JP2883051B2 - Ultrasonic critical angle flaw detector - Google Patents

Ultrasonic critical angle flaw detector

Info

Publication number
JP2883051B2
JP2883051B2 JP52097A JP52097A JP2883051B2 JP 2883051 B2 JP2883051 B2 JP 2883051B2 JP 52097 A JP52097 A JP 52097A JP 52097 A JP52097 A JP 52097A JP 2883051 B2 JP2883051 B2 JP 2883051B2
Authority
JP
Japan
Prior art keywords
ultrasonic
probe
critical angle
angle
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP52097A
Other languages
Japanese (ja)
Other versions
JPH09297125A (en
Inventor
徹 後藤
隆 小西
滋郎 正森
泰夫 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP52097A priority Critical patent/JP2883051B2/en
Publication of JPH09297125A publication Critical patent/JPH09297125A/en
Application granted granted Critical
Publication of JP2883051B2 publication Critical patent/JP2883051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波探傷の分野
に関する。
[0001] The present invention relates to the field of ultrasonic flaw detection.

【0002】[0002]

【従来の技術】図4に示すように、超音波ビーム9を液
体−固体境界面に入射すると、該ビーム9のエネルギー
の一部は固体内へ伝播するが、その大部分は境界面で入
射角と等しい角度を以て反対側に反射する。このとき、
反射ビーム10の強さはほとんど入射角に依存しない
が、ある特定の入射角θでは急激に強度低下が生じ、強
度は最小となる。これは、この特定な角度θで入射した
超音波ビーム9のエネルギーの多くが境界面で固体表面
波11に変換されるために起こる現象であり、このとき
のθを超音波臨界角という。そして、液体における超音
波ビーム9の音速をVL 、固体表面波11の音速をVSW
とすると、超音波臨界角θは次の式で表される。 θ = Sin-1(VL /VSW) (1)
2. Description of the Related Art As shown in FIG. 4, when an ultrasonic beam 9 is incident on a liquid-solid interface, a part of the energy of the beam 9 propagates into the solid, but most of the energy is incident on the interface. Reflects on the opposite side at an angle equal to the angle. At this time,
Although the intensity of the reflected beam 10 hardly depends on the angle of incidence, the intensity sharply drops at a specific angle of incidence θ, and the intensity is minimized. This is a phenomenon that occurs because much of the energy of the ultrasonic beam 9 incident at this specific angle θ is converted into a solid surface wave 11 at the boundary surface. Θ at this time is referred to as an ultrasonic critical angle. The sound speed of the ultrasonic beam 9 in the liquid is V L , and the sound speed of the solid surface wave 11 is V SW
Then, the ultrasonic critical angle θ is expressed by the following equation. θ = Sin −1 (V L / V SW ) (1)

【0003】また、固体中の音速をVt 、ポアソン比を
νとすると、次の式が成立する。 VSW = ((0.874+1.12ν)/(1+ν))Vt (2) そして、固体の剛性率をG、密度をρとすると、次の式
が成り立つ。 Vt = √(G/ρ) (3)
If the sound velocity in a solid is V t and the Poisson's ratio is ν, the following equation is established. V SW = ((0.874 + 1.12ν) / (1 + ν)) V t (2) When the rigidity of the solid is G and the density is ρ, the following equation is established. V t = √ (G / ρ) (3)

【0004】上記のように、超音波臨界角θは固体の剛
性率G及び密度ρから一意に決まる量であることから、
その値を測定することによって固体の材質が変化したか
否かを検査することができる。なお、この場合の材質の
変化は、例えば、疲労やクリープによる損傷の蓄積や脆
化の進行によって引き起こされる。このように超音波臨
界角θの値によって固体材質の変化を検査する方法を超
音波臨界角探傷法という。
As described above, since the ultrasonic critical angle θ is an amount uniquely determined from the rigidity G and the density ρ of a solid,
By measuring the value, it can be checked whether or not the material of the solid has changed. The change in the material in this case is caused by, for example, accumulation of damage due to fatigue or creep, or progress of embrittlement. The method of inspecting the change of the solid material according to the value of the ultrasonic critical angle θ is called an ultrasonic critical angle flaw detection method.

