JP3379166B2 - Ultrasound spectrum microscope - Google Patents

Ultrasound spectrum microscope

Info

Publication number
JP3379166B2
JP3379166B2 JP26046993A JP26046993A JP3379166B2 JP 3379166 B2 JP3379166 B2 JP 3379166B2 JP 26046993 A JP26046993 A JP 26046993A JP 26046993 A JP26046993 A JP 26046993A JP 3379166 B2 JP3379166 B2 JP 3379166B2
Authority
JP
Japan
Prior art keywords
ultrasonic
lens
sample
wave
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26046993A
Other languages
Japanese (ja)
Other versions
JPH0792143A (en
Inventor
雅顕 谷中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP26046993A priority Critical patent/JP3379166B2/en
Publication of JPH0792143A publication Critical patent/JPH0792143A/en
Application granted granted Critical
Publication of JP3379166B2 publication Critical patent/JP3379166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、試料の膜厚や膜質を正
確に測定するため超音波の反射波出力を分析,解析,演
算,記録,表示する超音波スペクトラム顕微鏡に係り、
特に試料の表面物性を測定,評価するに好適な超音波ス
ペクトラム顕微鏡に関する。 【0002】 【従来の技術】試料の膜厚や膜質測定するためにSPP
レンズが使用される。一般にSPPレンズは送信側の球
面レンズと受信側の平面レンズの一対のレンズ構造から
なり、共にトランスデューサおよび遅延材を有する。送
信側レンズから送られる超音波は試料表面に照射され
る。試料からの反射波は受信側レンズで受信され、オシ
ロスコープやコンピュータ等の画像処理手段により反射
波出力が分析,解析,演算,表示される。従来一般に使
用されているSPPレンズは球面レンズと平面レンズの
一対構造のものからなり、例えば送信側の球面レンズか
ら集束超音波が試料の集束点に送られ、集束点からの発
散超音波を受信側の平面レンズで受けて反射波出力を求
め、これを基にして膜厚等を測定するものである。 【0003】試料表面の特性を測定する場合には表面波
の位相速度を計測する。位相速度を求める場合には、S
PPレンズを角的に走査して入射角を変化させる。超音
波の入射角が臨界角θwに達すると試料の表面に沿って
漏洩弾性表面波が励起される。ここで試料面で鏡面反射
する成分が減少する。なお、反射波の出力の強度上のデ
イップにより前記表面波の存在を確認出来るがディップ
が現われにくい場合もあり、位相変化により判断する。
SPPレンズ側の媒体(普通水が媒体となる)中の超音
波の伝達速度をV1とし試料の表面に沿って進行する表
面波の速度、すなわち、位相速度をV2とすると、V2
1/sinθwとなり、V1が既知のため臨界角θwを
求めることにより位相速度V2が容易に求められる。か
かる技術は例えば次の英文の文献に記載されている。
「Measurements of SAW Velocity Using an Ultrasonic
-Micro Stectrometer」 (Proceeding of 10th Symtosium
onUltrasonic Electronics,Tokyo 1909 Japanese Jour
nal of Applied Physics, Vol.29(1990) Supplement 29
-1,pp.289-291). 【0004】 【発明が解決しようとする課題】前記したように、超音
波が臨界角θwで入射されると試料の表面に沿って表面
波(これを漏洩弾性表面波と言い、以下LSAWと称す)
が励起され反射波が殆んど発生しない。LSAWは試料の
表面から再漏洩し受信側の平面レンズ側に進む。そのた
め、反射波の出力にはLSAWが伝播した距離程度だけ試
料についての情報が平均化されてくるため、″微少部″
の弾性的な性質を測定するのが困難であった。 【0005】本発明は、以上の問題点を解決するもの
で、反射波出力が入射角の変化に対して一定の形で変化
することを基にし、その定形化された変化パターンから
臨界角を求め、試料表面波の位相速度を高精度に求める
と共に、試料の物性情報(異方性を含む)を従来のSP
Pレンズに較べて高空間分離能で求め得る超音波スペク
トラム顕微鏡を提供することを目的とする。 【0006】 【課題を解決するための手段】本発明は、以上の目的を
達成するために、試料表面に直交する垂直軸を境にして
左右に傾斜して配設され超音波を送受信するトランスデ
ューサと遅延材を有する一対の超音波センサおよびその
受信波の画像処理手段を備える超音波スペクトラム顕微
鏡において、当該超音波センサを構成する送信側および
受信側レンズの前記遅延材の前記試料側の端部に焦点位
置の異なる凹面を形成してある。特徴事項として、前記
受信側レンズは、送信側のトランスデューサから入射さ
れた超音波に含まれ送信側レンズの中心軸上を通る成分
が、試料から鏡面反射された反射波と、送信側のトラン
スデューサから入射された超音波に含まれ試料への入射
角が臨界角と一致する成分の試料からの再放出波とを検
知する超音波スペクトラム顕微鏡を構成するものであ
る。 【0007】 【作用】送信側からの超音波の入射角が臨界角θwより
も小さい場合にはLSAWは励起されず、また、送信側レ
ンズの中心軸上の超音波以外のものは受信側レンズに入
射されないため反射波出力はほぼ一定値になる。次に、
入射角が臨界角θwに合致すると送信側レンズの中心軸
を通った超音波が試料上にLSAWを励起し、鏡反射波の
出力が激減しディップが瞬間的に生じる。このとき、L
SAWの再放出成分は存在するが受信側レンズの焦点と異
なる位置となるため受信されない。次に、入射角が臨界
角θwよりも大きくなると送信側レンズからの超音波は
その一部が鏡面反射波として受信側レンズにそのまま入
射されると共に、他の部分がLSAWを励起し、その再放
出波が受信側レンズに進む。従って、2成分の波が発生
するため反射波出力は干渉のため浅いディップを繰り返
す波形状のものになる。以上のように、入射角に対する
反射波出力の変化パターンを観察することにより臨界角
の位置が明確化され位相速度を従来のSPPレンズに較
べて高空間分解能で正確に求めることが出来る。 【0008】 【実施例】以下、本発明の一実施例を図面に基づき説明
する。図1は本実施例の適用される超音波スペクトラム
顕微鏡の概要全体構成図、図2は送信用の凹面レンズの
斜視図、図3は受信用の凹面レンズの斜視図、図4乃至
図7は本実施例の動作を説明するための正面図、図8は
入射角θiと反射波出力との関係を示す線図である。 【0009】図2に示すように、送信用の凹面レンズ1
は、トランスデューサ3と円筒状の遅延材4からなり、
遅延材4の先端側には焦点P1の凹面5が形成される。
一方、図3に示すように、受信用の凹面レンズ2は、ト
ランスデューサ6と円筒状の遅延材7からなり、遅延材
7の先端側には焦点P2の凹面8が形成される。すなわ
ち、凹面5と凹面8は異なる位置に焦点P1,P2を形成
するもので凹面曲率形状が相異する。 【0010】次に、図1により本実施例の適用される超
音波スペクトラム顕微鏡9の概要構造を説明する。試料
10の垂直軸11の右側には送信用の凹面レンズ1が配
置され左側には受信用の凹面レンズ2が配置される。両
レンズ1,2は互いに傾斜して配置される。凹面レンズ
2はその焦点P2を試料10の集束点Pと一致するよう
に配置され、凹面レンズ1は集束点Pを通る中心軸17
上で試料10の上方位置に焦点P1がくるように配置さ
れる。また、両凹面レンズ1,2の中心軸は集束点Pで
交差する。凹面レンズ1はその凹面5から集束球面波を
送信し、集束球面波の一部は集束点Pから発散球面波と
して凹面レンズ2側に反射して受信される。また、凹面
レンズ1と凹面レンズ2とは共通のレンズホルダ12に
保持され両者は角度θの交角で配置される。レンズホル
ダ12を集束点Pを中心として回動することにより凹面
レンズ1の入射角θiが変化し、凹面レンズ2はθ−θ
iの位置に移動する。 【0011】凹面レンズ1のトランスデューサ3にはパ
ルサ&レシーバ13から電気インパルスが送信される。
一方、凹面レンズ2のトランスデューサ6はパルサ&レ
シーバ13に連結され、パルサ&レシーバ13により反
射波出力の増幅が行われる。このデータはオシロスコー
プ14を介しコンピュータ15側に送られ必要な演算お
よび記録がされ表面波位相速度やその他試料の特性等の
解析,演算が行われる。また、その結果は図略のモニタ
ーテレビ等の表示手段により表示される。また、図示の
