JP2008164397A - Flaw detection method and flaw detector used therein - Google Patents

Flaw detection method and flaw detector used therein Download PDF

Info

Publication number
JP2008164397A
JP2008164397A JP2006353408A JP2006353408A JP2008164397A JP 2008164397 A JP2008164397 A JP 2008164397A JP 2006353408 A JP2006353408 A JP 2006353408A JP 2006353408 A JP2006353408 A JP 2006353408A JP 2008164397 A JP2008164397 A JP 2008164397A
Authority
JP
Japan
Prior art keywords
probe
defect
inspected
detection method
defect detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006353408A
Other languages
Japanese (ja)
Inventor
Hideki Yabushita
秀記 薮下
Tatsuyuki Nagai
辰之 永井
Satoru Shiroshita
悟 城下
Shigeyuki Matsubara
重行 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Non Destructive Inspection Co Ltd
Original Assignee
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Non Destructive Inspection Co Ltd filed Critical Non Destructive Inspection Co Ltd
Priority to JP2006353408A priority Critical patent/JP2008164397A/en
Publication of JP2008164397A publication Critical patent/JP2008164397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw detection method capable of simply detecting the flaw produced in an inspection target part difficult to inspect, such as, a welded part at a high speed in a non-contact state, regardless of the thickness and the material of an inspection target, the shape of the welded part, or the like, and to provide a flaw detector used therein. <P>SOLUTION: Ultrasonic waves are transmitted to the inspection target from a probe, while the ultrasonic waves that propagate through the inspection target are received, to detect the flaw of the inspection target part by the receiving signal. The probe is scanned along the inspection target part in a non-contact state, and the respective receiving signals of a plurality of kinds of the ultrasonic waves propagated through the inspection target are displayed as the image of at least either of a B-scope or a C-scope. The flaw is detected on the basis of the existence of the change part R2 in the image. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、欠陥検出方法及びこれに用いる欠陥検出装置に関する。さらに詳しくは、被検査体に探触子から超音波を送信すると共に前記被検査体を伝搬した超音波を受信してその受信信号により検査対象部の欠陥を検出する欠陥検出方法及びこれに用いる欠陥検出装置に関する。   The present invention relates to a defect detection method and a defect detection apparatus used therefor. More specifically, a defect detection method for transmitting an ultrasonic wave from a probe to an object to be inspected, receiving an ultrasonic wave propagating through the object to be inspected, and detecting a defect in an inspection object part based on the received signal, and a defect detection method used therefor The present invention relates to a defect detection apparatus.

従来、上述の如き欠陥検出方法として、例えば特許文献1〜3に記載の如きものが知られている。特許文献1に記載の鋼材の検査方法では、超音波ラインセンサを熱延鋼材を挟んで鋼材の板厚方向で対向配置させ、搬送される鋼材の検査を行っている。しかし、超音波ラインセンサは水中に配置されている。   Conventionally, for example, the methods described in Patent Documents 1 to 3 are known as the defect detection method as described above. In the steel material inspection method described in Patent Document 1, an ultrasonic line sensor is disposed oppositely in the thickness direction of the steel material with the hot-rolled steel material interposed therebetween, and the steel material being conveyed is inspected. However, the ultrasonic line sensor is disposed in water.

また、特許文献2に記載の超音波探傷装置では、被検材に対して非接触で探触子を配置してある。しかし、この探触子を保持する探触子ホルダ内には水が充填されている。   Moreover, in the ultrasonic flaw detector described in Patent Document 2, the probe is arranged in a non-contact manner with respect to the test material. However, the probe holder that holds the probe is filled with water.

いずれの文献においても、水を介して超音波を伝搬させるので、材質等により水等の接触媒質を用いることができない試験体に対して検査を行うことができなかった。また、水を供給、貯蔵する装置等が必要となり、装置自体が複雑なものとなっていた。   In any document, since ultrasonic waves are propagated through water, it was not possible to inspect a test specimen that cannot use a contact medium such as water depending on the material. In addition, a device for supplying and storing water is required, and the device itself is complicated.

また、特許文献3に記載の薄板検査方法によれば、接触媒質を用いずに非接触にて検査を行っている。しかし、探傷不能領域を低減するため薄板エッジ部に探触子を配置するので、探触子の配置位置が限定され適用可能な試験体が限られていた。   Moreover, according to the thin plate inspection method described in Patent Document 3, the inspection is performed in a non-contact manner without using a contact medium. However, since the probe is arranged at the thin plate edge portion in order to reduce the area where the flaw cannot be detected, the arrangement position of the probe is limited and applicable test bodies are limited.

一方、溶接部の欠陥検出方法として、図13に示す如き超音波探傷試験方法が知られている。この試験方法は、被検査体100’に超音波を入射して欠陥からの反射信号を受信し、この反射信号が得られたビーム路程、探触子10’の入射角及び被検査体100’の板厚から欠陥の板厚方向の位置を測定している。   On the other hand, an ultrasonic flaw detection test method as shown in FIG. 13 is known as a defect detection method for welds. In this test method, an ultrasonic wave is incident on the inspection object 100 ′ to receive a reflection signal from the defect, the beam path from which the reflection signal is obtained, the incident angle of the probe 10 ′, and the inspection object 100 ′. The position of the defect in the thickness direction is measured from the thickness of the plate.

しかし、欠陥からの反射信号を直接受信可能となるように超音波を入射させなければならず、探触子10’の不感帯の影響や溶接部103’の余盛103a’による探触子10’の近接限界により欠陥端部からの反射信号を得られない場合があった。また、図14に示すように、近距離音場の影響により小欠陥の場合には複数のピーク信号が得られるため位置特定が困難となる。   However, an ultrasonic wave must be incident so that the reflected signal from the defect can be directly received, and the probe 10 'due to the influence of the dead zone of the probe 10' and the extra 103a 'of the weld 103'. In some cases, the reflection signal from the defect end cannot be obtained due to the proximity limit. Further, as shown in FIG. 14, in the case of a small defect due to the influence of the near field, a plurality of peak signals can be obtained, so that it is difficult to specify the position.

これらの影響を回避するため、1回以上反射させて探傷を行うことも可能である。しかし、入射した超音波は被検査体100’板厚方向の全域に広がりをもって伝搬するため、図15に示すように、得られた反射信号の板厚方向の位置が特定及び欠陥D’からの信号と形状による信号とを識別することが困難であった。そのため、薄板の溶接部103’の探傷が困難であり、JIS規格においても適用板厚の下限は6mmと規定されている。   In order to avoid these influences, it is possible to perform flaw detection by reflecting one or more times. However, since the incident ultrasonic wave propagates in a wide range in the entire thickness direction of the inspection object 100 ′, as shown in FIG. 15, the position of the obtained reflected signal in the thickness direction is specified and from the defect D ′. It was difficult to distinguish the signal from the signal due to the shape. For this reason, it is difficult to detect flaws in the welded portion 103 ′ of the thin plate, and the lower limit of the applicable plate thickness is defined as 6 mm in the JIS standard.

また、他の溶接部の欠陥検出方法として、例えば特許文献4,5に記載の如きものが知られている。特許文献4に記載の溶接部の傷検出方法は、溶接部の両側に送信探触子及び受信探触子を配置しTOFD法により探傷し、欠陥から特定の傷を抽出している。また、特許文献5に記載の超音波検査方法は、回折波から欠陥の位置を検出するTOFD法と、入射した超音波のエコーから欠陥位置を検出する反射エコー法を同時に行い欠陥の位置を正確に測定している。   As other defect detection methods for welded parts, for example, those described in Patent Documents 4 and 5 are known. In the method for detecting flaws in a welded portion described in Patent Document 4, a transmitting probe and a receiving probe are arranged on both sides of the welded portion, flaw detection is performed by the TOFD method, and specific flaws are extracted from the defects. In addition, the ultrasonic inspection method disclosed in Patent Document 5 performs the TOFD method for detecting the position of the defect from the diffracted wave and the reflection echo method for detecting the position of the defect from the echo of the incident ultrasonic wave to accurately determine the position of the defect. Is measured.