【0005】図5は、超音波臨界角探傷法を行うための
従来技術を示している。同図において、送信側探触子1
2及び受信側探触子13は超音波を平行ビームとするた
めの平面探触子である。そして、両探触子は、音軸(超
音波が伝播する方向の中心)の交点6が液体−固体境界
面上にくるよう配置され、該交点6を通る境界面の法線
8に対して対称となる向きを維持しながら走査される。
FIG. 5 shows a conventional technique for performing an ultrasonic critical angle flaw detection method. Referring to FIG.
2 and the receiving-side probe 13 are plane probes for converting ultrasonic waves into parallel beams. The two probes are arranged such that the intersection 6 of the sound axis (the center in the direction in which the ultrasonic wave propagates) is located on the liquid-solid interface, and the probe is positioned with respect to the normal 8 of the interface passing through the intersection 6. Scanning is performed while maintaining the symmetric orientation.

【0006】超音波探傷器14及びXYレコーダ15
は、送信側探触子12及び受信側探触子13の向きと受
信側探触子13にて測定された反射波強度との関係を求
め、該反射波強度が最小となるときの超音波ビームの入
射角度を検出する装置である。
[0006] Ultrasonic flaw detector 14 and XY recorder 15
Calculates the relationship between the orientations of the transmitting probe 12 and the receiving probe 13 and the intensity of the reflected wave measured by the receiving probe 13, and determines the ultrasonic wave when the reflected wave intensity is minimized. This is a device that detects the incident angle of the beam.

【0007】上記のように、超音波臨界角探傷法を行う
に際しては、(イ)送信側探触子12と受信側探触子1
3との音軸の交点6を液体−固体境界面に一致させるこ
と、(ロ)上記(イ)の条件を保ちながら、液体−固体
境界面の法線8に対して送信側探触子12の向き(入射
角)と受信側探触子13の向き(反射角)が等角度とな
るように走査することが必要となる。
As described above, when performing the ultrasonic critical angle flaw detection method, (a) the transmission-side probe 12 and the reception-side probe 1
The intersection 6 of the sound axis with 3 is made to coincide with the liquid-solid interface, and (b) the transmitting probe 12 with respect to the normal 8 of the liquid-solid interface while maintaining the above condition (a). It is necessary to perform scanning so that the direction (incident angle) of the target and the direction (reflection angle) of the receiving probe 13 are equal.

【0008】図6(a)は音軸の交点6の位置と反射波
強度の関係を、同図(b)は両探触子12、13の向き
と反射波強度の関係を、超音波臨界角θ=約30.7°
である場合を例にとって示したグラフである。同図
(a)において、音軸の交点6が液体−固体境界面に一
致している場合、即ちd=0の場合には、超音波臨界角
θの位置で入射波強度が急激に低下し、他の入射角にお
ける強度に比べて極端に低い値となっているが、音軸の
交点6が液体−固体境界面から離れるに従って、その程
度は鈍くなっている。
FIG. 6A shows the relationship between the position of the intersection 6 of the sound axes and the reflected wave intensity, and FIG. 6B shows the relationship between the directions of the two probes 12 and 13 and the reflected wave intensity. Angle θ = about 30.7 °
It is a graph shown by taking the case of as an example. In FIG. 9A, when the intersection 6 of the sound axis coincides with the liquid-solid interface, that is, when d = 0, the incident wave intensity sharply decreases at the position of the ultrasonic critical angle θ. The intensity is extremely low as compared with the intensity at other angles of incidence, but the degree decreases as the intersection 6 of the sound axis moves away from the liquid-solid interface.

【0009】また、同図(b)には、液体−固体境界面
の法線8に対する送信側探触子12の向きと受信側探触
子13の向きがずれてくると、超音波臨界角θにおける
入射波強度の低下の度合いが悪くなっていることが示さ
れている。これらの結果から、正確な測定のためには、
上記(イ)及び(ロ)の条件が必要であることが分か
る。
In FIG. 1B, when the direction of the transmitting probe 12 and the direction of the receiving probe 13 with respect to the normal line 8 of the liquid-solid interface deviate, the ultrasonic critical angle It is shown that the degree of decrease in the incident wave intensity at θ is worse. From these results, for accurate measurement,
It can be seen that the above conditions (a) and (b) are necessary.