ように凹面レンズ1および凹面レンズ2と試料10間に
は超音波の伝達媒体としての水16が介在する。 【0012】次に、図4乃至図6により本実施例の動作
を説明する。図4は入射角θiが臨界角θwよりも小さ
いθi<θwの状態における超音波の送受信状態を説明
するものである。凹面レンズ1からは集束球面波が放出
されるがその中で凹面レンズ2側に受信されるのは凹面
レンズ1の中心軸17上を通る成分(矢印Cで示す)の
みである。この成分は試料10上の集束点Pで反射し矢
印Dに示すように凹面レンズ2内を通りトランスデュー
サ6で電気信号に交換された後、パルサ&レシーバ13
(図1)側に送られる。従って、この場合には、反射波
出力はほぼ一定値となる。 【0013】図5は入射角θiが臨界角θwと等しいθ
i=θwの状態を示すものである。この場合にも凹面レ
ンズ2側に進む超音波成分は凹面レンズ1の中心軸17
を通る矢印Cの超音波のみであるが、この超音波は前記
したように集束点PでLSAW(矢印Eで示す)を励起す
る。そのため、矢印Fで示す反射波のパワーが弱くなり
殆んど凹面レンズ2側に入力せず反射波出力は激減し、
深いディップが発生する。 【0014】図6は入射角θiが臨界角θwよりも大き
いθi>θwの状態を示す。この場合に凹面レンズ2側
に受信される超音波は凹面レンズ1の中心軸17を通る
矢印Cで示す成分と、臨界角θwで焦点P1を通って試
料10側に向かう矢印Gの成分の2成分のものになる。
図7に拡大して示すように、矢印Cで示した超音波は集
束点Pで反射し矢印Hで示す反射波として凹面レンズ2
に受信される。一方、矢印Gの超音波は臨界角θwで入
射されるため試料10の表面で矢印IのようにLSAWを
励起し、集束点P(P1)に進みながら一部は矢印Jの
ように弱いパワーの再反射波として凹面レンズ2側に進
む。そのため、受信側で測定される反射波出力は両成分
の干渉により小さいディップを繰り返す波形のものにな
る。 【0015】図8は図4乃至図7により説明した反射波
出力の変化を示す線図である。横軸には入射角θiが表
示され、縦軸には反射波出力が表示される。図において
領域1は図4のθi<θwの状態を示し前記したように
反射波出力はほぼ一定値になる。次に、領域2は図5の
θi=θwの状態に相当するもので深いディップ18が
表われる。次に、領域3は図6のθi>θwの状態を示
すもので、浅いディップ19を繰り返す波形20にな
る。この波形20は試料10の材質や硬度等の特性によ
り形状変化するものである。図8に示した入射角θiに
対する反射波出力の変化パターンを観察すると反射波出
力が一定値から波形20に変化するその境目にディップ
18が発生する。そのため、臨界入射角θwの位置を正
確に読み取ることが出来る。臨界角θwの値が決まれば
前記したようにV2=V1/sinθwの「スネルの法
則」により試料10の表面を進行するLSAWの位相速度
2を正確に求めることが出来る。また、前記したよう
に、波形20の形状を分析することにより試料の諸特性
を求めることが出来、超音波マイクロスペクトロスコピ
ーに有効なものとなる。 【0016】以上の説明において、凹面レンズ1および
凹面レンズ2の凹面5および凹面8の形状については焦
点位置が相異すればよく、図示のものに限定するもので
はない。また、本実施例の適用される超音波スペクトラ
ム顕微鏡9の全体構成は図1のものに限定するものでは
ない。 【0017】 【発明の効果】本発明によれば、次のような顕著な効果
を奏する。 1)従来のSPPレンズに較べて微少領域でのLSAW速
度を求めることが出来る。すなわち、従来より高空間分
解能となる。 2)超音波センサとして焦点の異なる凹面レンズと凹面
レンズの組み合わせレンズを採用することにより入射角
θiに対する反射波出力の変化パターンを定形化するこ
とが出来、このパターンから臨界角の位置を正確に求め
ることが出来る。 3)臨界角が正確に把握されるため試料の表面波位相速
度を正確に求めることが出来る。 4)反射波出力の変化パターンがθi>θwの状態で波
形が周期的に変化し、その波形を分析することにより試
料の特性(材質,硬度,異方性等)を求めることが出来
る。 5)本発明は、超音波センサの形状を工夫したもので特
別な付属品を使用しないため比較的安価に実施すること
が出来る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention analyzes, analyzes, calculates, records and displays the output of reflected ultrasonic waves in order to accurately measure the thickness and quality of a sample. In connection with the ultrasonic spectrum microscope,
In particular, the present invention relates to an ultrasonic spectrum microscope suitable for measuring and evaluating surface physical properties of a sample. [0002] In order to measure the thickness and quality of a sample, an SPP
A lens is used. In general, the SPP lens has a pair of lens structures of a transmitting-side spherical lens and a receiving-side flat lens, and both have a transducer and a delay member. Ultrasonic waves transmitted from the transmitting lens are irradiated on the sample surface. The reflected wave from the sample is received by the receiving lens, and the output of the reflected wave is analyzed, analyzed, calculated, and displayed by an image processing means such as an oscilloscope or a computer. Conventionally, an SPP lens generally used has a paired structure of a spherical lens and a planar lens. For example, a focused ultrasonic wave is transmitted from a transmitting spherical lens to a focal point of a sample, and a divergent ultrasonic wave from the focal point is received. The output of the reflected wave is obtained by receiving the light by the flat lens on the side, and the film thickness and the like are measured based on the output. When measuring the characteristics of a sample surface, the phase velocity of a surface wave is measured. When determining the phase velocity, S
The incident angle is changed by angularly scanning the PP lens. When the incident angle of the ultrasonic wave reaches the critical angle θw, a leaky surface acoustic wave is excited along the surface of the sample. Here, the specular reflection component on the sample surface decreases. The presence of the surface wave can be confirmed by the dip on the intensity of the output of the reflected wave, but the dip may not easily appear.
Assuming that the transmission speed of the ultrasonic wave in the medium (usually water is the medium) on the SPP lens side is V 1 and the velocity of the surface wave traveling along the surface of the sample, that is, the phase velocity is V 2 , V 2 =