いずれの特許文献においても、欠陥から直接信号を得て、その信号を解析することで欠陥の位置等を特定しているので、上述の問題は解決されていない。また、欠陥位置を高精度に検出のために溶接線を基準に正確に走査しなければならず、走査装置を溶接線に沿って設ける必要があり、溶接部の位置、形状等によってはそのような走査装置を設置することができず、探傷ができない場合もあった。
特開2006−82135号公報 特開2000−46812号公報 特開2002−310997号公報 特開2003−215114号公報 特開2001−13114号公報
In any of the patent documents, since the signal is directly obtained from the defect and the position of the defect is specified by analyzing the signal, the above-described problem is not solved. In addition, the defect position must be accurately scanned with reference to the weld line, and a scanning device must be provided along the weld line, depending on the position and shape of the weld. In some cases, a scanning device cannot be installed, and flaw detection cannot be performed.
JP 2006-82135 A JP 2000-46812 A JP 2002-310997 A JP 2003-215114 A JP 2001-13114 A

かかる従来の実情に鑑みて、本発明は、被検査体の厚さ、材質や溶接部の形状等を問わず、溶接部等の検査が困難な検査対象部に生じる欠陥を非接触にて高速且つ簡便に検出することが可能な欠陥検出方法及びこれに用いる欠陥検出装置を提供することを目的とする。   In view of such a conventional situation, the present invention provides a high-speed non-contact defect that is difficult to inspect a welded part or the like, regardless of the thickness, material, or shape of the welded part. It is another object of the present invention to provide a defect detection method capable of simple detection and a defect detection apparatus used therefor.

上記目的を達成するため、本発明に係る欠陥検出方法の特徴は、被検査体に探触子から超音波を送信すると共に前記被検査体を伝搬した超音波を受信してその受信信号により前記被検査体の欠陥を検出する方法において、前記探触子を前記被検査体表面に沿って非接触で走査し、前記被検査体を伝搬した複数種の超音波の各受信信号をBスコープ又はCスコープの少なくとも一方を画像として表示し、前記画像における変化部の存在により前記欠陥を検出することにある。   In order to achieve the above object, the defect detection method according to the present invention is characterized in that an ultrasonic wave is transmitted from a probe to an object to be inspected, and an ultrasonic wave propagated through the object to be inspected is received by the received signal. In the method for detecting a defect in an inspection object, the probe is scanned in a non-contact manner along the surface of the inspection object, and each reception signal of a plurality of types of ultrasonic waves propagated through the inspection object is detected by a B scope or At least one of the C scopes is displayed as an image, and the defect is detected by the presence of a changed portion in the image.

上記特徴によれば、検査対象部のみからの反射信号の値や特徴量により欠陥を直接検出するのではなく、欠陥と健全部との差異をBスコープ画像又はCスコープ画像による形状的な変化部として表示させることができるので、検出の困難な部位における欠陥の有無を簡便に検出することができる。さらに、非接触で走査するので、接触媒質は不要であり、且つ高速に欠陥の有無を検出することができる。前記被検査体は平板であってもよい。また、前記検査対象部が溶接部を含んでいても構わない。このような被検査体であっても変化部に着目するので確実に欠陥の有無にを検出することが可能である。   According to the above feature, the defect is not directly detected based on the value of the reflection signal from only the inspection target part or the feature amount, but the difference between the defect and the healthy part is changed by the B scope image or the C scope image. Therefore, it is possible to easily detect the presence / absence of a defect in a part that is difficult to detect. Further, since scanning is performed in a non-contact manner, no contact medium is required, and the presence or absence of defects can be detected at high speed. The inspection object may be a flat plate. Moreover, the said test object part may contain the welding part. Even such an object to be inspected pays attention to the changed portion, so it is possible to reliably detect the presence or absence of a defect.

また、前記変化部はあらかじめ生成した健全被検査体におけるBスコープ又はCスコープの少なくとも一方の画像と比較することにより特定するようにしてもよい。特定の板厚方向の幅における前記受信信号の振幅を抽出し、前記振幅により前記欠陥を検出すると共に少なくとも前記欠陥の板厚方向の大きさを推定するようにしても構わない。   Further, the change unit may be specified by comparing with at least one image of a B scope or a C scope in a healthy inspected object generated in advance. An amplitude of the received signal in a specific width in the plate thickness direction may be extracted, the defect may be detected based on the amplitude, and at least a size of the defect in the plate thickness direction may be estimated.

また、前記探触子は送信探触子と受信探触子とより構成してもよい。この場合、前記送信探触子と前記受信探触子とは前記検査対象部に対し両側に対向して配置してもよく、前記送信探触子及び前記受信探触子は前記検査対象部に対し片側に配置してもよい。また、前記探触子は超音波を送受信する送受信探触子であってもよい。   The probe may be composed of a transmission probe and a reception probe. In this case, the transmission probe and the reception probe may be arranged opposite to the inspection target part on both sides, and the transmission probe and the reception probe are arranged on the inspection target part. However, it may be arranged on one side. The probe may be a transmission / reception probe that transmits and receives ultrasonic waves.

前記被検査体は前記検査対象部を境に板厚が異なり、前記検査対象部に対し板厚の薄い側に位置する前記探触子から超音波を送信することが望ましい。また、前記被検査体は金属材料より構成されていてもよく、前記被検査体は高温状態であってもよい。   It is preferable that the inspected object has a plate thickness different from the inspection target portion, and transmits ultrasonic waves from the probe located on the thin side of the inspection target portion. Moreover, the said to-be-inspected object may be comprised from the metal material, and the said to-be-inspected object may be a high temperature state.

上記目的を達成するため、本発明に係る欠陥検出方法に用いる欠陥検出装置の特徴は、前記探触子を前記被検査体表面に沿って非接触で走査し、前記被検査体を伝搬した複数種の超音波の各受信信号をBスコープ又はCスコープの少なくとも一方を画像として表示し、前記画像における変化部の存在により前記欠陥を検出することにある。   In order to achieve the above object, the defect detection apparatus used in the defect detection method according to the present invention is characterized in that the probe is scanned in a non-contact manner along the surface of the object to be inspected, and is transmitted through the object to be inspected. Each of the received signals of the ultrasonic waves is displayed as an image of at least one of the B scope and the C scope, and the defect is detected due to the presence of a change portion in the image.

上記本発明に係る欠陥検出方法及びこれに用いる欠陥検出装置の特徴によれば、被検査体の材質や溶接部等の検査対象部の形状等を問わず、例えば検査の困難な板厚の薄い被検査体であっても、非接触にて高速且つ簡便に検査対象部の欠陥を検出することが可能となった。   According to the feature of the defect detection method and the defect detection apparatus used therefor according to the present invention, regardless of the material of the object to be inspected or the shape of the inspection target part such as a welded part, for example, a thin plate that is difficult to inspect is thin. Even for the object to be inspected, it has become possible to detect a defect in the inspection object portion at high speed and in a simple manner without contact.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

次に、図面を参照しながら、本発明の第一の実施形態について説明する。
本発明に係る欠陥検出装置1は、図1に示すように、探触子10には一対の送信探触子11及び受信探触子12を用いる。送信探触子11は被検査体100に対し超音波を入射させ、入射した超音波を受信探触子12で受信する。送信探触子11と受信探触子12は溶接部103に対し両側に対向して配置する。位置検出器20は探触子10と連動し、探触子10の空間的位置を検出する。探触子10および位置検出器20と接続された送受信装置30は、CPU31、送信部32、受信部33、位置検出部34、表示部35、信号処理部36で構成されている。なお、被検査体100としては、平板鋼材101,102を突き合わせて溶接した溶接部103を有するものを用いる。本実施形態において溶接部103が検査対象部であり、この溶接部103は被検査体100の表面100aから突出した余盛部103aが形成されている。
Next, a first embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the defect detection apparatus 1 according to the present invention uses a pair of transmission probe 11 and reception probe 12 as a probe 10. The transmission probe 11 causes an ultrasonic wave to be incident on the inspected object 100, and the incident ultrasonic wave is received by the reception probe 12. The transmission probe 11 and the reception probe 12 are disposed opposite to the welded portion 103 on both sides. The position detector 20 works with the probe 10 to detect the spatial position of the probe 10. The transmission / reception device 30 connected to the probe 10 and the position detector 20 includes a CPU 31, a transmission unit 32, a reception unit 33, a position detection unit 34, a display unit 35, and a signal processing unit 36. In addition, as a to-be-inspected object 100, what has the welding part 103 which faced and welded the flat steel materials 101 and 102 is used. In the present embodiment, the welded portion 103 is an inspection target portion, and the welded portion 103 is formed with a surplus portion 103 a that protrudes from the surface 100 a of the inspection object 100.