【0010】なお、図5(a)において、dがプラスと
なっているとき、即ち送信側探触子12及び受信側探触
子13が液体−固体境界面に近付いたときに反射波強度
が大きくなっているのは、液体中での超音波の伝播距離
が短くなって減衰が少なくなることによるものである。
In FIG. 5A, when d is positive, that is, when the transmitting probe 12 and the receiving probe 13 approach the liquid-solid interface, the intensity of the reflected wave is reduced. The reason for the increase is that the propagation distance of the ultrasonic wave in the liquid is shortened and the attenuation is reduced.

【0011】[0011]

【発明が解決しようとする課題】上記のように、正確な
測定のためには、上記(イ)及び(ロ)の条件を備えて
いる必要があるが、音軸の交点6は送信側探触子12及
び受信側探触子13の幾何学的配置から決定されるもの
であるため、その精度を完全なものとすることは非常に
困難であった。また、該探触子12、13は液体−固体
境界面を回転の中心として走査させる必要があるため、
その機構は非常に複雑であった。さらに、送信側探触子
12及び受信側探触子13に用いている平面探触子はそ
のビーム径(発信される超音波ビームの直交断面寸法
で、振動子寸法にほぼ等しい)が大きく、最小のもので
も10mm程度であることから、該ビームの入射領域よ
りも小さい面積部分の測定においては対象部分の周辺領
域の情報も重畳されて測定されるため精度のよい測定が
困難であった。
As described above, for accurate measurement, the above conditions (a) and (b) must be satisfied, but the intersection 6 of the sound axis is located at the transmitting end. Since it is determined from the geometrical arrangement of the probe 12 and the receiving probe 13, it is very difficult to complete the accuracy. Further, since the probes 12 and 13 need to scan with the liquid-solid interface as the center of rotation,
The mechanism was very complicated. Further, the planar probe used for the transmitting probe 12 and the receiving probe 13 has a large beam diameter (an orthogonal cross-sectional dimension of the transmitted ultrasonic beam, which is substantially equal to the transducer dimension), Since the smallest one is about 10 mm, in the measurement of the area smaller than the incident area of the beam, information of the peripheral area of the target part is also superimposed and measured, so that accurate measurement is difficult.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
め,本発明は,(a)集束型超音波探触子よりなる送信
側探触子及び受信側探触子と、(b)両探触子の音軸の
交点と両探触子の焦点を一致させる位置及び方向で両探
触子を設置し、該音軸の交点を測定対象の測定面上に定
め、かつ該測定面の法線に対して両探触子の音軸が等角
度をなすように配置される台座と、(c)該台座と測定
対象との間を前記測定面の法線方向に移動し、送信側探
触子から測定対象に入射される超音波の一部のビームと
該ビームが測定対象面で反射したビームのみを通過させ
る超音波マスクとを備えたことを特徴とする。
In order to solve the above-mentioned problems, the present invention provides (a) a transmitting-side probe and a receiving-side probe comprising a focused ultrasonic probe; Both probes are installed at a position and a direction where the intersection of the sound axis of the probe and the focus of the two probes coincide with each other, the intersection of the sound axes is determined on the measurement surface of the measurement object, and (C) moving between the pedestal and the object to be measured in the direction normal to the measurement surface, and It is characterized by comprising a part of the ultrasonic beam incident on the measurement target from the probe and an ultrasonic mask for passing only the beam reflected by the measurement target surface.