V 1 / sin θw. Since V 1 is known, the phase velocity V 2 can be easily obtained by obtaining the critical angle θw. Such a technique is described in the following English literature, for example.
"Measurements of SAW Velocity Using an Ultrasonic
-Micro Stectrometer '' (Proceeding of 10th Symtosium
onUltrasonic Electronics, Tokyo 1909 Japanese Jour
nal of Applied Physics, Vol. 29 (1990) Supplement 29
[0004] As described above, when an ultrasonic wave is incident at a critical angle θw, a surface wave (leakage of the surface wave along the surface of the sample) occurs. Surface acoustic wave, hereinafter referred to as LSAW)
Are excited and almost no reflected wave is generated. The LSAW leaks again from the surface of the sample and proceeds to the flat lens side on the receiving side. As a result, the information of the sample is averaged in the output of the reflected wave by about the distance that the LSAW has propagated.
It was difficult to measure the elastic properties of. The present invention solves the above-mentioned problems. Based on the fact that the reflected wave output changes in a constant manner with respect to the change in the incident angle, the critical angle is determined from the stylized change pattern. In addition to obtaining the phase velocity of the sample surface wave with high accuracy, the physical property information (including anisotropy) of the sample
An object of the present invention is to provide an ultrasonic spectrum microscope that can be obtained with higher spatial resolution than a P lens. SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a transducer which transmits and receives ultrasonic waves, which is disposed to be inclined left and right with respect to a vertical axis perpendicular to the sample surface. And an ultrasonic spectrum microscope having a pair of ultrasonic sensors having a delay member and an image processing means for receiving waves of the ultrasonic sensor, wherein an end portion of the delay member on the sample side of a transmission-side and reception-side lens constituting the ultrasonic sensor Are formed with concave surfaces having different focal positions. As a feature,
The receiving lens is incident from the transmitting transducer.
Component included in the transmitted ultrasonic wave and passing on the center axis of the transmitting lens
However, the reflected wave specularly reflected from the sample
Incident on the sample included in the ultrasonic wave incident from the transducer
Re-emission wave from the sample whose angle matches the critical angle is detected.
This constitutes a known ultrasonic spectrum microscope. When the incident angle of the ultrasonic wave from the transmitting side is smaller than the critical angle θw, the LSAW is not excited, and other than the ultrasonic wave on the central axis of the transmitting side lens, , The reflected wave output has a substantially constant value. next,
When the incident angle matches the critical angle θw, the ultrasonic wave passing through the central axis of the transmitting lens excites the LSAW on the sample, the output of the mirror reflected wave is drastically reduced, and a dip occurs instantaneously. At this time, L
Although the re-emission component of SAW exists, it is not received because it is at a position different from the focal point of the receiving lens. Next, when the incident angle becomes larger than the critical angle θw, a part of the ultrasonic wave from the transmitting lens is directly incident on the receiving lens as a specular reflection wave, and the other part excites the LSAW, and the re-excitation occurs. The emitted wave travels to the receiving lens. Therefore, since a two-component wave is generated, the reflected wave output has a wave shape that repeats a shallow dip due to interference. As described above, by observing the change pattern of the reflected wave output with respect to the incident angle, the position of the critical angle is clarified, and the phase velocity can be accurately obtained with higher spatial resolution than the conventional SPP lens. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic overall configuration diagram of an ultrasonic spectrum microscope to which the present embodiment is applied, FIG. 2 is a perspective view of a concave lens for transmission, FIG. 3 is a perspective view of a concave lens for reception, and FIGS. FIG. 8 is a front view for explaining the operation of the present embodiment, and FIG. 8 is a diagram showing the relationship between the incident angle θi and the reflected wave output. As shown in FIG. 2, a concave lens 1 for transmission is used.