送信部32は送信信号を発生させ送信探触子11に入力し、被検査体100におけるエコーとして受信探触子12で受信した複数種の超音波を受信部33に入力し、信号処理部36、CPU31で演算処理を行う。また、位置検出器20からの信号を位置検出部34に入力させ、信号処理部36、CPU31で演算処理をすることで探触子10の位置データを取得している。   The transmission unit 32 generates a transmission signal and inputs it to the transmission probe 11, and inputs a plurality of types of ultrasonic waves received by the reception probe 12 as echoes in the device under test 100 to the reception unit 33, and the signal processing unit 36. The CPU 31 performs arithmetic processing. Further, the position data of the probe 10 is obtained by inputting a signal from the position detector 20 to the position detector 34 and performing arithmetic processing by the signal processor 36 and the CPU 31.

そして、探触子10に位置検出器20を取り付け、被検査体100上を溶接部103の溶接線L方向に沿うように被検査体表面100aに対し接触媒質を介さずに非接触で連続走査して、位置検出器20から送られた探触子10の位置信号と、探触子10で受信された複数種の超音波の信号からBスコープ画像及び/又はCスコープ画像を生成し、表示部35に表示する。なお、探触子10の走査は、必ずしも溶接部103の溶接線Lに平行となるように走査する必要はなく、その溶接線L方向に走査すればよい。すなわち、欠陥の反射信号から欠陥の正確な位置を測定するのではなく、後述するBスコープ画像及び/又はCスコープ画像に表れる変化部の有無により欠陥の有無を少なくとも検出すればよいからである。   Then, the position detector 20 is attached to the probe 10, and the inspection object surface 100a is continuously scanned without contact with the inspection object surface 100a along the welding line L direction of the welded part 103 on the inspection object 100. Then, the B scope image and / or the C scope image is generated from the position signal of the probe 10 sent from the position detector 20 and the plural kinds of ultrasonic signals received by the probe 10 and displayed. Displayed on the unit 35. The scanning of the probe 10 is not necessarily performed so as to be parallel to the welding line L of the welded portion 103, and may be performed in the direction of the welding line L. That is, instead of measuring the exact position of the defect from the reflection signal of the defect, it is sufficient to detect at least the presence or absence of a defect based on the presence or absence of a change portion appearing in a B-scope image and / or a C-scope image described later.

ここで、図2〜6を参照しながら、欠陥位置と超音波のビーム路程の変化について説明する。送信探触子11から入射した超音波は、被検査体100内部で広がりをもって伝搬する。例えば、図2(a)に示すように、被検査体100の表面100a側に欠陥D1が存在する場合、入射した超音波の内、表面100a近傍を伝搬する超音波W1は欠陥D1により大きく減衰し伝搬のほとんどが遮られ、受信探触子12では超音波W1がほとんど受信されず、図3,5に示す如きBスコープ画像が生成される。   Here, changes in the defect position and the ultrasonic beam path will be described with reference to FIGS. The ultrasonic wave incident from the transmission probe 11 propagates in the inspection object 100 with a spread. For example, as shown in FIG. 2A, when the defect D1 exists on the surface 100a side of the inspection object 100, the ultrasonic wave W1 propagating in the vicinity of the surface 100a among the incident ultrasonic waves is greatly attenuated by the defect D1. Then, most of the propagation is interrupted, and the reception probe 12 hardly receives the ultrasonic wave W1, and a B-scope image as shown in FIGS.

図3は図2(a)において被検査体100の板厚が6mmを超える被検査体でのBスコープ画像であり、図5は被検査体100の板厚が1.8mmの被検査体の場合である。通常、健全部のBスコープ画像は図3の符号R1の如く表示される。しかし、表面100a近傍を伝搬する超音波W1は欠陥D1により大きく減衰し伝搬のほとんどが遮られるため、超音波のビーム路程に変化が生じる。よって、欠陥部はそのビーム路程に変化によって図3の符号R2の如くBスコープ画像の一部に一対の段差部dpで区画される変化部として表示される。図5に示す薄板被検査体の場合においても同様に、ビーム路程に変化によってBスコープ画像の一部に一対の段差部dpで区画される変化部R2が表示される。この変形部R2は欠陥D1によるビーム路程の変化により表れる特異な信号変化である。よって、この変化部R2の有無により被検査体100の欠陥の有無を検出することができる。   FIG. 3 is a B-scope image of the object to be inspected in FIG. 2A in which the thickness of the object to be inspected 100 exceeds 6 mm. FIG. 5 is a diagram of the object to be inspected in which the object 100 has a thickness of 1.8 mm. Is the case. Usually, the B-scope image of the healthy part is displayed as indicated by reference numeral R1 in FIG. However, since the ultrasonic wave W1 propagating in the vicinity of the surface 100a is greatly attenuated by the defect D1 and most of the propagation is blocked, the ultrasonic beam path changes. Therefore, the defective portion is displayed as a changed portion partitioned by a pair of stepped portions dp in a part of the B scope image as indicated by reference numeral R2 in FIG. Similarly, in the case of the thin plate inspection object shown in FIG. 5, a change portion R <b> 2 partitioned by a pair of stepped portions dp is displayed in a part of the B scope image due to a change in the beam path. The deformed portion R2 is a unique signal change that appears due to a change in the beam path length due to the defect D1. Therefore, the presence / absence of a defect in the inspection object 100 can be detected based on the presence / absence of the change portion R2.

また、図2(b)に示すように、被検査体100の裏面100b側に欠陥Dが存在する場合、入射した超音波の内、欠陥D2近傍の裏面100bで反射した超音波W3は欠陥D2により大きく減衰し伝搬のほとんど遮られ、受信探触子12では超音波W3がほとんど受信されず、図4,6に示す如きBスコープ画像が生成される。   As shown in FIG. 2B, when the defect D exists on the back surface 100b side of the inspection object 100, the ultrasonic wave W3 reflected by the back surface 100b in the vicinity of the defect D2 among the incident ultrasonic waves is the defect D2. The reception probe 12 hardly receives the ultrasonic wave W3 and generates a B-scope image as shown in FIGS.

