therapy with the use of anti-glypican 3 antibody
US7867734B2 (en) 2004-10-26 2011-01-11 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody having modified sugar chain
US9102739B2 (en) 2005-10-14 2015-08-11 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody
US10118959B2 (en) 2005-10-14 2018-11-06 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody
JP2009293980A (en) * 2008-06-03 2009-12-17 Hitachi Ltd Ultrasonic flaw inspection device and method
JP2011163798A (en) * 2010-02-05 2011-08-25 Ryoden Shonan Electronics Kk Bolt inspection device
JP2015075360A (en) * 2013-10-07 2015-04-20 三菱重工業株式会社 Probe, ultrasonic flaw detection device and ultrasonic flaw detection control method
US10261055B2 (en) 2013-10-07 2019-04-16 Mitsubishi Heavy Industries, Ltd. Probe, ultrasonic testing apparatus, and ultrasonic testing control method
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
US11001643B2 (en) 2014-09-26 2021-05-11 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US20210086282A1 (en) * 2019-09-24 2021-03-25 Kabushiki Kaisha Toshiba Processing system, processing method, and storage medium
WO2023210122A1 (en) * 2022-04-28 2023-11-02 三菱重工業株式会社 Ultrasonic flaw detection apparatus and ultrasonic flaw detection method

Also Published As

Publication number Publication date
JP3606132B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
JP5721770B2 (en) Ultrasonic flaw detection method and apparatus
US4821575A (en) Ultrasonic flaw detecting method and apparatus
CN103901108A (en) Phased-array ultrasonic detection method for interfacial de-bonding of composite material
JP3606132B2 (en) Ultrasonic flaw detection method and apparatus
JP2006234701A (en) Ultrasonic test device and ultrasonic test method
JP3635453B2 (en) Ultrasonic shear wave oblique angle flaw detection method and apparatus
JP2014077708A (en) Inspection device and inspection method
WO2020250379A1 (en) Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
JP4633268B2 (en) Ultrasonic flaw detector
JP2019078558A (en) Reference test piece and supersonic phased array flaw testing method
JPS6228869B2 (en)
JP2501488B2 (en) Ultrasonic testing of pipes
JP3606146B2 (en) Ultrasonic flaw detection method and apparatus
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
JP2002195986A (en) Ultrasonic array probe and ultrasonic testing method
JP2006313110A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP2001255308A (en) Method and apparatus for ultrasonic flaw detection
JPS6228862B2 (en)
JPH1114611A (en) Electronic scanning system ultrasonic inspection equipment
JPH0545346A (en) Ultrasonic probe
JPS597260A (en) Method and device for ultrasonic flaw detection
JP2552178B2 (en) Ultrasonic flaw detection method for steel pipe welds
JPH06300740A (en) Ultrasonic microscope
JP2612890B2 (en) Ultrasonic flaw detection method
JP2507467B2 (en) Oblique angle ultrasonic flaw detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

R150 Certificate of patent or registration of utility model

Ref document number: 3606132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

EXPY Cancellation because of completion of term