【0013】上記のように、送信側探触子及び受信側探
触子に集束型超音波探触子を用い、それぞれの音軸の交
点と両探触子の焦点を一致させるように両探触子を台座
に設置し、測定面の法線に対して超音波ビームの入射角
と反射角が等しいように構成することにより、超音波の
受信感度の最も良好な状態で測定が行われることとな
る。さらに、超音波マスクを移動させることにより、両
探触子の位置及び向きを変えることなく、所望の入射角
及び反射角の超音波ビームを抽出し得るようになる。な
お、集束型超音波探触子とは、弧状の振動子または音響
レンズから構成され、超音波を音軸に対して平行ではな
く、音軸に対してある角度をもって集束させる機能をも
つものである。通常、集束型超音波探触子の焦点寸法は
平面探触子のビーム径よりも小さく、直径1mm以下の
ものも存在する。
As described above, a focusing ultrasonic probe is used as the transmitting probe and the receiving probe, and the two probes are set so that the intersection of the respective sound axes and the focal points of the two probes coincide with each other. By placing the stylus on the pedestal and making the angle of incidence and reflection of the ultrasonic beam equal to the normal to the measurement surface, measurement can be performed with the best ultrasonic reception sensitivity Becomes Further, by moving the ultrasonic mask, an ultrasonic beam having a desired incident angle and a desired reflection angle can be extracted without changing the positions and directions of the two probes. In addition, the focusing type ultrasonic probe is composed of an arc-shaped vibrator or an acoustic lens, and has a function of focusing ultrasonic waves at a certain angle with respect to the sound axis, not parallel to the sound axis. is there. Usually, the focal size of a focused ultrasonic probe is smaller than the beam diameter of a plane probe, and there are also those having a diameter of 1 mm or less.

【0014】[0014]

【発明の実施の形態】図1は、本発明の超音波臨界角探
触装置の一実施形態の構成図である。同図において、送
信側探触子1及び受信側探触子2は円弧状の凹面を持
ち、その輪郭は円形をなしている。送信側探触子1の中
心を通り該探触子1の面に垂直な線が送信側音軸4であ
り、同様に受信側探触子2の中心を通り該探触子2の面
に垂直な線が受信側音軸5である。そして、送信側探触
子1は送信側音軸4上に、受信側探触子2は受信側音軸
5上にそれぞれ焦点を結ぶようになっている。
FIG. 1 is a block diagram of an embodiment of an ultrasonic critical angle probe according to the present invention. In FIG. 1, the transmission-side probe 1 and the reception-side probe 2 have arc-shaped concave surfaces, and their contours are circular. A line passing through the center of the transmitting probe 1 and perpendicular to the surface of the probe 1 is the transmitting sound axis 4, and similarly passes through the center of the receiving probe 2 and extends on the surface of the probe 2. The vertical line is the receiving-side sound axis 5. The transmitting probe 1 is focused on the transmitting sound axis 4, and the receiving probe 2 is focused on the receiving sound axis 5.

【0015】送信側探触子1及び受信側探触子2は台座
16に固定して設けられているが、その位置及び向きは
下記の(A)乃至(D)の条件すべてを満たすように調
整されている。 (A)送信側音軸4と受信側音軸5は交点6で交わって
いる。 (B)上記音軸の交点6は、送信側探触子1の焦点であ
り、且つ受信側探触子2の焦点である。 (C)音軸の交点6は測定対象の境界面(以下、測定面
という)7上に位置する。 (D)音軸の交点6を通る測定面7の法線8と上記2種
類の音軸4及び5とのなす角θは等しい。
The transmitting probe 1 and the receiving probe 2 are fixed to the pedestal 16, and their positions and orientations satisfy all of the following conditions (A) to (D). Has been adjusted. (A) The transmission-side sound axis 4 and the reception-side sound axis 5 intersect at an intersection 6. (B) The intersection 6 of the sound axes is the focal point of the transmitting probe 1 and the focal point of the receiving probe 2. (C) The intersection 6 of the sound axes is located on a boundary surface (hereinafter referred to as a measurement surface) 7 of the measurement object. (D) The angle θ between the normal line 8 of the measurement surface 7 passing through the intersection 6 of the sound axes and the above two kinds of sound axes 4 and 5 is equal.