Consists of a transducer 3 and a cylindrical delay member 4,
A concave surface 5 having a focal point P 1 is formed on the distal end side of the delay member 4.
On the other hand, as shown in FIG. 3, the concave lens 2 for reception includes a transducer 6 and a cylindrical delay member 7, and a concave surface 8 of a focal point P 2 is formed on the distal end side of the delay member 7. That is, the concave surface 5 and the concave surface 8 form the focal points P 1 and P 2 at different positions, and have different concave curvature shapes. Next, the schematic structure of an ultrasonic spectrum microscope 9 to which this embodiment is applied will be described with reference to FIG. The concave lens 1 for transmission is disposed on the right side of the vertical axis 11 of the sample 10, and the concave lens 2 for reception is disposed on the left side. Both lenses 1 and 2 are arranged obliquely to each other. The concave lens 2 is arranged so that its focal point P 2 coincides with the focal point P of the sample 10, and the concave lens 1 has a central axis 17 passing through the focal point P.
The focal point P 1 is located above the sample 10. The central axes of the biconcave lenses 1 and 2 intersect at the focal point P. The concave lens 1 transmits a focused spherical wave from the concave surface 5, and a part of the focused spherical wave is reflected from the focal point P as a divergent spherical wave toward the concave lens 2 and received. Further, the concave lens 1 and the concave lens 2 are held by a common lens holder 12, and both are arranged at an intersection angle of the angle θ. By rotating the lens holder 12 about the convergence point P, the incident angle θi of the concave lens 1 changes, and the concave lens 2 becomes θ−θ.
Move to position i. An electric impulse is transmitted from the pulsar & receiver 13 to the transducer 3 of the concave lens 1.
On the other hand, the transducer 6 of the concave lens 2 is connected to a pulser & receiver 13, and the reflected wave output is amplified by the pulser & receiver 13. This data is sent to the computer 15 via the oscilloscope 14, where necessary calculations and recording are performed, and analysis and calculation of the surface wave phase velocity and other characteristics of the sample are performed. The result is displayed by a display means such as a monitor television (not shown). As shown in the figure, water 16 as a medium for transmitting ultrasonic waves is interposed between the concave lens 1 and the concave lens 2 and the sample 10. Next, the operation of this embodiment will be described with reference to FIGS. FIG. 4 illustrates the state of transmission and reception of ultrasonic waves when the incident angle θi is smaller than the critical angle θw and θi <θw. A focused spherical wave is emitted from the concave lens 1, but only the component passing on the central axis 17 of the concave lens 1 (indicated by an arrow C) is received by the concave lens 2. This component is reflected at the focal point P on the sample 10, passes through the concave lens 2 as shown by the arrow D, and is converted into an electric signal by the transducer 6.
(FIG. 1). Therefore, in this case, the output of the reflected wave has a substantially constant value. FIG. 5 shows that the incident angle θi is equal to the critical angle θw.
This shows a state where i = θw. Also in this case, the ultrasonic component traveling to the concave lens 2 side is the center axis 17 of the concave lens 1.