図4は図2(b)において被検査体の板厚が6mmを超える被検査体でのBスコープ画像であり、図6は板厚が1.8mmの板厚の被検査体の場合である。欠陥D2近傍の裏面100bで反射した超音波W3は欠陥D2により大きく減衰し伝搬のほとんどが遮られるため、超音波のビーム路程に変化が生じ、そのビーム路程の変化によって図4の如くBスコープ画像の一部に変化部R2が生じる。図6に示す薄板被検査体の場合においても同様に、ビーム路程の変化によってBスコープ画像の一部に変化部R2が生じる。この変形部R2は欠陥D2によるビーム路程の変化により表れる特異な信号変化であり、欠陥が被検査体の裏面側に位置する場合であってもこの変化部の有無によって被検査体の欠陥の有無を検出することができる。   FIG. 4 is a B-scope image of the object to be inspected in FIG. 2B where the thickness of the object to be inspected exceeds 6 mm, and FIG. 6 is the case of the object to be inspected having a thickness of 1.8 mm. . The ultrasonic wave W3 reflected from the back surface 100b in the vicinity of the defect D2 is greatly attenuated by the defect D2 and most of the propagation is blocked. Therefore, the ultrasonic beam path changes, and the change in the beam path causes the B scope image as shown in FIG. A change portion R2 occurs in a part of. Similarly, in the case of the thin plate inspected object shown in FIG. 6, a change portion R2 is generated in a part of the B scope image due to the change in the beam path length. This deformed portion R2 is a unique signal change that appears due to a change in the beam path length due to the defect D2, and even if the defect is located on the back side of the object to be inspected, the presence or absence of the defect in the object to be inspected depends on the presence or absence of this changed part Can be detected.

欠陥Dが存在すると、上述のようにビーム路程の変化や信号強度の変化により超音波は種々の現象が重なり合い、図3〜6に示す如きBスコープ画像が生成される。このBスコープ画像には、欠陥Dの存在により生じる信号変化によって画像の一部に一対の段差部dpで区画される変化部R2が生じる。よって、欠陥からの反射信号を直接検出することで欠陥を検出することなく、欠陥による超音波の特異な信号変化により表れる変化部R2の有無に着目して欠陥の有無を確認することができる。よって、被検査体の板厚が6mm以下の薄板であっても、欠陥Dの位置が被検査体100の表面100a側、裏面100b側を問わずに確実に欠陥を検出することができる。また、被検査体100内部の欠陥であっても、超音波のビーム路程の変化が生じるので、欠陥の有無を検出することが可能となる。なお、上記において被検査体表面及び裏面と表現したが、配管等の管状の被検査体においては外面、内面と置き換えて表現される。   When the defect D exists, various phenomena of the ultrasonic waves are overlapped by the change of the beam path length and the change of the signal intensity as described above, and a B scope image as shown in FIGS. 3 to 6 is generated. In the B scope image, a change portion R2 that is partitioned by a pair of stepped portions dp is generated in a part of the image due to a signal change caused by the presence of the defect D. Therefore, it is possible to confirm the presence or absence of a defect by directly detecting the reflection signal from the defect and not detecting the defect and paying attention to the presence or absence of the change portion R2 that appears due to a specific signal change of the ultrasonic wave due to the defect. Therefore, even if the thickness of the object to be inspected is a thin plate of 6 mm or less, the defect can be reliably detected regardless of whether the position of the defect D is on the front surface 100a side or the back surface 100b side of the inspected object 100. In addition, even if the defect is inside the inspection object 100, the ultrasonic beam path changes, so the presence or absence of the defect can be detected. In the above description, the surface to be inspected and the back surface are expressed. However, in the case of a tubular object to be inspected such as a pipe, it is expressed by replacing the outer surface and the inner surface.

次に、溶接部の欠陥検出手順について説明する。
まず、位置検出器20を取り付けた送信探触子11及び受信探触子12からなる一対の探触子10を被検査体100の溶接部103の溶接線L方向へ被検査体表面100aに対し接触媒質を介さずに非接触で連続走査する。そして、被検査体100内部を伝搬した複数の超音波を受信探触子12で受信すると共に、その受信信号を信号処理部36及びCPU31を介してBスコープ画像を作成し、表示部35に表示する。このBスコープ画像は、横軸が探触子10の走査方向となる溶接線L方向への走査距離、縦軸が板厚方向の深さとする。
Next, the defect detection procedure for the welded portion will be described.
First, a pair of probes 10 including a transmission probe 11 and a reception probe 12 to which a position detector 20 is attached are placed in the direction of the weld line L of the welded portion 103 of the test object 100 with respect to the test object surface 100a. Non-contact continuous scanning without a contact medium. Then, the reception probe 12 receives a plurality of ultrasonic waves propagating through the inspected object 100, creates a B scope image of the received signals via the signal processing unit 36 and the CPU 31, and displays them on the display unit 35. To do. In this B scope image, the horizontal axis is the scanning distance in the welding line L direction, which is the scanning direction of the probe 10, and the vertical axis is the depth in the plate thickness direction.

例えば、板厚が1.8mmの被検査体において、図2(a)に示すように、被検査体表面100a側に欠陥D1が位置している場合、図5のようなBスコープ画像が表示部35に表示される。このBスコープ画像において、健全部分での受信信号は概ね均一に横軸と平行に帯状に表示される。一方、入射した超音波の一部は上述したように、欠陥D1で伝搬が遮断されるためビーム路程が変化し、健全部分の平坦部分に対し一部分に一対の段差部dpで区画される変化部R2が形成される。この変化部R2の有無を確認することで欠陥D1の有無を検出する。   For example, in a test object having a plate thickness of 1.8 mm, as shown in FIG. 2A, when a defect D1 is located on the test object surface 100a side, a B-scope image as shown in FIG. 5 is displayed. Displayed on the unit 35. In this B-scope image, the received signal at the healthy portion is displayed almost uniformly in a strip shape parallel to the horizontal axis. On the other hand, as described above, since a part of the incident ultrasonic wave is blocked from propagating by the defect D1, the beam path is changed, and the changing portion is partitioned by the pair of stepped portions dp in part with respect to the flat portion of the healthy portion. R2 is formed. The presence / absence of the defect D1 is detected by confirming the presence / absence of the change portion R2.

また、図2(b)に示すように、被検査体裏面100b側に欠陥D2が位置している場合、図6のようなBスコープ画像が表示される。この場合においても、入射した超音波の一部は欠陥D2で伝搬が遮断されるためビーム路程が変化し、変化部R2が形成され、変化部R2の有無を確認することで欠陥D2の有無を検出する。   In addition, as shown in FIG. 2B, when the defect D2 is located on the inspected object back surface 100b side, a B scope image as shown in FIG. 6 is displayed. Even in this case, since the propagation of a part of the incident ultrasonic wave is interrupted by the defect D2, the beam path changes, the change part R2 is formed, and the presence or absence of the defect D2 is confirmed by confirming the presence or absence of the change part R2. To detect.

次に、本発明の第二の実施形態について説明する。なお、以下の実施形態において、上記第一の実施形態と同様の部材等には同様の符号を付してある。
上記実施形態において、欠陥の検出は超音波のビーム路程の変化により表れるBスコープ画像における変化部R2の有無により検出した。本実施形態においては、各走査位置における受信信号の振幅の変化により欠陥の有無及び欠陥の板厚方向の大きさを推定する。
Next, a second embodiment of the present invention will be described. In the following embodiments, the same reference numerals are given to the same members as those in the first embodiment.
In the above embodiment, the defect is detected based on the presence or absence of the change portion R2 in the B scope image that appears due to the change in the ultrasonic beam path. In the present embodiment, the presence / absence of a defect and the size of the defect in the thickness direction are estimated from the change in the amplitude of the received signal at each scanning position.

被検査体100に入射した超音波は、その伝搬経路に欠陥Dが存在すると、その欠陥Dにより減衰し、受信探触子12で受信される受信信号の振幅はその欠陥Dの欠損面積に対応して小さくなる。ここで、図7に受信信号の振幅と探触子の走査位置との関係を示す。   When the defect D exists in the propagation path, the ultrasonic wave incident on the inspection object 100 is attenuated by the defect D, and the amplitude of the reception signal received by the reception probe 12 corresponds to the defect area of the defect D. And get smaller. FIG. 7 shows the relationship between the amplitude of the received signal and the scanning position of the probe.