【0016】台座16と測定対象の測定面7との間に
は、図2に示すように、超音波遮蔽板から成る超音波マ
スク3が設けられている。そして、該超音波マスク3
は、送信側探触子1からの超音波ビームの一部と、測定
面7にて反射した該ビームの反射ビームのみを通過させ
る窓3’を備えている。この超音波マスク3を図示しな
い移動手段により法線8の方向に移動させることによ
り、所望の角度で測定面に入射する超音波のみを抽出す
ることが可能となる。具体的には、超音波マスク3を測
定面7側へ移動させると入射角及び反射角の大きな超音
波ビームが抽出されるようになり、逆に超音波マスク3
を測定面7から遠ざけると入射角及び反射角の小さな超
音波ビームが抽出される。
As shown in FIG. 2, an ultrasonic mask 3 made of an ultrasonic shielding plate is provided between the pedestal 16 and the measurement surface 7 to be measured. And the ultrasonic mask 3
Is provided with a window 3 ′ that allows only a part of the ultrasonic beam from the transmitting probe 1 and the reflected beam of the beam reflected by the measurement surface 7 to pass. By moving the ultrasonic mask 3 in the direction of the normal line 8 by a moving means (not shown), it becomes possible to extract only the ultrasonic wave incident on the measurement surface at a desired angle. Specifically, when the ultrasonic mask 3 is moved to the measurement surface 7 side, an ultrasonic beam having a large incident angle and a large reflection angle is extracted.
Is moved away from the measurement surface 7, an ultrasonic beam having a small incident angle and a small reflection angle is extracted.

【0017】次に、上記装置にて超音波臨界角探傷を行
う手順について述べる。上記のように、超音波臨界角探
傷法は、材質が既知の基準材(例えば、測定対象材と同
一組成で材質変化の生じていないもの)と測定対象材と
の超音波臨界角の違いから測定対象材の材質の変化を評
価するものであるため、測定に際して測定対象材の超音
波臨界角を把握できていないのが通常である。そこで、
本装置で超音波臨界角探傷を行う場合には、測定対象材
の超音波臨界角θC が基準材の超音波臨界角θC0と等し
いと仮定して測定する。具体的には、図3に示すように
測定側音軸4及び受信側音軸5と測定面の法線8とのな
す角が基準材の超音波臨界角θC0となるように送信側探
触子1及び受信側探触子2並びに台座16を設定する。
Next, a procedure for performing the ultrasonic critical angle flaw detection by the above-described apparatus will be described. As described above, the ultrasonic critical angle flaw detection method is based on the difference in ultrasonic critical angle between a reference material having a known material (for example, a material having the same composition as the material to be measured and having no change in material) and the material to be measured. Since it is intended to evaluate the change in the material of the material to be measured, it is usual that the ultrasonic critical angle of the material to be measured cannot be grasped at the time of measurement. Therefore,
When performing the ultrasonic critical angle flaw detection with this apparatus, the measurement is performed on the assumption that the ultrasonic critical angle θ C of the measurement target material is equal to the ultrasonic critical angle θ C0 of the reference material. Specifically, as shown in FIG. 3, the transmission side search is performed such that the angle between the measurement side sound axis 4 and the reception side sound axis 5 and the normal line 8 of the measurement surface becomes the ultrasonic critical angle θ C0 of the reference material. The probe 1, the receiving probe 2, and the pedestal 16 are set.

【0018】上記のように基準材の超音波臨界角θC0
基づいて送信側探触子1及び受信側探触子2の位置等を
設定しても、本装置では、超音波マスク3を法線8に沿
って移動させ送信側探触子1からの入射ビームの角度を
θC0−α乃至θC0+αに変化させることができるため、
θC0−α≦θC ≦θC0+αであれば測定対象材の超音波
臨界角θC を検出することが可能となる。
As described above, even if the positions and the like of the transmission-side probe 1 and the reception-side probe 2 are set based on the ultrasonic critical angle θ C0 of the reference material, the ultrasonic mask 3 can be used in this apparatus. Since the beam can be moved along the normal line 8 to change the angle of the incident beam from the transmitting probe 1 from θ C0 −α to θ C0 + α,
If θ C0 −α ≦ θ C ≦ θ C0 + α, it becomes possible to detect the ultrasonic critical angle θ C of the material to be measured.