, Which excites the LSAW (indicated by arrow E) at the focal point P as described above. As a result, the power of the reflected wave indicated by the arrow F becomes weak, and almost no input is made to the concave lens 2 side, and the output of the reflected wave is drastically reduced.
Deep dips occur. FIG. 6 shows a state in which the incident angle θi is larger than the critical angle θw and θi> θw. The ultrasonic waves are received by the concave lens 2 side case and components indicated by the arrow C passing through the center axis 17 of the concave lens 1, the components of arrow G toward the sample 10 side through the focal point P 1 at the critical angle θw It has two components.
As shown in an enlarged manner in FIG. 7, the ultrasonic wave indicated by the arrow C is reflected at the focal point P and is converted into a reflected wave indicated by the arrow H.
Is received. On the other hand, since the ultrasonic wave indicated by the arrow G is incident at the critical angle θw, the LSAW is excited on the surface of the sample 10 as indicated by an arrow I, and a part thereof is weakened as indicated by an arrow J while proceeding to the focal point P (P 1 ). The light advances to the concave lens 2 side as a re-reflected wave of power. Therefore, the reflected wave output measured on the receiving side has a waveform that repeats a smaller dip in the interference between the two components. FIG. 8 is a diagram showing a change in the output of the reflected wave described with reference to FIGS. The horizontal axis indicates the incident angle θi, and the vertical axis indicates the reflected wave output. In the figure, region 1 shows the state of θi <θw in FIG. 4 and the output of the reflected wave becomes almost constant as described above. Next, the region 2 corresponds to the state of θi = θw in FIG. 5 and a deep dip 18 appears. Next, a region 3 shows the state of θi> θw in FIG. 6, and has a waveform 20 in which shallow dips 19 are repeated. The shape of the waveform 20 changes according to characteristics such as the material and hardness of the sample 10. When observing the change pattern of the reflected wave output with respect to the incident angle θi shown in FIG. 8, a dip 18 occurs at the boundary where the reflected wave output changes from a constant value to a waveform 20. Therefore, the position of the critical incident angle θw can be accurately read. Once the value of the critical angle θw is determined, the phase velocity V 2 of the LSAW traveling on the surface of the sample 10 can be accurately obtained by the “Snell's law” of V 2 = V 1 / sin θw as described above. In addition, as described above, various characteristics of the sample can be obtained by analyzing the shape of the waveform 20, which is effective for ultrasonic microspectroscopy. In the above description, the shapes of the concave surface 5 and the concave surface 8 of the concave lens 1 and the concave lens 2 are not limited to those shown in the drawings as long as the focal positions are different. Further, the overall configuration of the ultrasonic spectrum microscope 9 to which the present embodiment is applied is not limited to that of FIG. According to the present invention, the following remarkable effects are obtained. 1) The LSAW speed in a minute area can be obtained as compared with the conventional SPP lens. That is, the spatial resolution is higher than in the past. 2) By adopting a concave lens having a different focal point and a combination lens of concave lenses as the ultrasonic sensor, a change pattern of the reflected wave output with respect to the incident angle θi can be standardized, and the critical angle position can be accurately determined from this pattern. You can ask. 3) Since the critical angle is accurately grasped, the surface wave phase velocity of the sample can be accurately obtained. 4) The waveform changes periodically with the change pattern of the reflected wave output being θi> θw, and the characteristics (material, hardness, anisotropy, etc.) of the sample can be obtained by analyzing the waveform. 5) The present invention can be implemented at a relatively low cost because the shape of the ultrasonic sensor is devised and no special accessories are used.