同図において、符号Qa1〜4は健全部における特定の走査位置での受信信号の振幅信号を示し、符号Qb1,2は欠陥における受信信号の振幅信号を示す。これらの振幅信号において、任意の時間幅t内における振幅のピークとピークの両振幅の最大値を比較すると、健全部ではいずれの信号Qa1〜4もほぼ同等の両振幅Paとなる。一方、欠陥部での信号Qb1,2は、超音波が欠損面積に応じて減衰するため、欠陥の大きさに応じて変化した振幅となり、健全部における両振幅Paより小さい両振幅Pbとなる。   In the figure, reference numerals Qa1 to Qa4 indicate amplitude signals of received signals at specific scanning positions in the sound portion, and reference numerals Qb1 and Qb2 indicate amplitude signals of received signals at defects. In these amplitude signals, when comparing the maximum values of the amplitudes of both amplitudes within a given time width t, the signals Qa1 to Q4 have substantially the same amplitudes Pa in the healthy part. On the other hand, the signals Qb1 and 2 at the defective portion have amplitudes that change according to the size of the defect because the ultrasonic waves are attenuated according to the defect area, and have both amplitudes Pb that are smaller than both amplitudes Pa at the healthy portion.

また、曲線Qは上記の両振幅値を走査位置毎にプロットし各点を結んだ曲線を表す。この曲線Qが示す如く、他の欠陥部での信号Qb2の両振幅は信号Qb1における両振幅Pbに対し小さくなっており、信号Qb2の走査位置では超音波がより大きく減衰していることが分かる。すなわち、受信信号の振幅の変化に着目することで欠陥の有無及びその大きさを推定することができる。   A curve Q represents a curve obtained by plotting the two amplitude values for each scanning position and connecting the points. As this curve Q shows, both amplitudes of the signal Qb2 at other defective portions are smaller than both amplitudes Pb in the signal Qb1, and it can be seen that the ultrasonic wave is attenuated more greatly at the scanning position of the signal Qb2. . That is, the presence / absence of a defect and its size can be estimated by paying attention to the change in the amplitude of the received signal.

ここで、欠陥検出手順について説明する。探触子10を溶接部103の溶接線L方向に走査し、CPU31及び信号処理部36において受信した受信信号から各走査位置毎に任意の時間幅t内における受信信号の両振幅値の最大値を算出する信号処理を行う。そして、それら両振幅値を例えば走査方向を横軸とするグラフに走査位置毎にプロットし、曲線Qとして表示器35に表示する。この曲線Qにより欠陥の有無及び欠陥の大きさを推定する。   Here, the defect detection procedure will be described. The probe 10 is scanned in the direction of the weld line L of the welded portion 103, and the maximum value of both amplitude values of the received signal within an arbitrary time width t for each scanning position from the received signal received by the CPU 31 and the signal processing unit 36. The signal processing for calculating is performed. The amplitude values are plotted on a graph having the scanning direction as the horizontal axis for each scanning position and displayed as a curve Q on the display 35. The presence / absence of a defect and the size of the defect are estimated from this curve Q.

本実施形態は上記第一実施形態と共に実施することも可能であり、例えば上述のBスコープ画像と組み合わせて、曲線Qを重ねて表示するようにしてもよい。また、上記第一実施形態とは独立に行い、例えば図9に示す如く縦軸を振幅とするグラフに曲線Qを表示させるようにしても構わない。なお、本実施形態において振幅信号のピークとピークの両振幅を用いたが、片振り振幅を用いてもよい。   This embodiment can also be implemented together with the first embodiment. For example, the curve Q may be superimposed and displayed in combination with the above-described B scope image. Further, it may be performed independently of the first embodiment, and for example, the curve Q may be displayed on a graph having an amplitude on the vertical axis as shown in FIG. In this embodiment, both the peak amplitude and the peak amplitude of the amplitude signal are used, but a swing amplitude may be used.

ここで、一対の送信探触子11と受信探触子12とにより構成した探触子10を被検査体に対して被検査体表面100aに対し接触媒質を介さずに非接触で走査した実施例について説明する。図8に示すように、被検査体100は板状の鋼材であり、被検査体100の略中央に方形の余盛部103aを形成し、その内部に長さ10mmの模擬欠陥D3を複数作成した。この模擬欠陥D3は深さを異ならせてあり、模擬欠陥D3aは深さ0.5mm、模擬欠陥D3bは深さ1.0mm、模擬欠陥D3cは深さ1.5mm、模擬欠陥D3dは深さ2.0mmである。このような被検査体であっても、余盛部103a内部に形成された欠陥D3a,bも含め、各欠陥D3a〜dを明瞭に検出することが確認でき、欠陥を検出することが可能であることが判明した。   Here, the probe 10 constituted by a pair of the transmission probe 11 and the reception probe 12 is scanned in a non-contact manner without interposing a contact medium with respect to the inspected object surface 100a with respect to the inspected object. An example will be described. As shown in FIG. 8, the inspected object 100 is a plate-shaped steel material, and a rectangular extravagant portion 103a is formed in the approximate center of the inspected object 100, and a plurality of simulated defects D3 having a length of 10 mm are created therein. did. The simulated defect D3 has a different depth. The simulated defect D3a has a depth of 0.5 mm, the simulated defect D3b has a depth of 1.0 mm, the simulated defect D3c has a depth of 1.5 mm, and the simulated defect D3d has a depth of 2. 0.0 mm. Even in such an object to be inspected, it can be confirmed that each of the defects D3a to D3 is clearly detected including the defects D3a and b formed inside the surplus portion 103a, and the defects can be detected. It turned out to be.

よって、水等の接触媒質を用いる必要がなく、複合材料や機械部品等の接触媒質を適用することができない材料や検査箇所においても検査することができる。また、非接触で走査するので高速に検査を行うことが可能である。さらに、例えば溶接直後や熱間圧延等の高温のため探触子を接触させて検査することが困難な高温状態の被検査体においても欠陥の有無を検査することが可能である。   Therefore, it is not necessary to use a contact medium such as water, and it is possible to inspect even a material or an inspection location where a contact medium such as a composite material or a machine part cannot be applied. In addition, since scanning is performed without contact, inspection can be performed at high speed. Furthermore, it is possible to inspect for the presence or absence of defects even in a high-temperature inspected object that is difficult to be inspected by contacting the probe due to a high temperature such as immediately after welding or hot rolling.

加えて、上述の被検査体での非接触の走査における受信信号の振幅と探触子の走査位置との関係を図9に示す。上記第二実施形態と同様に、非接触の走査においても、各模擬欠陥D3a〜dの大きさに応じて超音波が減衰し、振幅が変化することが確かめられ、振幅変化に着目して欠陥Dの有無及び大きさを推定することができる。   In addition, FIG. 9 shows the relationship between the amplitude of the received signal and the scanning position of the probe in the above-described non-contact scanning with the inspection object. Similar to the second embodiment, in non-contact scanning, it is confirmed that the ultrasonic wave is attenuated and the amplitude changes according to the size of each of the simulated defects D3a to D3. The presence and size of D can be estimated.

最後に、本発明の他の実施形態の可能性について言及する。なお、以下の実施形態は適宜組み合わせて実施することができる。   Finally, reference is made to the possibilities of other embodiments of the invention. The following embodiments can be implemented in combination as appropriate.

上記実施形態において、表示される画像はBスコープ画像であった。しかし、Bスコープ画像に限られずCスコープ画像を用いても構わない。係る場合、探触子を被検査体に対して非接触で2次元的に走査させる。また、これらの画像は双方を共に表示してもよく、いずれか一方を表示させても構わない。   In the above embodiment, the displayed image is a B scope image. However, the C scope image may be used without being limited to the B scope image. In such a case, the probe is scanned in a two-dimensional manner without contact with the object to be inspected. Further, both of these images may be displayed together, or one of them may be displayed.