【0019】なお、測定対象材の超音波臨界角θC がθ
C0−α乃至θC0+αの範囲内にない場合はその角度を検
出することができなくなるため、予め寸法の大きな送信
側探触子1及び受信側探触子2を使用しαを大きめに設
定しておくとよい。αは、送信側探触子1及び受信側探
触子2の直径Dと焦点距離Lとから次の式にて求めるこ
とができる。 α(度) = Tan-1(D/2L) (4)
The ultrasonic critical angle θ C of the material to be measured is θ
If the angle is not in the range of C0 -α to θ C0 + α, the angle cannot be detected. Therefore, α is set to a relatively large value by using the transmitting probe 1 and the receiving probe 2 having large dimensions in advance. It is good to keep. α can be obtained from the diameter D and the focal length L of the transmission-side probe 1 and the reception-side probe 2 by the following formula. α (degree) = Tan -1 (D / 2L) (4)

【0020】[0020]

【発明の効果】本発明では、探触子を予め適正な位置及
び方向に設置していることから、超音波の受信感度の最
も良好な状態を容易に作りだすことができ、測定の精度
を完全なものとすることが可能になる。また、上記構成
に加え、超音波マスクを採用したことにより、探触子の
位置及び向きを変えることなく所望の入射角及び反射角
の超音波ビームを抽出し得るようになるため、複雑な走
査機構が不要になる。さらに、集束型超音波探触子を採
用したことにより、ビーム径の小さい超音波ビームを入
射することが可能となるため、微小領域に対しても精度
の高い測定ができるようになる。
According to the present invention, since the probe is previously set at an appropriate position and direction, it is possible to easily create the best condition of the ultrasonic reception sensitivity, and to complete the measurement accuracy. It becomes possible to be. Further, in addition to the above configuration, by employing an ultrasonic mask, it becomes possible to extract an ultrasonic beam having a desired incident angle and a desired reflection angle without changing the position and the direction of the probe. No mechanism is required. Further, by employing the focusing type ultrasonic probe, it becomes possible to input an ultrasonic beam having a small beam diameter, so that highly accurate measurement can be performed even in a minute area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態にかかる送信側探触子及び
受信側探触子並びに台座の構成図。
FIG. 1 is a configuration diagram of a transmitting probe, a receiving probe, and a pedestal according to an embodiment of the present invention.

【図2】本発明の一実施形態にかかる超音波マスクの移
動状態を示す図。
FIG. 2 is a diagram showing a moving state of an ultrasonic mask according to one embodiment of the present invention.

【図3】本発明の一実施形態にかかる超音波臨界角の検
出に関する説明図。
FIG. 3 is an explanatory diagram relating to detection of an ultrasonic critical angle according to an embodiment of the present invention.

【図4】超音波臨界角探傷法の概念を示す図。FIG. 4 is a diagram illustrating the concept of ultrasonic critical angle flaw detection.

【図5】超音波臨界角探傷を行うための従来装置の構成
図。
FIG. 5 is a configuration diagram of a conventional apparatus for performing ultrasonic critical angle flaw detection.

【図6】超音波臨界角探傷法における測定状態と反射波
強度との関係を示すグラフ。
FIG. 6 is a graph showing a relationship between a measurement state and a reflected wave intensity in the ultrasonic critical angle flaw detection method.

【符号の説明】[Explanation of symbols]

1,12 送信側探触子 2,13 受信側探触子 3 超音波マスク 3’ 超音波マスクの窓 4 送信側音軸 5 受信があ音軸 6 音軸の交点 7 測定対象の測定面 8 測定面の法線 9 入射ビーム 10 反射ビーム 11 固体表面波 14 超音波探傷器 15 XYレコーダー 16 台座 Reference Signs List 1, 12 Transmitter probe 2, 13 Receiver probe 3 Ultrasonic mask 3 'Window of ultrasonic mask 4 Transmitting sound axis 5 Receiving sound axis 6 Intersection of sound axis 7 Measurement surface to be measured 8 Measurement surface normal 9 Incident beam 10 Reflected beam 11 Solid surface wave 14 Ultrasonic flaw detector 15 XY recorder 16 Pedestal