【図面の簡単な説明】 【図1】本発明の一実施例の適用される超音波スペクト
ラム顕微鏡の概要全体構成図。 【図2】本実施例の凹面レンズの斜視図。 【図3】本実施例の凹面レンズの斜視図。 【図4】本実施例のθi<θwの状態における超音波の
送受信状態を示す説明用正面図。 【図5】本実施例のθi=θwの状態における超音波の
送受信状態を示す説明用正面図。 【図6】本実施例のθi>θwの状態における超音波の
送受信状態を示す説明用正面図。 【図7】図6のA印の拡大図。 【図8】本実施例における入射角θiと反射波出力との
関係を示す線図。 【符号の説明】 1 凹面レンズ 2 凹面レンズ 3 トランスデューサ 4 遅延材 5 凹面 6 トランスデューサ 7 遅延材 8 凹面 9 超音波スペクトラム顕微鏡 10 試料 11 垂直軸 12 レンズホルダ 13 パルサ&レシーバ 14 オシロスコープ 15 コンピュータ 16 水 17 中心軸 18 ディップ 19 ディップ 20 波形
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall schematic configuration diagram of an ultrasonic spectrum microscope to which an embodiment of the present invention is applied. FIG. 2 is a perspective view of a concave lens according to the present embodiment. FIG. 3 is a perspective view of the concave lens of the present embodiment. FIG. 4 is an explanatory front view showing a transmission / reception state of ultrasonic waves in a state of θi <θw according to the present embodiment. FIG. 5 is an explanatory front view showing a transmission / reception state of ultrasonic waves in a state where θi = θw in the present embodiment. FIG. 6 is an explanatory front view showing a transmission / reception state of ultrasonic waves in a state of θi> θw in the present embodiment. FIG. 7 is an enlarged view of a mark A in FIG. 6; FIG. 8 is a diagram illustrating a relationship between an incident angle θi and a reflected wave output in the present embodiment. [Description of Signs] 1 Concave lens 2 Concave lens 3 Transducer 4 Delay member 5 Concave surface 6 Transducer 7 Delay member 8 Concave surface 9 Ultrasonic spectrum microscope 10 Sample 11 Vertical axis 12 Lens holder 13 Pulser & receiver 14 Oscilloscope 15 Computer 16 Water 17 Center Axis 18 Dip 19 Dip 20 Waveform