上記各実施形態において、探触子10は一対の送信探触子11と受信探触子12とにより構成した。しかし、上記各実施形態と異なり、探触子10として送受信可能な1の送受信探触子10を用いても構わない。また、上記実施形態において、被検査体100は板状の第一、第二部材101,102を突き合わせて溶接した被検査体100を用いたが、板状に限らず管状の被検査体を用いることも可能である。   In each of the above embodiments, the probe 10 is composed of a pair of transmission probe 11 and reception probe 12. However, unlike the above embodiments, one transmitting / receiving probe 10 capable of transmitting / receiving may be used as the probe 10. Moreover, in the said embodiment, although the to-be-inspected object 100 used the to-be-inspected object 100 which faced and welded plate-shaped 1st, 2nd members 101 and 102, not only a plate shape but a tubular to-be-inspected object is used. It is also possible.

検査対象部となる溶接部103又は余盛部103aの形状は上記各実施形態の如き形状に限られるものではなく、例えば、図10に示す如き複雑な形状であってもよく、様々な形状の溶接部103又は余盛部103aの欠陥検出に適用することが可能である。また、上記各実施形態において検査対象部は余盛部103aを有する溶接部103であったが、検査対象部は溶接部103に限られず、例えば突起を有する機械部品、加工、鍛造部品等を被検査体としても同様に欠陥を検出することが可能である。さらに、上記各実施形態において、被検査体100として鋼材を用いたが、鋼材に限られず、種々の金属材料よりなる被検査体であってもよい。なお、上述のように、欠陥は溶接部103の余盛部103aの如く被検査体表面から突出した突出部内部に存在していたとして検出することは可能である。   The shape of the welded portion 103 or surplus portion 103a to be inspected is not limited to the shape as in each of the above embodiments, and may be, for example, a complicated shape as shown in FIG. It is possible to apply to the defect detection of the welding part 103 or the surplus part 103a. In each of the embodiments described above, the inspection target portion is the welded portion 103 having the surplus portion 103a. However, the inspection target portion is not limited to the welded portion 103, and covers, for example, machine parts having protrusions, processing, forged parts, and the like. A defect can be detected in the same manner as an inspection object. Furthermore, in each said embodiment, although steel materials were used as the to-be-inspected object 100, it is not restricted to steel materials, The to-be-inspected object which consists of various metal materials may be sufficient. As described above, the defect can be detected as being present inside the protruding portion protruding from the surface of the object to be inspected, such as the extra portion 103a of the welded portion 103.

被検査体における溶接の態様及び検査部位の形状は上記実施形態の突き合わせ溶接に限られるものではない。例えば、図11(a)に示すように、平板鋼材の第一、第二部材111,112の一部を重ね合わせて溶接した被検査体110の隅肉溶接部113を検査対象部としてもよい。また、同図(b)に示す如く、第一、第二部材121,122をT字状に突き合わせて溶接した隅肉溶接部123であってもよい。   The mode of welding and the shape of the inspection site in the inspection object are not limited to the butt welding in the above embodiment. For example, as shown in FIG. 11 (a), a fillet welded portion 113 of an object to be inspected 110 which is welded by overlapping a part of the first and second members 111 and 112 of a flat steel material may be used as an inspection target portion. . Further, as shown in FIG. 5B, a fillet welded portion 123 in which the first and second members 121 and 122 are butted in a T shape may be used.

これらの例において、送受信探触子11,12はそれぞれ例えばP1〜5の位置に配置するとよい。被検査体110では、例えば、P1に送信探触子11、P2に受信探触子12をそれぞれ配置する。被検査体120では、P3に送信探触子11、P4,5に受信探触子12をそれぞれ配置する。また、P5に送信探触子11、P3,4に受信探触子12をそれぞれ配置しても、同様に検査を合理的に実施することができる。   In these examples, the transmission / reception probes 11 and 12 are preferably arranged at positions P1 to P5, for example. In the inspected object 110, for example, the transmission probe 11 is disposed at P1, and the reception probe 12 is disposed at P2. In the inspected object 120, the transmission probe 11 is arranged at P3, and the reception probe 12 is arranged at P4 and P5, respectively. Further, even if the transmission probe 11 is arranged at P5 and the reception probe 12 is arranged at P3 and P4, respectively, the inspection can be carried out rationally in the same manner.

送受信探触子11,12はP1〜5の裏面側であるP1’〜5’の位置に配置してもよい。例えば、被検査体110では、P2’に受信探触子12、P1’に送信探触子11を配置したり、P1に受信探触子12を配置し、P1’,P2’にそれぞれ送信探触子11を配置しても構わない。また、被検査体120では、P3に送信探触子11、P4’,5’に受信探触子12を配置する場合の他、P5’に送信探触子11、P3’,4に受信探触子12をそれぞれ配置しても検査を実施することができる。すなわち、検査対象部となる溶接部により接続される被検査体の任意の位置に対をなす送受信探触子11,12をそれぞれ配置することができる。なお、検査可能な送信探触子11、受信探触子12の配置は上述の組み合わせに限られるものではなく、種々の改変が可能である。   The transmission / reception probes 11 and 12 may be arranged at positions P1 'to 5' on the back side of P1 to P5. For example, in the inspected object 110, the reception probe 12 is arranged at P2 ′, the transmission probe 11 is arranged at P1 ′, the reception probe 12 is arranged at P1, and the transmission probes are respectively arranged at P1 ′ and P2 ′. The touch element 11 may be arranged. In addition, in the inspected object 120, in addition to the case where the transmission probe 11 is arranged at P3 and the reception probe 12 is arranged at P4 ′, 5 ′, the transmission probe 11, P3 ′, 4 is arranged at P5 ′. The inspection can be performed even if the touch elements 12 are arranged. That is, the transmission / reception probes 11 and 12 that make a pair can be arranged at arbitrary positions of the object to be inspected that are connected by the welded portion to be inspected. The arrangement of the transmission probe 11 and the reception probe 12 that can be inspected is not limited to the above-described combination, and various modifications can be made.

上記各実施形態において、被検査体の板厚は部材間で同一であった。しかし、同一板厚の部材に限らず、板厚の異なる部材を溶接した被検査体であっても欠陥を検出することが可能である。係る場合、板厚の薄い部材側から超音波を被検査体に入射させることが望ましい。これにより、板厚差による目違いを欠陥として検出することを防止することができる。   In each of the above embodiments, the thickness of the object to be inspected is the same among the members. However, it is possible to detect a defect even if the inspection object is not limited to a member having the same plate thickness but is welded to a member having a different plate thickness. In such a case, it is desirable that the ultrasonic wave be incident on the object to be inspected from the side of the thin member. Thereby, it is possible to prevent a mistake due to a difference in plate thickness from being detected as a defect.

上記各実施形態において、一部が変化した変化部をBスコープ画像の健全部分として表れる平坦部分と対比して変化部を特定し、欠陥の有無を確認した。しかし、あらかじめ健全被検査体においてBスコープ画像を生成し、そのBスコープ画像との比較により変化部を特定するようにしても構わない。例えば、被検査体健全部分の形状が複雑であるような場合においては、Bスコープ画像には上記実施形態の如く健全部分として平坦な形状でなく比較が困難な形状として表れる場合がある。そのような場合、あらかじめ生成した健全被検査体のBスコープ画像と対比することで、欠陥による信号変化により表れる変化部を特定することができ、欠陥の検出が可能となる。   In each of the above embodiments, the changed part is identified by comparing the changed part with a flat part appearing as a healthy part of the B scope image, and the presence or absence of a defect is confirmed. However, it is also possible to generate a B-scope image in advance in a healthy object and specify the changed portion by comparison with the B-scope image. For example, in the case where the shape of the healthy part to be inspected is complicated, the B scope image may appear as a shape that is difficult to compare rather than a flat shape as the healthy part as in the above embodiment. In such a case, by comparing with a previously generated B-scope image of a healthy object to be inspected, it is possible to identify a change portion that appears due to a signal change due to a defect, and it is possible to detect a defect.