フロントページの続き (72)発明者 木田 泰夫 兵庫県神戸市兵庫区和田崎超1丁目1番 1号 三菱重工業株式会社神戸造船所内 (56)参考文献 特開 昭58−19556(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 29/00 - 29/28 Continuation of the front page (72) Inventor Yasuo Kida 1-1-1, Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Pref. 58) Field surveyed (Int.Cl. 6 , DB name) G01N 29/00-29/28

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(a)集束型超音波探触子よりなる送信側
探触子及び受信側探触子と、(b)両探触子の音軸の交
点と両探触子の焦点を一致させる位置及び方向で両探触
子を設置し、該音軸の交点を測定対象の測定面上に定
め、かつ該測定面の法線に対して両探触子の音軸が等角
度をなすように配置される台座と、(c)該台座と測定
対象との間を前記測定面の法線方向に移動し、送信側探
触子から測定対象に入射される超音波の一部のビームと
該ビームが測定対象面で反射したビームのみを通過させ
る超音波マスクとを備えたことを特徴とする超音波臨界
角探傷装置。
1. A transmitting probe and a receiving probe comprising a focused ultrasonic probe, and (b) an intersection of a sound axis of both probes and a focal point of both probes. The two probes are installed at the position and direction to be matched, the intersection of the sound axes is determined on the measurement surface of the measurement target, and the sound axes of both probes are equiangular with respect to the normal to the measurement surface. (C) a part of the ultrasonic wave which is moved between the pedestal and the object to be measured in a direction normal to the measurement surface and is incident on the object to be measured from the transmitting probe. An ultrasonic critical angle flaw detector comprising: a beam; and an ultrasonic mask that allows only the beam reflected by the surface to be measured to pass.
JP52097A 1997-01-07 1997-01-07 Ultrasonic critical angle flaw detector Expired - Lifetime JP2883051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52097A JP2883051B2 (en) 1997-01-07 1997-01-07 Ultrasonic critical angle flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52097A JP2883051B2 (en) 1997-01-07 1997-01-07 Ultrasonic critical angle flaw detector

Publications (2)

Publication Number Publication Date
JPH09297125A JPH09297125A (en) 1997-11-18
JP2883051B2 true JP2883051B2 (en) 1999-04-19

Family

ID=11476055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52097A Expired - Lifetime JP2883051B2 (en) 1997-01-07 1997-01-07 Ultrasonic critical angle flaw detector

Country Status (1)

Country Link
JP (1) JP2883051B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6728737B2 (en) 2016-02-10 2020-07-22 株式会社Ihi Ultrasonic flaw detector and ultrasonic flaw detection method

Also Published As

Publication number Publication date
JPH09297125A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
US4441369A (en) Ultrasonic detection of extended flaws
EP2594931B1 (en) Ultrasonic flaw detecting apparatus and method for test pieces with complex shapes
JPH0136584B2 (en)
US4702112A (en) Ultrasonic phase reflectoscope
JP2001208729A (en) Defect detector
JP2004150875A (en) Method and system for imaging internal flaw using ultrasonic waves
JP2883051B2 (en) Ultrasonic critical angle flaw detector
EP1664758B1 (en) An acoustic testing apparatus for testing a laminate material and an acoustic testing method for testing a laminate material
US6829940B2 (en) Method and apparatus for measuring surface wave traveling time
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JPH11183445A (en) Flaw detector
EP0158819B1 (en) Two-probe ultrasonic flaw detection apparatus
JP3379166B2 (en) Ultrasound spectrum microscope
JPH0545346A (en) Ultrasonic probe
JPS61245055A (en) Ultrasonic flaw inspecting device
JP3261827B2 (en) Ultrasound spectrum microscope
JPH0376419B2 (en)
JP2005345217A (en) Ultrasonic flaw detecting method and device
JPH1151909A (en) Ultrasonic wave flaw detecting method
JPS5826380Y2 (en) Ultrasonic flaw detection probe
JPH05107234A (en) Method and device for inspecting ultrasonic probe
Ishikawa et al. Full-circular surface acoustic wave excitation for high resolution acoustic microscopy using spherical lens and time gate technology
JPH08261992A (en) Ultrasonic flaw detector
JPH0731169Y2 (en) Ultrasonic probe
JPH0225166Y2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990112