Claims (1)

(57)【特許請求の範囲】 【請求項1】 試料表面に直交する垂直軸を境にして左
右に傾斜して配設され超音波を送受信するトランスデュ
ーサと遅延材を有する一対の超音波センサおよびその受
信波の画像処理手段を備える超音波スペクトラム顕微鏡
において、 当該超音波センサを構成する送信側および受信側レンズ
の前記遅延材の前記試料側の端部に焦点位置の異なる凹
面を形成してあり、 前記受信側レンズは、 送信側のトランスデューサから入射された超音波に含ま
れ送信側レンズの中心軸上を通る成分が、試料から鏡面
反射された反射波と、 送信側のトランスデューサから入射された超音波に含ま
れ試料への入射角が臨界角と一致する成分の試料からの
再放出波とを検知する ことを特徴とする超音波スペクト
ラム顕微鏡。
(57) Claims 1. A pair of ultrasonic sensors having a transducer for transmitting and receiving ultrasonic waves, which is disposed to be inclined left and right with a vertical axis perpendicular to the sample surface as a boundary, and a delay member, and In the ultrasonic spectrum microscope provided with the image processing means of the received wave, a concave surface having a different focus position is formed at an end of the delay member of the transmitting side and the receiving side lens constituting the ultrasonic sensor on the sample side . The receiving lens is included in the ultrasonic wave incident from the transmitting transducer.
The component passing through the center axis of the transmitting lens is
Included in the reflected wave and the ultrasonic wave input from the transmitting transducer
Of the component whose incident angle to the sample coincides with the critical angle
An ultrasonic spectrum microscope that detects re-emitted waves .
JP26046993A 1993-09-27 1993-09-27 Ultrasound spectrum microscope Expired - Fee Related JP3379166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26046993A JP3379166B2 (en) 1993-09-27 1993-09-27 Ultrasound spectrum microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26046993A JP3379166B2 (en) 1993-09-27 1993-09-27 Ultrasound spectrum microscope