また、上記各実施形態において、図12(a)に示す如く送信探触子11と受信探触子12を検査対象部となる溶接部103に対して両側にほぼ対称に配置した。しかし、対称配置する場合に限らず、溶接部103に対して非対称に配置しても構わない。非対称に配置する場合、被検査体100の板厚方向に直交する方向における溶接部幅中央の被検査体裏面近傍の欠陥の影響を受ける度合いが小さくすることができる。すなわち、例えば同図の符号11’,12’に示す如く、探触子を片方側に偏らせて配置することにより超音波W4の送受信経路をW4’とし、溶接部幅の中央裏面側において特定の高さを超える大きい欠陥を検出するようにすることができる。さらに、図12(b)に示すように、溶接部103に対して片方側に送信探触子11と受信探触子12とを位置させるようにしても構わない。また、上記実施形態に示したように、図12(c)の如く送受信可能な1の送受信探触子10により欠陥検出を行うことも可能である。なお、各図において、送信探触子11と受信探触子12の位置を入れ替えて検査を実施することも可能である。   Further, in each of the above embodiments, as shown in FIG. 12A, the transmission probe 11 and the reception probe 12 are arranged almost symmetrically on both sides with respect to the welded portion 103 as the inspection target portion. However, the arrangement is not limited to the symmetrical arrangement, and the arrangement may be asymmetric with respect to the welded portion 103. When it arrange | positions asymmetrically, the degree to which it receives to the influence of the defect of the to-be-inspected object back surface center of the welding part width | variety in the direction orthogonal to the plate | board thickness direction of the to-be-inspected object 100 can be made small. That is, for example, as shown by reference numerals 11 ′ and 12 ′ in the figure, the probe W is arranged to be biased to one side so that the transmission / reception path of the ultrasonic wave W4 becomes W4 ′, and is specified on the center back surface side of the weld width. A large defect exceeding the height of can be detected. Furthermore, as shown in FIG. 12B, the transmission probe 11 and the reception probe 12 may be positioned on one side with respect to the welded portion 103. Further, as shown in the above embodiment, it is also possible to detect a defect with one transmitting / receiving probe 10 capable of transmitting / receiving as shown in FIG. In each figure, it is also possible to perform inspection by exchanging the positions of the transmission probe 11 and the reception probe 12.

また、上記実施形態において、受信する超音波の種類は縦波、横波、板波等様々な超音波であってもよい。さらに、1回反射に限られず、複数回の反射信号であってもよい。すなわち、上述のように欠陥によるビーム路程の変化を検出することできるものであればよく、超音波の種類は特に限定されるものではない。   In the above embodiment, the type of ultrasonic waves to be received may be various ultrasonic waves such as longitudinal waves, transverse waves, and plate waves. Further, the reflected signal is not limited to a single reflection, and may be a plurality of reflected signals. That is, any type of ultrasonic wave is not particularly limited as long as it can detect a change in beam path length due to a defect as described above.

本発明は、溶接部の欠陥検出方法及びこれに用いる溶接部の欠陥検出装置として利用することができる。この欠陥検出方法及び装置は、平板状、管状等被検査体の形状に限定されず適用することができ、さらに、鋼材に限らず他の金属材料、複合材料や樹脂等様々な材質の被検査体の欠陥検出に適用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used as a defect detection method for a welded part and a defect detection apparatus for a welded part used therefor. This defect detection method and apparatus can be applied without being limited to the shape of the object to be inspected, such as a flat plate shape and a tubular shape. Furthermore, not only steel materials but also various metal materials such as composite materials and resins are inspected. It can be applied to body defect detection.

本発明に係る欠陥検出装置の構成図である。It is a block diagram of the defect detection apparatus which concerns on this invention. 欠陥による超音波のビーム路程の変化を示す概略図であり、(a)は被検査体表面側に欠陥が位置する場合、(b)は被検査体裏面側に欠陥が位置する場合を示す。It is the schematic which shows the change of the beam path length of the ultrasonic wave by a defect, (a) shows the case where a defect is located in the to-be-inspected object surface side, (b) shows the case where a defect is located in the to-be-inspected object back side. 厚板被検査体表面側に欠陥が位置する場合の走査結果例を示すBスコープ画像である。It is a B scope image which shows the example of a scanning result in case a defect is located in the thick plate to-be-inspected surface side. 厚板被検査体裏面側に欠陥が位置する場合の走査結果例を示すBスコープ画像である。It is a B scope image which shows the example of a scanning result in case a defect is located in the thick plate to-be-inspected object back side. 薄板被検査体表面側に欠陥が位置する場合の走査結果例を示すBスコープ画像である。It is a B scope image which shows the example of a scanning result in case a defect is located in the thin plate to-be-inspected surface side. 薄板被検査体裏面側に欠陥が位置する場合の走査結果例を示すBスコープ画像である。It is a B scope image which shows the example of a scanning result in case a defect is located in the thin plate to-be-inspected object back side. 受信信号の両振幅値と走査位置との関係を模式的に示すグラフである。It is a graph which shows typically the relation between both amplitude values of a received signal, and a scanning position. 本発明の他の実施形態を示す概略図であり、(a)は正面図、(b)は側面図である。It is the schematic which shows other embodiment of this invention, (a) is a front view, (b) is a side view. 本発明の他の実施形態における両振幅値と走査位置との関係を示すグラフである。It is a graph which shows the relationship between both amplitude values in other embodiment of this invention, and a scanning position. 本発明に適用される他の被検査体の一例を示す図である。It is a figure which shows an example of the other to-be-inspected object applied to this invention. 本発明に適用されるさらに他の被検査体の一例を示す図である。It is a figure which shows an example of the to-be-inspected object applied to this invention. 本発明の探触子の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the probe of this invention. 従来の溶接部の超音波探傷方法を示す概略図である。It is the schematic which shows the ultrasonic testing method of the conventional welding part. 近距離音場における小欠陥の走査グラフである。It is a scanning graph of a small defect in a near field. 超音波の広がりと欠陥等からの信号の波形例を示す図である。It is a figure which shows the waveform example of the signal from the spread of an ultrasonic wave, a defect, etc.

符号の説明Explanation of symbols

1:欠陥検出装置、10,10’:探触子、11,11’:送信探触子、12,12’:受信探触子、20:位置検出器、30:送受信装置、31:CPU、32:送信部、33:受信部、34:位置検出部、35:表示部、36:信号処理部、100,100’:被検査体、100a:表面、100b:裏面、101:第一部材、102:第二部材、103,103’:溶接部(検査対象部)、103a:余盛部(突出部)、D,D1〜3,D’:欠陥、dp:段差部、R1:健全部、R2:変化部、L:溶接線(走査方向)、Pa,b:両振幅、Q:曲線、Qa1〜4,Qb1,2:振幅信号、t:時間幅、W,W1〜4,W4’:超音波 1: defect detection device, 10, 10 ′: probe, 11, 11 ′: transmission probe, 12, 12 ′: reception probe, 20: position detector, 30: transmission / reception device, 31: CPU, 32: Transmission unit, 33: Reception unit, 34: Position detection unit, 35: Display unit, 36: Signal processing unit, 100, 100 ′: Inspected object, 100a: Front surface, 100b: Back surface, 101: First member, 102: 2nd member, 103, 103 ': Welding part (inspection object part), 103a: Overlaying part (protrusion part), D, D1-3, D': Defect, dp: Step part, R1: Healthy part, R2: change part, L: welding line (scanning direction), Pa, b: both amplitudes, Q: curve, Qa1-4, Qb1, 2: amplitude signal, t: time width, W, W1-4, W4 ′: Ultrasound

Claims (13)

被検査体に探触子から超音波を送信すると共に前記被検査体を伝搬した超音波を受信してその受信信号により検査対象部の欠陥を検出する欠陥検出方法であって、
前記探触子を前記被検査体表面に沿って非接触で走査し、前記被検査体を伝搬した複数種の超音波の各受信信号をBスコープ又はCスコープの少なくとも一方を画像として表示し、前記画像における変化部の存在により前記欠陥を検出することを特徴とする欠陥検出方法。
A defect detection method for transmitting an ultrasonic wave from a probe to an object to be inspected and receiving an ultrasonic wave propagated through the object to be inspected, and detecting a defect in an inspection object part by the received signal,
The probe is scanned in a non-contact manner along the surface of the inspected object, and each received signal of a plurality of types of ultrasonic waves propagated through the inspected object is displayed as an image of at least one of a B scope or a C scope, A defect detection method, wherein the defect is detected based on the presence of a changed portion in the image.
前記被検査体は平板であることを特徴とする請求項1記載の欠陥検出方法。 The defect detection method according to claim 1, wherein the object to be inspected is a flat plate. 前記検査対象部が溶接部を含むことを特徴とする請求項1又は2に記載の欠陥検出方法。 The defect detection method according to claim 1, wherein the inspection target part includes a welded part. 前記変化部はあらかじめ生成した健全被検査体におけるBスコープ又はCスコープの少なくとも一方の画像と比較することにより特定することを特徴とする請求項1〜3のいずれかに記載の欠陥検出方法。 The defect detection method according to claim 1, wherein the change unit is specified by comparing with at least one image of a B scope or a C scope in a healthy inspected object generated in advance. 特定の板厚方向の幅における前記受信信号の振幅を抽出し、前記振幅により前記欠陥を検出すると共に少なくとも前記欠陥の板厚方向の大きさを推定することを特徴とする請求項1〜4のいずれかに記載の欠陥検出方法。 The amplitude of the said received signal in the width | variety of a specific plate | board thickness direction is extracted, the said defect is detected with the said amplitude, and the magnitude | size of the said plate | board thickness direction of the said defect is estimated at least. The defect detection method according to any one of the above. 前記探触子は送信探触子と受信探触子とよりなることを特徴とする請求項1〜5のいずれかに記載の欠陥検出方法。 The defect detection method according to claim 1, wherein the probe includes a transmission probe and a reception probe. 前記送信探触子と前記受信探触子とは前記検査対象部に対し両側に対向して配置されることを特徴とする請求項6に記載の欠陥検出方法。 The defect detection method according to claim 6, wherein the transmission probe and the reception probe are arranged to face both sides of the inspection target part. 前記送信探触子及び前記受信探触子は前記検査対象部に対し片側に配置されることを特徴とする請求項6に記載の欠陥検出方法。 The defect detection method according to claim 6, wherein the transmission probe and the reception probe are arranged on one side with respect to the inspection target part. 前記探触子は超音波を送受信する送受信探触子であることを特徴とする請求項1〜5のいずれかに記載の欠陥検出方法。 The defect detection method according to claim 1, wherein the probe is a transmission / reception probe that transmits and receives ultrasonic waves. 前記被検査体は前記検査対象部を境に板厚が異なり、前記検査対象部に対し板厚の薄い側に位置する探触子から超音波を送信することを特徴とする請求項1〜9のいずれかに記載の欠陥検出方法。 The board to be inspected is different in thickness from the inspection target part, and transmits ultrasonic waves from a probe located on the thin side of the inspection target part. The defect detection method in any one of. 前記被検査体は金属材料よりなることを特徴とする請求項1〜10のいずれかに記載の欠陥検出方法。 The defect detection method according to claim 1, wherein the object to be inspected is made of a metal material. 前記被検査体は高温状態であることを特徴とする請求項1〜11のいずれかに記載の欠陥検出方法。 The defect detection method according to claim 1, wherein the inspection object is in a high temperature state. 請求項1に記載の欠陥検出方法に用いる欠陥検出装置であって、
前記探触子を前記被検査体表面に沿って非接触で走査し、前記被検査体を伝搬した複数種の超音波の各受信信号をBスコープ又はCスコープの少なくとも一方を画像として表示し、前記画像における変化部の存在により前記欠陥を検出することを特徴とする欠陥検出装置。
A defect detection apparatus for use in the defect detection method according to claim 1,
The probe is scanned in a non-contact manner along the surface of the inspected object, and each received signal of a plurality of types of ultrasonic waves propagated through the inspected object is displayed as an image of at least one of a B scope or a C scope, A defect detection apparatus that detects the defect based on the presence of a changing portion in the image.
JP2006353408A 2006-12-27 2006-12-27 Flaw detection method and flaw detector used therein Pending JP2008164397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353408A JP2008164397A (en) 2006-12-27 2006-12-27 Flaw detection method and flaw detector used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353408A JP2008164397A (en) 2006-12-27 2006-12-27 Flaw detection method and flaw detector used therein

Publications (1)

Publication Number Publication Date
JP2008164397A true JP2008164397A (en) 2008-07-17

Family

ID=39694106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353408A Pending JP2008164397A (en) 2006-12-27 2006-12-27 Flaw detection method and flaw detector used therein

Country Status (1)

Country Link
JP (1) JP2008164397A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184076A (en) * 2014-03-20 2015-10-22 Jx日鉱日石エネルギー株式会社 Welded part inspection device and method for inspecting welded part
JP2016061782A (en) * 2014-09-16 2016-04-25 アービンメリトール・テクノロジー,エルエルシー System and method of making welded assembly
JP2017053637A (en) * 2015-09-07 2017-03-16 東芝プラントシステム株式会社 Nondestructive checkup apparatus
CN108414623A (en) * 2018-02-09 2018-08-17 中车青岛四方机车车辆股份有限公司 A kind of resistance spot welding quality evaluation method based on ultrasonic scanning imaging

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184076A (en) * 2014-03-20 2015-10-22 Jx日鉱日石エネルギー株式会社 Welded part inspection device and method for inspecting welded part
JP2016061782A (en) * 2014-09-16 2016-04-25 アービンメリトール・テクノロジー,エルエルシー System and method of making welded assembly
JP2017053637A (en) * 2015-09-07 2017-03-16 東芝プラントシステム株式会社 Nondestructive checkup apparatus
CN108414623A (en) * 2018-02-09 2018-08-17 中车青岛四方机车车辆股份有限公司 A kind of resistance spot welding quality evaluation method based on ultrasonic scanning imaging
CN108414623B (en) * 2018-02-09 2021-02-09 中车青岛四方机车车辆股份有限公司 Resistance spot welding quality evaluation method based on ultrasonic scanning imaging

Similar Documents

Publication Publication Date Title
CA2496370C (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
JP4116483B2 (en) Tubular ultrasonic inspection method and apparatus
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
AU2004288099C1 (en) Method for checking a weld between two metal pipelines
JP2008164396A (en) Flaw detection method and flaw detector used therefor
JP5574731B2 (en) Ultrasonic flaw detection test method
JP5456259B2 (en) Welding inspection method and apparatus
JP2008164397A (en) Flaw detection method and flaw detector used therein
JP4148959B2 (en) Ultrasonic flaw detection method and apparatus
JP2007322350A (en) Ultrasonic flaw detector and method
JP5285845B2 (en) Defect detection apparatus and defect detection method
JP4564183B2 (en) Ultrasonic flaw detection method
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
JP6026245B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2009014513A (en) Ultrasonic flaw detection method
JP2006138672A (en) Method of and device for ultrasonic inspection
JP2018136252A (en) Ultrasonic inspection device, ultrasonic inspection system including the same, and ultrasonic inspection method and program
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
JP5955638B2 (en) Weld metal shape estimation method, estimation apparatus, and estimation program
JP4614219B2 (en) Inspection method and inspection apparatus for laser welded joint
JP5243229B2 (en) Ultrasonic flaw detection method and probe unit for ultrasonic flaw detector
JP2004191088A (en) Ultrasonic flaw detection method and its device
JP5847010B2 (en) Nondestructive inspection apparatus and nondestructive inspection method