Publications (2)

Publication Number Publication Date
JPH0792143A JPH0792143A (en) 1995-04-07
JP3379166B2 true JP3379166B2 (en) 2003-02-17

Family

ID=17348387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26046993A Expired - Fee Related JP3379166B2 (en) 1993-09-27 1993-09-27 Ultrasound spectrum microscope

Country Status (1)

Country Link
JP (1) JP3379166B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5410651B2 (en) * 2007-02-22 2014-02-05 株式会社東芝 Surface degradation detection apparatus and method

Also Published As

Publication number Publication date
JPH0792143A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
US4702112A (en) Ultrasonic phase reflectoscope
EP2795310B1 (en) Method for measuring of elastic properties by ultrasound
JP3379166B2 (en) Ultrasound spectrum microscope
JP2001208729A (en) Defect detector
JP2004150875A (en) Method and system for imaging internal flaw using ultrasonic waves
JP3261827B2 (en) Ultrasound spectrum microscope
US6829940B2 (en) Method and apparatus for measuring surface wave traveling time
Nam et al. A quantitative evaluation of elastic wave in solid by stroboscopic photoelasticity
JP2015522174A (en) Method for characterizing an object containing at least a local symmetry plane
JPH0740020B2 (en) Ceramic Judgment Strength Evaluation Method
US5585563A (en) Non-contact thickness measurement using UTG
JP2883051B2 (en) Ultrasonic critical angle flaw detector
Mihara et al. Three-dimensional sound pressure field measurement using photoelastic computer tomography method
JPS61245055A (en) Ultrasonic flaw inspecting device
Titov et al. The velocity and attenuation of outgoing surface acoustic waves measured using an ultrasonic microscope with two focusing transducers
JPH07229798A (en) Residual stress measuring method and its device
JPH07229705A (en) Quench hardened layer depth measuring method
JP3505757B2 (en) Ultrasound spectrum microscope
Sathish et al. Development of a scan system for Rayleigh, shear and longitudinal wave velocity mapping
JPS6144349A (en) Method and apparatus for ultrasonic flaw detection
JPH0731169Y2 (en) Ultrasonic probe
Lubbers et al. Flat ended steel wires, backscattering targets for calibrating over a large dynamic range
JPH05172793A (en) Sound characteristic value measuring device
JPS61210943A (en) Ultrasonic microscope
JP3002082B2 (en) Ultrasonic probe

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees