JP6026245B2 - Ultrasonic inspection method and ultrasonic inspection apparatus - Google Patents

Ultrasonic inspection method and ultrasonic inspection apparatus Download PDF

Info

Publication number
JP6026245B2
JP6026245B2 JP2012259450A JP2012259450A JP6026245B2 JP 6026245 B2 JP6026245 B2 JP 6026245B2 JP 2012259450 A JP2012259450 A JP 2012259450A JP 2012259450 A JP2012259450 A JP 2012259450A JP 6026245 B2 JP6026245 B2 JP 6026245B2
Authority
JP
Japan
Prior art keywords
ultrasonic
inspection
reflected
wave
phased array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012259450A
Other languages
Japanese (ja)
Other versions
JP2014106130A (en
Inventor
眞輝 山下
眞輝 山下
博之 西上
博之 西上
芳丸 江藤
芳丸 江藤
江淵 高弘
高弘 江淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Non Destructive Inspection Co Ltd
Original Assignee
Osaka Gas Co Ltd
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Non Destructive Inspection Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2012259450A priority Critical patent/JP6026245B2/en
Publication of JP2014106130A publication Critical patent/JP2014106130A/en
Application granted granted Critical
Publication of JP6026245B2 publication Critical patent/JP6026245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、超音波検査方法及び超音波検査装置に関する。さらに詳しくは、被検査体の検査対象部にフェーズドアレイ探触子から超音波を送信すると共に前記検査対象部で反射した前記超音波の反射波を受信し、受信した反射波の反射信号により前記検査対象部の欠陥を検出する超音波検査方法及び超音波検査装置に関する。   The present invention relates to an ultrasonic inspection method and an ultrasonic inspection apparatus. More specifically, the ultrasonic wave is transmitted from the phased array probe to the inspection target part of the object to be inspected, and the reflected wave of the ultrasonic wave reflected by the inspection target part is received, and the reflected signal of the received reflected wave is used to transmit the ultrasonic wave. The present invention relates to an ultrasonic inspection method and an ultrasonic inspection apparatus for detecting a defect in an inspection target portion.

従来から、被検査体の検査対象部としての溶接部の検査方法として、超音波探傷が行われている。係る場合、例えば、図17に示す如き波形Eを検出して、反射源の位置解析から波形Eに表れたエコーe1が欠陥(きず)に起因する信号か否かを判断する。しかし、振幅での評価では、波形Eに表れたエコーe1が、溶接部形状等による正常な反射信号であるか欠陥からの反射信号であるかの判別が困難であった。さらに、ニッケル含有やアルミニウム合金等の被検査体の材質によって、欠陥の検出精度が低下するという問題があった。   Conventionally, ultrasonic flaw detection has been performed as a method for inspecting a welded portion as an inspection target portion of an object to be inspected. In such a case, for example, a waveform E as shown in FIG. 17 is detected, and it is determined whether or not the echo e1 appearing in the waveform E is a signal caused by a defect (flaw) from the position analysis of the reflection source. However, in the evaluation by amplitude, it is difficult to determine whether the echo e1 appearing in the waveform E is a normal reflection signal due to the shape of the weld or the like or a reflection signal from a defect. Furthermore, there is a problem that the detection accuracy of defects is lowered depending on the material of the object to be inspected, such as nickel-containing or aluminum alloy.

他方、超音波探傷の一手法として、例えば特許文献1,2に示す如きフェーズドアレイ法による検査方法も知られている。しかし、これら文献において、溶接部の態様や材質についての上記問題は何ら示されていない。   On the other hand, as one method of ultrasonic flaw detection, for example, an inspection method using a phased array method as shown in Patent Documents 1 and 2 is also known. However, these documents do not show any of the above problems concerning the mode and material of the welded portion.

特開2004−191111号公報JP 2004-191111 A 特開2001−343370号公報JP 2001-343370 A

かかる従来の実情に鑑みて、本発明は、超音波検査が困難な箇所、部位においても、精度よく且つ効率よく欠陥等を検出することの可能な超音波検査方法及び超音波検査装置を提供することを目的とする。   In view of such a conventional situation, the present invention provides an ultrasonic inspection method and an ultrasonic inspection apparatus capable of accurately and efficiently detecting a defect or the like even at a location or part where ultrasonic inspection is difficult. For the purpose.

上記目的を達成するため、本発明に係る超音波検査方法の特徴は、被検査体の検査対象部にフェーズドアレイ探触子から超音波を送信すると共に前記検査対象部で反射した前記超音波の反射波を受信し、受信した反射波の反射信号により前記検査対象部の欠陥を検出する方法において、前記被検査体は、超音波の高減衰材料よりなる母材を有する液化天然ガスを貯蔵するタンクであり、前記検査対象部は、前記母材を超音波の高減衰材料よりなる溶接金属により溶接した溶接部であり、前記超音波は、横波であり、予め、健全試験体において、前記フェーズドアレイ探触子を前記欠陥の存在しない健全溶接部の片側に配置し、任意の点に集束する横波を屈折角を異ならせて複数送信して、前記健全溶接部で反射した横波の反射信号より健全部データを作成すると共に前記反射信号の最大値を規準値として求めておき、前記被検査体において、前記フェーズドアレイ探触子を前記溶接部の片側に配置すると共に任意の点に集束する横波を屈折角を異ならせて複数送信して、前記溶接部で反射した横波の反射信号より検査部データを作成し、前記検査部データを前記規準値で除算して信号強度比を求め、前記信号強度比が所定値以上である場合に前記欠陥と判定することにある。   In order to achieve the above object, the ultrasonic inspection method according to the present invention is characterized in that an ultrasonic wave is transmitted from a phased array probe to an inspection target portion of an object to be inspected and the ultrasonic wave reflected by the inspection target portion is reflected. In the method for receiving a reflected wave and detecting a defect in the inspection target portion based on a reflected signal of the received reflected wave, the object to be inspected stores liquefied natural gas having a base material made of an ultrasonic high attenuation material. A tank, and the inspection target portion is a welded portion obtained by welding the base material with a weld metal made of an ultrasonic high-attenuation material, and the ultrasonic wave is a transverse wave. An array probe is arranged on one side of the sound welded part where the defect does not exist, and a plurality of transverse waves focused on an arbitrary point are transmitted with different refraction angles, and from the reflected signal of the transverse wave reflected by the sound welded part Healthy part And a maximum value of the reflected signal is obtained as a reference value, and in the object to be inspected, the phased array probe is arranged on one side of the weld and a transverse wave that is focused on an arbitrary point is generated. A plurality of transmissions with different refraction angles are made, and inspection part data is created from the reflected signal of the transverse wave reflected by the weld part, and the signal intensity ratio is obtained by dividing the inspection part data by the reference value, and the signal intensity When the ratio is equal to or greater than a predetermined value, the defect is determined.

上記構成によれば、検査対象となる被検査体の検査対象部は、超音波の高減衰材料よりなる母材を超音波の高減衰材料よりなる溶接金属で溶接した液化天然ガスを貯蔵するタンクの溶接部であり、超音波の減衰が大きい部位である。本発明は、このような検査対象部に対し横波を使用する。発明者らの実験によれば、ステンレス鋼溶接部等の溶接部検査で従来用いられる縦波ではなく、横波を用いることで、後述の信号強度比において、より高精度に欠陥を検出できることを見出した。そして、フェーズドアレイ探触子により任意の点に集束する横波を屈折角を異ならせて複数送信するので、横波を任意の点に集中させて送信することで、超音波の減衰や音の曲がりを抑制し、検出精度を向上させることができる。また、その集束させた横波を屈折角を異ならせて複数送信させるので、1度の走査で広範囲を検査することができる。しかも、検査対象部と同等で且つ欠陥の存在しない健全試験体での健全部データを予め作成すると共に健全試験体における反射信号の最大値を規準値として求めておき、検査対象部での検査部データを規準値で除算して信号強度比を求めるので、正常な反射信号と欠陥に起因する反射信号とを明瞭に区別でき、検査精度がさらに向上する。従って、従来では検査の困難であった超音波の減衰が大きい検査対象部であっても、精度よく且つ効率よく欠陥を検出することができる。   According to the above configuration, the inspection target portion of the object to be inspected is a tank that stores liquefied natural gas obtained by welding a base material made of an ultrasonic high attenuation material with a weld metal made of an ultrasonic high attenuation material. This is a welded part of this, and is a part where the attenuation of ultrasonic waves is large. The present invention uses a transverse wave for such a portion to be inspected. According to the inventors' experiments, it was found that defects can be detected with higher accuracy in the signal intensity ratio described later by using transverse waves instead of longitudinal waves conventionally used in inspection of welds such as stainless steel welds. It was. A plurality of transverse waves focused on an arbitrary point by the phased array probe are transmitted with different refraction angles, so that the transverse waves are concentrated on an arbitrary point and transmitted, thereby reducing the attenuation of the ultrasonic waves and the bending of the sound. It can suppress and can improve detection accuracy. Further, since a plurality of the focused transverse waves are transmitted with different refraction angles, a wide range can be inspected by one scan. In addition, healthy part data in a healthy test specimen that is equivalent to the inspection target part and does not have defects is created in advance and the maximum value of the reflected signal in the healthy test specimen is obtained as a reference value, and the inspection part in the inspection target part is obtained. Since the signal intensity ratio is obtained by dividing the data by the reference value, the normal reflected signal and the reflected signal caused by the defect can be clearly distinguished, and the inspection accuracy is further improved. Accordingly, it is possible to detect a defect with high accuracy and efficiency even in an inspection target portion where attenuation of ultrasonic waves, which has conventionally been difficult to inspect, is large.

前記健全部データ及び前記検査部データに対し溶接部の少なくとも一部を含む部分からの信号を含む解析エリアをそれぞれ設定し、前記健全部データの解析エリア内における最大振幅値を前記規準値として求め、前記検査部データの解析エリア内の所定の区画毎に前記反射信号の最大振幅値を求めると共に前記規準値で除算することにより前記区画毎に前記信号強度比を求めるとよい。解析エリア内の信号を用いるので、検査対象部において特に欠陥の発生が予測される溶接金属内や溶接部と母材部との境界部(止端部)等の箇所に限定して検査ができるので、より効率よく欠陥を検出することができる。しかも、健全部データの解析エリア内における最大振幅値を用いて信号強度比を求めるので、さらに高精度に欠陥を検出することができる。   An analysis area including a signal from a portion including at least a part of a welded portion is set for each of the healthy portion data and the inspection portion data, and a maximum amplitude value in the analysis area of the healthy portion data is obtained as the reference value. The maximum amplitude value of the reflected signal is obtained for each predetermined section in the analysis area of the inspection unit data, and the signal intensity ratio is obtained for each section by dividing by the reference value. Since the signal in the analysis area is used, inspection can be limited to places such as the weld metal where the occurrence of defects is predicted in the inspection target part and the boundary part (toe part) between the weld part and the base material part. Therefore, defects can be detected more efficiently. In addition, since the signal intensity ratio is obtained using the maximum amplitude value in the analysis area of the healthy part data, the defect can be detected with higher accuracy.

前記フェーズドアレイ探触子を少なくとも前記被検査体上で前記溶接部の溶接線に沿う方向に移動させて走査すると共に、前記検査部データの前記信号強度比をCスコープ画像として表示するとよい。検査対象部となる溶接部に沿って走査するので、広範囲をより迅速且つ効率よく検査することができる。しかも、Cスコープ画像として表示することで、欠陥の位置等も容易に推定可能となる。   The phased array probe may be scanned at least on the inspection object in a direction along the weld line of the welded portion, and the signal intensity ratio of the inspection portion data may be displayed as a C scope image. Since scanning is performed along the welded portion to be inspected, a wide range can be inspected more quickly and efficiently. In addition, by displaying the image as a C scope image, the position of the defect can be easily estimated.

係る場合、前記信号強度比が所定値以上となる信号のみを前記Cスコープ画像として表示することが望ましい。これにより、欠陥信号のみが表示され、誤判定が防止される。   In such a case, it is desirable to display only signals with the signal intensity ratio equal to or higher than a predetermined value as the C scope image. Thereby, only the defect signal is displayed and erroneous determination is prevented.

また、前記解析エリアを前記溶接部の厚さ方向に複数設けるとよい。これにより、欠陥の被検査体の深さ(板厚)方向における位置も推定することができ、より精度よく欠陥を検出することができる。   A plurality of analysis areas may be provided in the thickness direction of the weld. Thereby, the position of the defect in the depth (plate thickness) direction of the inspection object can be estimated, and the defect can be detected with higher accuracy.

前記フェーズドアレイ探触子は、少なくとも32個以上の振動子を有するとよく、より好ましくは64個以上の振動子を有するとよい。同時に励起する振動子数を増加させることで、送信する超音波のエネルギーを増加させると共に集束性も向上するので、欠陥からの反射信号も大きくなり、さらに精度が向上する。   The phased array probe may have at least 32 transducers, and more preferably 64 transducers. By increasing the number of vibrators excited at the same time, the energy of the ultrasonic wave to be transmitted is increased and the focusing property is improved, so that the reflected signal from the defect is increased and the accuracy is further improved.

ここで、超音波の高減衰材料より構成される検査対象部としての溶接部は、前記母材がニッケルを6%以上10%以下含有し、前記溶接金属がニッケルを55%以上含有するものであってもよく、前記母材がアルミニウム合金よりなり、前記溶接金属がアルミニウム合金よりなるものであっても構わない。これらの材料はいずれも超音波の高減衰材料であり、このような材料より構成される検査対象部であっても精度よく且つ効率よく欠陥等を検出することができる。また、前記溶接部は、突合せ溶接、重ね溶接又は隅肉溶接のいずれかであり、前記突合せ溶接は、例えば、裏板付き突合せ溶接である。   Here, in the welded portion as an inspection target portion composed of an ultrasonic high-attenuation material, the base material contains 6% or more and 10% or less of nickel, and the weld metal contains 55% or more of nickel. The base material may be made of an aluminum alloy, and the weld metal may be made of an aluminum alloy. All of these materials are high-attenuation materials of ultrasonic waves, and defects and the like can be detected with high accuracy and efficiency even in an inspection target portion made of such materials. The welded portion is any one of butt welding, lap welding, and fillet welding, and the butt welding is, for example, butt welding with a back plate.

前記母材の板厚は、5mm以上70mm以下である。また、前記横波を前記母材内で1回以上反射させても構わない。例えば、母材の板厚が5mm以上20mm未満の薄板材の場合や、フェーズドアレイ探触子を溶接部に近接できない場合等であっても、横波を一回以上反射させることで、同様に溶接部の欠陥を検出することができる。   The thickness of the base material is 5 mm or more and 70 mm or less. Further, the transverse wave may be reflected once or more in the base material. For example, even when the thickness of the base material is 5 mm or more and less than 20 mm, or when the phased array probe cannot be brought close to the welded portion, the welding is similarly performed by reflecting the transverse wave once or more. The defect of the part can be detected.

上記目的を達成するため、本発明に係る超音波検査装置の特徴は、被検査体の検査対象部にフェーズドアレイ探触子から超音波を送信すると共に前記検査対象部で反射した前記超音波の反射波を受信し、受信した反射波の反射信号により前記検査対象部の欠陥を検出する構成において、前記被検査体は、超音波の高減衰材料よりなる母材を有する液化天然ガスを貯蔵するタンクであり、前記検査対象部は、前記母材を超音波の高減衰材料よりなる溶接金属により溶接した溶接部であり、前記超音波は、横波であり、予め、健全試験体において、前記フェーズドアレイ探触子を前記欠陥の存在しない健全溶接部の片側に配置し、任意の点に集束する横波を屈折角を異ならせて複数送信して、前記健全溶接部で反射した横波の反射信号より健全部データを作成すると共に前記反射信号の最大値を規準値として求めておき、前記被検査体において、前記フェーズドアレイ探触子を前記溶接部の片側に配置すると共に任意の点に集束する横波を屈折角を異ならせて複数送信して、前記溶接部で反射した横波の反射信号より検査部データを作成し、前記検査部データを前記規準値で除算して信号強度比を求め、前記信号強度比が所定値以上である場合に前記欠陥と判定することにある。
In order to achieve the above object, the ultrasonic inspection apparatus according to the present invention is characterized in that an ultrasonic wave is transmitted from a phased array probe to an inspection target part of an object to be inspected and the ultrasonic wave reflected by the inspection target part is reflected. In a configuration in which a reflected wave is received and a defect in the inspection target part is detected by a reflected signal of the received reflected wave, the object to be inspected stores liquefied natural gas having a base material made of an ultrasonic high attenuation material. A tank, and the inspection target portion is a welded portion obtained by welding the base material with a weld metal made of an ultrasonic high-attenuation material, and the ultrasonic wave is a transverse wave. An array probe is arranged on one side of the sound welded part where the defect does not exist, and a plurality of transverse waves focused on an arbitrary point are transmitted with different refraction angles, and from the reflected signal of the transverse wave reflected by the sound welded part Healthy part And a maximum value of the reflected signal is obtained as a reference value, and in the object to be inspected, the phased array probe is arranged on one side of the weld and a transverse wave that is focused on an arbitrary point is generated. A plurality of transmissions with different refraction angles are made, and inspection part data is created from the reflected signal of the transverse wave reflected by the weld part, and the signal intensity ratio is obtained by dividing the inspection part data by the reference value, and the signal intensity When the ratio is equal to or greater than a predetermined value, the defect is determined.

上記本発明に係る超音波検査方法及び超音波検査装置の特徴によれば、超音波検査が困難な箇所、部位においても、精度よく且つ効率よく欠陥等を検出することが可能となった。   According to the features of the ultrasonic inspection method and the ultrasonic inspection apparatus according to the present invention, it is possible to detect defects and the like accurately and efficiently even at locations and parts where ultrasonic inspection is difficult.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

本発明に係る超音波検査装置の構成図である。It is a block diagram of the ultrasonic inspection apparatus which concerns on this invention. 検査対象部近傍の拡大断面図である。It is an expanded sectional view near an inspection object part. フェーズドアレイ探傷器の構成図である。It is a block diagram of a phased array flaw detector. フェーズドアレイ探触子における超音波の送受信を説明する図である。It is a figure explaining transmission / reception of the ultrasonic wave in a phased array probe. フォーカシング及びステアリングを説明する図である。It is a figure explaining focusing and steering. 模擬試験片における探傷結果の一例を示し、(a)は縦波、(b)は横波の場合を示す。An example of the flaw detection result in a mock test piece is shown, (a) shows a longitudinal wave and (b) shows a case of a transverse wave. 図6の模擬試験片を示す図である。It is a figure which shows the simulation test piece of FIG. 模擬試験片における探傷結果の一例を示し、(a)は32個の振動子を同時に励起した場合、(b)は64個の振動子を同時に励起した場合を示す。An example of the flaw detection result in the mock test piece is shown. (A) shows a case where 32 vibrators are excited simultaneously, and (b) shows a case where 64 vibrators are excited simultaneously. 図8の模擬試験片を示す図である。It is a figure which shows the simulation test piece of FIG. 欠陥評価手順を示すフロー図である。It is a flowchart which shows a defect evaluation procedure. 解析エリアの設定を説明する説明図である。It is explanatory drawing explaining the setting of an analysis area. 健全部データの取得を説明する説明図である。It is explanatory drawing explaining acquisition of healthy part data. 模擬試験片における解析エリア内の探傷結果の一例を示す検査部データのCスコープ画像である。It is a C scope image of inspection part data which shows an example of the flaw detection result in the analysis area in a mock test piece. 検査部データを規準値で規準化しCスコープ画像とした図である。It is the figure which normalized the inspection part data with the standard value, and made C scope image. 閾値以上の信号のみを表示した図14相当図である。FIG. 15 is a diagram corresponding to FIG. 本発明の他の実施形態における検査対象部を示す図であり、(a)は裏板金付突合せ溶接、(b)は重ね溶接、(c)は隅肉溶接を示す。It is a figure which shows the test object part in other embodiment of this invention, (a) shows butt welding with a back metal plate, (b) shows lap welding, (c) shows fillet welding. 従来の超音波探傷の受信信号の一例を示す図である。It is a figure which shows an example of the received signal of the conventional ultrasonic flaw detection.

次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。
本発明に係る超音波検査方法の検査対象となる被検査体100の検査対象部101は、液化天然ガスを貯蔵するタンク(以下、「LNGタンク」と称する。)の溶接部である。被検査体としてのLNGタンク100は、母材として金属材料よりなる板状の鋼材102より構成されている。また、検査対象部としての溶接部101は、例えば、図1,2に示す如き突合せ溶接部であり、鋼材102,102を突き合わせて、溶接金属により溶接したものである。そして、溶接金属部101a内の欠陥D1や、溶接金属部101aと鋼材102との境界部(止端部)101bの欠陥D2を検出する。
Next, the present invention will be described in more detail with reference to the accompanying drawings as appropriate.
The inspection target portion 101 of the object 100 to be inspected by the ultrasonic inspection method according to the present invention is a welded portion of a tank that stores liquefied natural gas (hereinafter referred to as “LNG tank”). The LNG tank 100 as an object to be inspected is composed of a plate-shaped steel material 102 made of a metal material as a base material. Moreover, the welding part 101 as a test object part is a butt welding part as shown, for example in FIG. 1, 2, and butt | matches the steel materials 102 and 102 and welded with the weld metal. And the defect D1 in the weld metal part 101a and the defect D2 of the boundary part (toe part) 101b of the weld metal part 101a and the steel material 102 are detected.

本実施形態において、鋼材102には、ニッケルを9%含有するニッケル鋼が用いられる。このニッケル鋼は、超音波の高減衰材料である。また、ニッケル鋼102を溶接する溶接金属には、例えばニッケルを55%以上含有するものが用いられ、この溶接金属も超音波の高減衰材料である。本実施形態では、溶接部101の溶接金属部101aにニッケルが70%程度含有している。なお、溶接金属には、ニッケルを55%以上含有するものであればよく、ニッケルを100%含有する材料(ニッケル単独)であってもよい。このように、本発明の検査対象となる被検査体100の検査対象部101は、各部材の材質により超音波の減衰が大きく、通常の超音波検査では高精度の検査が困難な部位である。   In this embodiment, the steel material 102 is nickel steel containing 9% nickel. This nickel steel is an ultrasonic high attenuation material. In addition, as the weld metal for welding the nickel steel 102, for example, a metal containing 55% or more of nickel is used, and this weld metal is also an ultrasonic high attenuation material. In this embodiment, the weld metal part 101a of the weld part 101 contains about 70% of nickel. In addition, the weld metal should just contain 55% or more of nickel, and the material (nickel independent) containing 100% of nickel may be sufficient as it. As described above, the inspection target portion 101 of the object 100 to be inspected according to the present invention has a large attenuation of ultrasonic waves due to the material of each member, and is a part that is difficult to perform high-precision inspection by normal ultrasonic inspection. .

さらに、このニッケル鋼102の板厚Tは、例えば、5mm以上70mm以下であり、本実施形態では20mmである。なお、地上式LNGタンクでは、上部より下部程肉厚に形成されており、部位によって板厚は異なる。板厚が大きくなるに従い、超音波の減衰や歪みや音の曲がりが生じやすい。   Furthermore, the plate thickness T of the nickel steel 102 is, for example, 5 mm or more and 70 mm or less, and 20 mm in this embodiment. In the above ground type LNG tank, the thickness is formed from the upper part to the lower part, and the plate thickness varies depending on the part. As the plate thickness increases, the attenuation and distortion of ultrasonic waves and the bending of sound tend to occur.

図1に示すように、本発明に係る超音波検査装置1は、大略、フェーズドアレイ探触子2とフェーズドアレイ探傷器3からなる。フェーズドアレイ探触子2は、移動手段5によって溶接部101の溶接線L方向に沿うように移動する。フェーズドアレイ探傷器3は、後述のCスコープ画像等を表示する表示手段としてのモニタ4と、キーボードやマウス等の入力手段6を備えている。また、移動手段5は、走査位置を検出する位置検出器51を有し、フェーズドアレイ探傷器3に接続している。   As shown in FIG. 1, an ultrasonic inspection apparatus 1 according to the present invention generally includes a phased array probe 2 and a phased array flaw detector 3. The phased array probe 2 is moved by the moving means 5 along the weld line L direction of the welded portion 101. The phased array flaw detector 3 includes a monitor 4 as display means for displaying a later-described C scope image and the like, and input means 6 such as a keyboard and a mouse. The moving means 5 has a position detector 51 for detecting the scanning position, and is connected to the phased array flaw detector 3.

図2に示すように、フェーズドアレイ探触子2は、複数の振動子21を有する振動子群20を備えている。各振動子21は、後述のフェーズドアレイ探傷器3によって励振するタイミングが電子的に制御される。これにより、同図に示すように、超音波の屈折角θを屈折角θ1以上θ2以下の角度範囲内で変更しながら超音波を送受信することで、溶接部101を扇状に走査(セクタスキャン)することができる。なお、本実施形態において、振動子21は矩形を呈し、移動方向(溶接線L方向)に略直交する方向に1列に配列されている。   As shown in FIG. 2, the phased array probe 2 includes a transducer group 20 having a plurality of transducers 21. The timing at which each transducer 21 is excited by a phased array flaw detector 3 described later is electronically controlled. As a result, as shown in the figure, the welding portion 101 is scanned in a sector shape by transmitting / receiving ultrasonic waves while changing the refraction angle θ of the ultrasonic waves within an angle range of the refraction angle θ1 to θ2 (sector scan). can do. In the present embodiment, the vibrators 21 have a rectangular shape and are arranged in a line in a direction substantially orthogonal to the moving direction (the welding line L direction).

図3に示すように、フェーズドアレイ探傷器3は、大略、計測制御部31と、複数のパルサ・レシーバ32と、マルチプレクサ33よりなる。計測制御部31は、超音波の送受信を制御する制御部31aと、受信した反射信号からCスコープ画像等の走査画像を生成する画像生成部31bと、受信した反射信号や走査画像等の各種データを記憶する記憶部31cと、後述の解析エリアの設定や反射信号の最大値等を処理、演算する演算部31dとを有する。また、パルサ・レシーバ32は、マルチプレクサ33を介してフェーズドアレイ探触子2の振動子21に接続されている。   As shown in FIG. 3, the phased array flaw detector 3 generally includes a measurement control unit 31, a plurality of pulsar / receivers 32, and a multiplexer 33. The measurement control unit 31 includes a control unit 31a that controls transmission / reception of ultrasonic waves, an image generation unit 31b that generates a scanning image such as a C scope image from the received reflection signal, and various data such as the received reflection signal and scanning image. And a calculation unit 31d for processing and calculating a setting of an analysis area, a maximum value of a reflection signal, and the like, which will be described later. The pulser / receiver 32 is connected to the transducer 21 of the phased array probe 2 via the multiplexer 33.

次に、フェーズドアレイ探触子2における超音波の送受信について説明する。
図4(a)に示すように、送信時においては、まず、制御計測部31がトリガー信号TSをパルサ・レシーバ32に送信すると共に、超音波ビーム生成に必要となる遅延パターンのシーケンスを同時に行う。そして、遅延パターンに従ったパルス列PSが、マルチプレクサ33を介してフェーズドアレイ探触子2の振動子21にそれぞれ入力される。よって、振動子21a〜21eは、それぞれのパルス信号によるタイミングで励振する。
Next, transmission / reception of ultrasonic waves in the phased array probe 2 will be described.
As shown in FIG. 4A, at the time of transmission, first, the control measurement unit 31 transmits a trigger signal TS to the pulser / receiver 32 and simultaneously performs a delay pattern sequence necessary for generating an ultrasonic beam. . Then, the pulse train PS according to the delay pattern is input to the transducer 21 of the phased array probe 2 via the multiplexer 33. Therefore, the vibrators 21a to 21e are excited at the timings of the respective pulse signals.

同図の例では、フェーズドアレイ探触子2の端部側に位置する符号21a及び21eで示す振動子が最初に励振し、次に、振動子21a,21eより中央側に位置する符号21b及び21dで示す振動子が励振する。そして、さらに中央側に位置する振動子21cが最後に励振する。これにより、各振動子21a〜21eによって、波面Sa〜Seがそれぞれ生成される。これら波面Sa〜Seが合成し形成される合成波面Sが、入射波Weとして被検査体100で任意に定める焦点Fに向けて伝搬する。   In the example of the figure, the vibrators indicated by reference numerals 21a and 21e located on the end side of the phased array probe 2 are first excited, and then the reference numerals 21b and 21b located closer to the center than the vibrators 21a and 21e. The vibrator indicated by 21d is excited. Further, the vibrator 21c located further on the center side is finally excited. Thereby, wavefronts Sa to Se are generated by the vibrators 21a to 21e, respectively. A combined wavefront S formed by combining these wavefronts Sa to Se propagates toward the focal point F arbitrarily determined by the inspected object 100 as the incident wave We.

ここで、図5(a)に示す如きフォーカシングの場合、制御計測部31からのトリガー信号TSがパルサ・レシーバ32に入力されると、同図に示す如き遅延パターンde1を生成する。この遅延パターンde1は、端部側に位置する振動子21a,21eほど遅延時間tを短く設定している。これにより、各振動子21a〜21eから発生する波面は、焦点Fに集束する合成波面を形成する。これにより、フェーズドアレイ探触子2から送信される超音波をある地点(焦点F)に集束させる超音波ビームとすることができる。   Here, in the case of focusing as shown in FIG. 5A, when the trigger signal TS from the control measurement unit 31 is input to the pulser / receiver 32, a delay pattern de1 as shown in FIG. 5 is generated. In this delay pattern de1, the delay time t is set shorter for the transducers 21a and 21e located on the end side. As a result, the wavefronts generated from the transducers 21a to 21e form a combined wavefront that converges at the focal point F. Thereby, it can be set as the ultrasonic beam which focuses the ultrasonic wave transmitted from the phased array probe 2 to a certain point (focal point F).

また、図5(b)に示す如きステアリングの場合、遅延パターンde2は、片側の振動子21eほど遅延時間tを長くしている。これにより、超音波の屈折角θを任意の角度と設定することが可能となる。このように、フォーカシング及びステアリングを組み合わせて行うことで、上述の溶接部101の如き超音波検査が困難な部位においても、欠陥を広範囲で高精度に検出でき、検出感度も向上する。特に、ニッケル含有量の多い溶接金属部101a内の欠陥であっても、明瞭に検出可能となる。   In the case of steering as shown in FIG. 5B, the delay pattern de2 has a longer delay time t for the vibrator 21e on one side. Thereby, the refraction angle θ of the ultrasonic wave can be set to an arbitrary angle. As described above, by performing focusing and steering in combination, defects can be detected with high accuracy over a wide range and the detection sensitivity is improved even in a portion where ultrasonic inspection is difficult, such as the welded portion 101 described above. In particular, even a defect in the weld metal part 101a having a high nickel content can be clearly detected.

図4(b)に示すように、反射波Wrの受信時は、各振動子21で受信された反射エコーESは、パルサ・レシーバ32で受信された後、制御計測部31においてデジタル化されると共に遅延処理及び積算処理によって1つのRF波形信号として計測される。そして、RF波形信号に基づいて、例えばCスコープ画像等の画像が生成されモニタ4に出力される。   As shown in FIG. 4B, when the reflected wave Wr is received, the reflected echo ES received by each transducer 21 is received by the pulser / receiver 32 and then digitized by the control measurement unit 31. At the same time, it is measured as one RF waveform signal by delay processing and integration processing. Based on the RF waveform signal, an image such as a C scope image is generated and output to the monitor 4.

ここで、本発明における超音波には、横波を使用する。図6は、図7に示す模擬試験片200の溶接部201における探傷結果であり、図6(a)は縦波、(b)は横波での結果を示す。図7に示す模擬試験片200は、9%ニッケルが含有する板厚20mmのニッケル鋼202をニッケルが55%以上含有する溶接金属で溶接し溶接部201を形成してある。また、溶接金属部201aの裏面側略中央に深さ2mmの模擬欠陥(スリット)d1を形成した。   Here, a transverse wave is used for the ultrasonic wave in the present invention. FIG. 6 shows the flaw detection results in the welded portion 201 of the simulated test piece 200 shown in FIG. 7, where FIG. 6 (a) shows the results for longitudinal waves and FIG. 6 (b) shows the results for transverse waves. A simulated test piece 200 shown in FIG. 7 is formed by welding a 20 mm thick nickel steel 202 containing 9% nickel with a weld metal containing 55% or more nickel. In addition, a simulated defect (slit) d1 having a depth of 2 mm was formed at substantially the center on the back side of the weld metal portion 201a.

従来、ステンレス鋼溶接部等の溶接部検査では、一般的に縦波が用いられる。しかし、発明者らの実験によれば、図6に示すように、縦波(同図(a))よりも横波(同図(b))で模擬欠陥d1からの信号が明瞭となり、後述する信号強度比でも明瞭に欠陥を検出できることが判明した。よって、縦波ではなく横波を使用することで、検査精度をさらに向上させることが可能となる。   Conventionally, longitudinal waves are generally used in inspection of welds such as stainless steel welds. However, according to experiments by the inventors, as shown in FIG. 6, the signal from the simulated defect d1 becomes clearer in the transverse wave (FIG. 5B) than in the longitudinal wave (FIG. 6A), which will be described later. It was found that the defect could be detected clearly even with the signal intensity ratio. Therefore, the inspection accuracy can be further improved by using a transverse wave instead of a longitudinal wave.

さらに、本実施形態では、64個の振動子を有するフェーズドアレイ探触子2を用いる。図8は、図9に示す模擬試験片300の溶接部301における探傷結果であり、図8(a)は32個の振動子を同時に励起した場合、図8(b)は64個の振動子を同時に励起した場合を示す。なお、図9に示す模擬試験片300は、上述の模擬試験片200と同様の構成である。模擬欠陥d2〜4は、溶接線L方向に幅10mmで模擬試験片300の表面300a側に形成されている。模擬欠陥d2〜d4の深さは0.5mm、1.0mm、2.0mmである。そして、この模擬試験片300上でフェーズドアレイ探触子2を溶接部301の溶接線L方向に沿って走査し、図8のCスコープ画像を得た。なお、本例において、横波は母材302の裏面302bで一回反射させてある。   Furthermore, in this embodiment, the phased array probe 2 having 64 transducers is used. FIG. 8 shows a flaw detection result in the welded portion 301 of the simulation test piece 300 shown in FIG. 9, where FIG. 8A shows the case where 32 vibrators are excited simultaneously, and FIG. 8B shows the 64 vibrators. The case where is simultaneously excited is shown. Note that the simulated test piece 300 shown in FIG. 9 has the same configuration as the simulated test piece 200 described above. The simulated defects d2 to 4 are formed on the surface 300a side of the simulated test piece 300 with a width of 10 mm in the weld line L direction. The depths of the simulated defects d2 to d4 are 0.5 mm, 1.0 mm, and 2.0 mm. Then, the phased array probe 2 was scanned along the weld line L direction of the welded portion 301 on the simulation test piece 300 to obtain the C scope image of FIG. In this example, the transverse wave is reflected once by the back surface 302b of the base material 302.

図8に示すように、32個の振動子の場合(同図(a))に比べ、64個の振動子の場合(同図(b))の方が、より鮮明に欠陥を検出していることが分かる。これは、同時に励起させる振動子数が多ければ、焦点に対する超音波強度及び集束性がより向上し、欠陥からの反射信号も大きくなるためである。よって、例えば、溶接金属部101a等のより超音波の減衰が大きい箇所に対して、より多くの振動子を同時励起されることが望ましく、これによりさらに検査精度が向上する。なお、図8の横軸「入射点からの距離(mm)」とは、図12(a)に示すように、フェーズドアレイ探触子2と載置位置を基準(0)とし、溶接部に対し近接する側をマイナス(−)、離隔する側をプラス(+)としたフェーズドアレイ探触子2と溶接部301との距離である。   As shown in FIG. 8, the case of 64 transducers (FIG. (B)) detects defects more clearly than the case of 32 transducers (FIG. (A)). I understand that. This is because if the number of vibrators excited at the same time is large, the ultrasonic intensity and the focusing property with respect to the focal point are further improved, and the reflected signal from the defect is also increased. Therefore, for example, it is desirable to simultaneously excite a larger number of vibrators to a portion where the attenuation of the ultrasonic wave is larger, such as the weld metal portion 101a, thereby further improving the inspection accuracy. The horizontal axis “distance from the incident point (mm)” in FIG. 8 indicates that the phased array probe 2 and the mounting position are the reference (0) as shown in FIG. The distance between the phased array probe 2 and the welded portion 301 is defined as a minus (−) on the side closer to the side and a plus (+) on the side away from the side.

次に、溶接部101の欠陥検出手順について、図9の模擬試験片300を例に図10〜15を参照しながら説明する。なお、図11,13〜15の「入射点からの距離(mm)」とは、図8と同様である。
まず、入力手段6を介してセクタスキャンの開始角度θ1、終了角度θ2、角度ピッチ等の試験条件をフェーズドアレイ探傷器3に設定する(ステップS1:試験条件設定)。開始角度θ1から終了角度θ2までの角度となる屈折角θは、対象となる検査対象部101内の評価すべき部分に合わせて設定される。また、検査対象部101に応じて焦点距離、感度、音速等も設定する。本例では、図9,11,12に示す如く、セクタスキャンの範囲Q(屈折角)を溶接部301の両側の母材302との境界部(止端部)が含まれるように設定する。また、母材302の裏面302bで1回反射させて溶接部301上部に横波が集束するように焦点距離を設定する。なお、図11中の破線で示す表面300a,裏面300b,溶接部301は、反射信号と模擬試験片300の各部分との位置関係を示すために、模式的に付したものである。
Next, the defect detection procedure of the welded part 101 will be described with reference to FIGS. The “distance from the incident point (mm)” in FIGS.
First, the test conditions such as the sector scan start angle θ1, end angle θ2, and angle pitch are set in the phased array flaw detector 3 via the input means 6 (step S1: test condition setting). The refraction angle θ, which is an angle from the start angle θ1 to the end angle θ2, is set in accordance with a portion to be evaluated in the inspection target portion 101 as a target. In addition, the focal length, sensitivity, sound speed, and the like are set according to the inspection target unit 101. In this example, as shown in FIGS. 9, 11, and 12, the sector scan range Q (refraction angle) is set so as to include a boundary portion (stopped portion) with the base material 302 on both sides of the welded portion 301. Further, the focal length is set so that the transverse wave is focused on the upper portion of the welded portion 301 by being reflected once by the back surface 302 b of the base material 302. Note that the front surface 300 a, the back surface 300 b, and the welded portion 301 indicated by broken lines in FIG. 11 are given schematically in order to show the positional relationship between the reflected signal and each part of the simulation test piece 300.

次に、後述の健全部データ及び検査部データにおける反射信号を解析する解析エリアAを設定する(ステップS2:解析エリア設定)。この解析エリアAは、所定の走査位置における検査対象部101の評価すべき部分の反射信号が含まれるように設定される。解析エリアAは、検査対象部101の態様や評価すべき部分に応じて適宜設定される。本例では、図9,11,12に示す如く、図面上左の母材302と溶接部301との境界部(止端部)から右側境界部(止端部)を超えた幅Awで、且つ試験片300上面から厚さ方向に母材302の板厚の半分程度の高さAhにて設定する。   Next, an analysis area A for analyzing reflected signals in healthy part data and inspection part data described later is set (step S2: analysis area setting). The analysis area A is set so as to include a reflection signal of a portion to be evaluated of the inspection target portion 101 at a predetermined scanning position. The analysis area A is appropriately set according to the aspect of the inspection target part 101 and the part to be evaluated. In this example, as shown in FIGS. 9, 11, and 12, with a width Aw that exceeds the boundary portion (stop portion) between the base material 302 and the welded portion 301 on the left side of the drawing and the right boundary portion (stop portion), In addition, the height Ah is set to about half the plate thickness of the base material 302 in the thickness direction from the upper surface of the test piece 300.

次に、健全試験体において、移動手段5の位置検出器51を取り付けたフェーズドアレイ探触子2を健全試験体の溶接部の片側に配置し、その健全溶接部の溶接線L方向へ移動する。そして、所定の各走査位置において、任意の点に集束するようにフォーカシングを行うと共に開始角度θ1〜終了角度θ2の角度範囲内で角度ピッチ毎にステアリングを行って横波を送信する。受信した反射信号により制御計測部31にて健全部データが作成される(ステップS3:健全部データ作成)。そして、健全部データは、例えば図11に示す如き断面画像(セクタスキャン)やCスコープ画像として得られる。Cスコープ画像の場合、各走査位置のセクタスキャンに対し、設定した解析エリアAの高さAh(深さ)の範囲で解析ゲートを設け、当該範囲内の反射信号のみを用いて作成される。   Next, in the sound test body, the phased array probe 2 to which the position detector 51 of the moving means 5 is attached is arranged on one side of the welded portion of the sound test body, and is moved in the weld line L direction of the sound welded portion. . Then, focusing is performed so as to converge at an arbitrary point at each predetermined scanning position, and steering is performed for each angular pitch within the angle range of the start angle θ1 to the end angle θ2, and a transverse wave is transmitted. Healthy part data is created by the control measurement unit 31 based on the received reflection signal (step S3: healthy part data creation). The healthy part data is obtained as a cross-sectional image (sector scan) or a C scope image as shown in FIG. 11, for example. In the case of a C-scope image, an analysis gate is provided in the range of the height Ah (depth) of the set analysis area A with respect to the sector scan at each scanning position, and is created using only the reflected signal within the range.

そして、上述の健全部データにおいて、健全部Kにおける解析エリアA内の反射信号の最大振幅値を規準値として求める。図12に示すように、解析エリアAの健全部Kでの各走査位置の各区画a内で反射信号の最大振幅値を求めると共に、それらの最大値を規準値して設定する(ステップS4:規準値算出)。健全部データや規準値は、フェーズドアレイ探傷器3の記憶部31cに記憶される。この規準値は、健全溶接部における最大反射信号である。すなわち、この規準値を用いることで欠陥と健全との差異が明瞭となる。   And in the above-mentioned healthy part data, the maximum amplitude value of the reflected signal in the analysis area A in the healthy part K is obtained as a reference value. As shown in FIG. 12, the maximum amplitude value of the reflected signal is obtained in each section a of each scanning position in the healthy part K of the analysis area A, and those maximum values are set as reference values (step S4: Standard value calculation). The sound portion data and the reference value are stored in the storage portion 31c of the phased array flaw detector 3. This reference value is the maximum reflected signal in a sound weld. That is, the difference between the defect and the soundness becomes clear by using this reference value.

なお、健全試験体は被検査体における既知の健全部としてもよく、別途製作したものでも構わない。例えば、図12に示すように、模擬欠陥d2,d3間を健全部K(健全溶接部)とみなし、当該部分のみを走査して健全部データを作成する。また、健全部データの作成は、必ずしも健全溶接部の溶接線方向に沿って移動させる必要はなく、後述の検査部データ作成時と同一の移動距離とする必要もない。例えば、健全部K(健全溶接部)における所定の位置のみでセクタスキャンした走査データを健全部データとすることも可能である。   The sound test body may be a known sound portion of the object to be inspected, or may be separately manufactured. For example, as shown in FIG. 12, the portion between the simulated defects d2 and d3 is regarded as a healthy portion K (sound welded portion), and only the relevant portion is scanned to create healthy portion data. Moreover, the creation of the sound portion data does not necessarily have to be moved along the weld line direction of the sound weld portion, and it is not necessary to have the same movement distance as that when the inspection portion data described later is created. For example, scan data obtained by sector scanning only at a predetermined position in the healthy part K (sound welded part) can be used as the healthy part data.

次に、移動手段5の位置検出器51を取り付けたフェーズドアレイ探触子2を被検査体100の溶接部101の溶接線L方向へ移動する。そして、所定の各走査位置において、移動方向に略直交する方向において任意の点に集束するようにフォーカシングを行うと共に開始角度θ1〜終了角度θ2の角度範囲内で角度ピッチ毎にステアリングを行って横波を送信する。受信した反射信号により制御計測部31にて検査部データが作成される(ステップS5:検査部データ作成)。この検査部データも健全部データと同様に、設定した解析エリアAの深さAhの範囲内の反射信号のみを用いて、例えば図13に示す如きCスコープ画像として作成される。   Next, the phased array probe 2 to which the position detector 51 of the moving means 5 is attached is moved in the weld line L direction of the welded portion 101 of the device under test 100. Then, at each predetermined scanning position, focusing is performed so that the beam converges to an arbitrary point in a direction substantially orthogonal to the moving direction, and steering is performed for each angular pitch within the angle range of the start angle θ1 to the end angle θ2 to generate a transverse wave. Send. Inspection unit data is created by the control measurement unit 31 from the received reflection signal (step S5: inspection unit data creation). Similarly to the healthy part data, this inspection part data is also created as a C scope image as shown in FIG. 13, for example, using only the reflected signal within the set depth Ah of the analysis area A.

そして、図12に示すように、検査部データにおいて、溶接部101(走査範囲)における解析エリアAの各走査位置の各区画内で反射信号の最大振幅値をそれぞれ求める(ステップS6:最大値算出)。求めた各最大振幅値を先の規準値算出ステップS4で予め求めておいた規準値で除算して区画毎に信号強度比を算出する(ステップS7:信号強度比算出)。そして、この信号強度比が所定の閾値以上の場合に欠陥と判定する。判定に際し、例えば、図14に示す如く、検査部データを規準値で除した信号強度比をCスコープ画像として表示し判定することも可能であるが、図15に示す如く、信号強度比が所定の閾値以上となる反射信号のみをCスコープ画像として表示することも可能である。これにより、欠陥をより明瞭に判定することができる。   Then, as shown in FIG. 12, in the inspection part data, the maximum amplitude value of the reflected signal is obtained in each section of each scanning position of the analysis area A in the welded part 101 (scanning range) (step S6: maximum value calculation). ). The obtained maximum amplitude value is divided by the reference value obtained in advance in the previous reference value calculation step S4 to calculate the signal intensity ratio for each section (step S7: signal intensity ratio calculation). If the signal intensity ratio is equal to or greater than a predetermined threshold, it is determined as a defect. In the determination, for example, as shown in FIG. 14, it is possible to display and determine the signal intensity ratio obtained by dividing the inspection unit data by the reference value as a C scope image. However, as shown in FIG. It is also possible to display only a reflected signal that is equal to or greater than the threshold value as a C scope image. Thereby, a defect can be determined more clearly.

最後に、本発明の他の実施形態の可能性について言及する。なお、以下の実施形態において、上記実施形態と同様の部材等には同様の符号を付してある。
上記実施形態において、被検査体100を構成する鋼材102は、ニッケルを9%含有するニッケル鋼を用いた。しかし、この材料に限られるものではなく、例えばニッケルを7%含有するニッケル鋼であっても構わない。また、母材は、ステンレス鋼等の金属材料よりなり、ニッケルを6%以上10%以下含有するものであってもよい。さらに、例えば、被検査体100として、板厚が5mm以上70mm以下のアルミニウム合金よりなる母材102をアルミニウム合金で溶接した溶接部101にも適用可能である。なお、ニッケル鋼やアルミニウム合金と同等の超音波の高減衰材料にも適用可能である。
Finally, reference is made to the possibilities of other embodiments of the invention. In the following embodiments, members similar to those in the above embodiments are denoted by the same reference numerals.
In the said embodiment, the nickel steel which contains 9% of nickel was used for the steel material 102 which comprises the to-be-inspected object 100. FIG. However, the material is not limited to this material. For example, nickel steel containing 7% nickel may be used. Further, the base material may be made of a metal material such as stainless steel and may contain 6% or more and 10% or less of nickel. Furthermore, for example, the test object 100 can be applied to a welded portion 101 in which a base material 102 made of an aluminum alloy having a thickness of 5 mm to 70 mm is welded with an aluminum alloy. In addition, it is applicable also to the high attenuation | damping material of the ultrasonic wave equivalent to nickel steel or aluminum alloy.

上記実施形態において、被検査体100の検査対象部101として突合せ溶接部を例に説明したが、これに限られるものではなく、図16(a)〜(c)に示す如き裏板付突合せ溶接、重ね溶接や隅肉溶接の各溶接部にも適用することが可能である。   In the above-described embodiment, the butt welding portion has been described as an example of the inspection target portion 101 of the object 100 to be inspected. However, the butt welding portion is not limited thereto, but butt welding with a back plate as shown in FIGS. It is also possible to apply to each welded portion of lap welding and fillet welding.

また、上記実施形態において、フェーズドアレイ探触子2は、64個の振動子21が一列に配列されたリニアアレイ探触子を用いた。しかし、これに限られるものではなく、少なくとも32個以上の振動子を有し同時に励起可能なものであればよく、好ましくは64個以上の振動子を有しているとよい。同時に励起する振動子が多ければ横波の出力及び集束性がより向上し、さらに精度よく欠陥を検出することができる。また、リニアアレイ探触子に限らず、マトリクス状に配列された探触子であっても構わない。リニアアレイ探触子では線集束となるがマトリクスアレイ探触子では点集束となり、さらに集束性が向上する。また、マトリクス状に配置されているので、溶接部101に対する近接限界距離を短くでき、溶接部101に近接させて横波を集束させることも可能である。さらに、振動子を湾曲させても構わない。   In the above embodiment, the phased array probe 2 is a linear array probe in which 64 transducers 21 are arranged in a line. However, the present invention is not limited to this, as long as it has at least 32 vibrators and can be excited simultaneously, and preferably has 64 vibrators or more. If there are many vibrators excited simultaneously, the output and convergence of the transverse wave can be further improved, and defects can be detected with higher accuracy. Further, the probe is not limited to a linear array probe, and may be a probe arranged in a matrix. In the linear array probe, line focusing is performed, but in the matrix array probe, point focusing is performed, and the focusing performance is further improved. Moreover, since it arrange | positions at matrix form, the proximity | contact limit distance with respect to the welding part 101 can be shortened, and it is also possible to focus a transverse wave close to the welding part 101. FIG. Further, the vibrator may be curved.

また、上記実施形態において、横波を母材102で1回反射させた。しかし、反射は1回に限らず、超音波の減衰を考慮し反射信号が明瞭に検出可能であれば、複数回反射させても構わない。もちろん、母材102内で横波を反射させることなく、図7の如く検査対象部101に直接伝搬(直射)させるようにしてもよい。反射の有無及び反射回数は、例えば、母材102の板厚やフェーズドアレイ探触子2の近接限界距離、評価すべき箇所等に応じて適宜設定すればよい。   In the above embodiment, the transverse wave is reflected once by the base material 102. However, the reflection is not limited to once, and may be reflected a plurality of times as long as the reflected signal can be clearly detected in consideration of attenuation of the ultrasonic wave. Of course, it is also possible to directly propagate (directly irradiate) the inspection object portion 101 as shown in FIG. 7 without reflecting the transverse wave in the base material 102. The presence / absence of reflection and the number of reflections may be appropriately set according to the thickness of the base material 102, the proximity limit distance of the phased array probe 2, the location to be evaluated, and the like.

上記実施形態において、解析エリアAは1カ所のみ設定したが、複数設定してもよい。例えば、解析エリアAを被検査体100の板厚T方向に複数設定することで、欠陥の板厚T方向における位置推定が可能となる。また、解析エリアAの大きさも上記実施形態に限られるものではなく、評価すべき箇所に応じて適宜設定するとよい。例えば、溶接金属部101aと止端部101bとを異なる解析エリアをそれぞれ設定してもよい。さらに、健全部データに対する解析エリアと検査部データに対する解析エリアの範囲を異ならせても構わない。係る場合、検査部データの解析エリアを評価すべき部位近傍にさらに限定して、健全部データの解析エリアよりも小さくするとよい。これにより、さらに効率よく検査できる。   In the above embodiment, only one analysis area A is set, but a plurality of analysis areas A may be set. For example, by setting a plurality of analysis areas A in the plate thickness T direction of the object 100, the position of the defect in the plate thickness T direction can be estimated. Also, the size of the analysis area A is not limited to the above embodiment, and may be set as appropriate according to the location to be evaluated. For example, different analysis areas may be set for the weld metal portion 101a and the toe portion 101b. Furthermore, the range of the analysis area for the sound portion data and the analysis area for the inspection portion data may be different. In such a case, the analysis area of the examination part data may be further limited to the vicinity of the part to be evaluated and smaller than the analysis area of the healthy part data. Thereby, it can test | inspect more efficiently.

また、横波の周波数は、溶接部101及び母材102の材質や評価すべき箇所に応じて適宜設定するとよい。例えば、上記実施形態では、溶接金属部101aのニッケル含有量は母材102よりも多い。そのため、溶接金属部101a内の欠陥D1を検出する場合、止端部101bの場合より低周波の横波を用いて検査するとよい。アルミニウム合金の場合は、母材102の板厚に応じて周波数を調整すればよい。また、フェーズドアレイ探触子2の屈折角θも同様に溶接部101及び母材102の材質や評価すべき箇所に応じて適宜設定するとよい。   Further, the frequency of the transverse wave may be appropriately set according to the materials of the welded part 101 and the base material 102 and the location to be evaluated. For example, in the above-described embodiment, the nickel content of the weld metal part 101 a is greater than that of the base material 102. Therefore, when detecting the defect D1 in the weld metal part 101a, it is good to inspect using the transverse wave of a low frequency rather than the case of the toe part 101b. In the case of an aluminum alloy, the frequency may be adjusted according to the thickness of the base material 102. Similarly, the refraction angle θ of the phased array probe 2 may be appropriately set according to the materials of the welded portion 101 and the base material 102 and the location to be evaluated.

上記実施形態において、フェーズドアレイ探触子2を被検査体100の溶接部101の溶接線L方向へ移動して走査した。しかし、溶接線Lに略直交する方向へ走査しても構わない。但し、検査効率の点で、上記実施形態が優れている。   In the above embodiment, the phased array probe 2 is moved and scanned in the direction of the weld line L of the welded portion 101 of the device under test 100. However, you may scan in the direction substantially orthogonal to the weld line L. However, the above embodiment is superior in terms of inspection efficiency.

なお、本発明において、上記実施形態の如く、検査部データを規準値で除算して信号強度比を求める場合の他、実質的に「検査部データを規準値で除算して信号強度比を求め、信号強度比が所定値以上である場合に欠陥と判定する」態様のものを含まれる。例えば、規準値を検査部データで除算して信号強度比を求め、信号強度比が所定値以下となる場合に欠陥と判定する態様も含まれる。   In the present invention, in addition to the case where the signal intensity ratio is obtained by dividing the inspection section data by the reference value as in the above embodiment, the signal intensity ratio is substantially obtained by dividing the inspection section data by the reference value. , A mode in which a defect is determined when the signal intensity ratio is equal to or greater than a predetermined value is included. For example, a mode is also included in which a signal intensity ratio is obtained by dividing a reference value by inspection unit data, and a defect is determined when the signal intensity ratio is equal to or less than a predetermined value.

本発明は、例えば、LNGタンクの溶接部等を検査対象とする超音波検査方法及び超音波検査装置として利用することができる。   The present invention can be used, for example, as an ultrasonic inspection method and an ultrasonic inspection apparatus for inspecting a welded portion of an LNG tank or the like.

1:超音波検査装置、2:フェーズドアレイ探触子、3:フェーズドアレイ探傷器、4:モニタ(表示手段)、5:移動手段、6:入力手段、20:振動子群、21:振動子、31:制御手段、31a:制御部、31b:画像生成部、31c:記憶部、31d:演算部、32:パルサ・レシーバ、33:マルチプレクサ、51:位置検出器、100:被検査体(LNGタンク)、100a:表面、100b:裏面、101:検査対象部(突合せ溶接部)、101a:溶接金属部、101b:止端部、102:母材(ニッケル鋼)、103:裏板金、200:模擬試験片、200a:表面、200b:裏面、201:溶接部、202:母材、202a:表面、202b:裏面、300:模擬試験片、300a:表面、300b:裏面、301:溶接部、302:母材、302a:表面、302b:裏面、D,D1,D2:欠陥、d1〜4:模擬欠陥、de:遅延パターン、E、波形、e1:エコー、ES:反射エコー、F:焦点、K:健全部、L:溶接線(移動方向)、P:入射点、PS:パルス列、Q:セクタスキャン範囲、S:合成波面、T:板厚、t:遅延時間、TS:トリガー信号、Sa〜Se:波面、We:入射波、Wr:反射波、θ:屈折角 1: Ultrasonic inspection device, 2: Phased array probe, 3: Phased array flaw detector, 4: Monitor (display means), 5: Moving means, 6: Input means, 20: Transducer group, 21: Transducer , 31: control means, 31a: control unit, 31b: image generation unit, 31c: storage unit, 31d: calculation unit, 32: pulser / receiver, 33: multiplexer, 51: position detector, 100: object under test (LNG) Tank), 100a: front surface, 100b: back surface, 101: inspection target part (butt welded part), 101a: weld metal part, 101b: toe part, 102: base material (nickel steel), 103: back sheet metal, 200: Mock test piece, 200a: front surface, 200b: back surface, 201: weld, 202: base material, 202a: front surface, 202b: back surface, 300: mock test piece, 300a: front surface, 300b: back surface, 301: 302, base material, 302a: front surface, 302b: back surface, D, D1, D2: defect, d1-4: simulated defect, de: delay pattern, E, waveform, e1: echo, ES: reflection echo, F : Focus, K: healthy part, L: weld line (moving direction), P: incident point, PS: pulse train, Q: sector scan range, S: composite wavefront, T: plate thickness, t: delay time, TS: trigger Signal, Sa to Se: Wavefront, We: Incident wave, Wr: Reflected wave, θ: Refraction angle

Claims (14)

被検査体の検査対象部にフェーズドアレイ探触子から超音波を送信すると共に前記検査対象部で反射した前記超音波の反射波を受信し、受信した反射波の反射信号により前記検査対象部の欠陥を検出する超音波検査方法であって、
前記被検査体は、超音波の高減衰材料よりなる母材を有する液化天然ガスを貯蔵するタンクであり、
前記検査対象部は、前記母材を超音波の高減衰材料よりなる溶接金属により溶接した溶接部であり、
前記超音波は、横波であり、
予め、健全試験体において、前記フェーズドアレイ探触子を前記欠陥の存在しない健全溶接部の片側に配置し、任意の点に集束する横波を屈折角を異ならせて複数送信して、前記健全溶接部で反射した横波の反射信号より健全部データを作成すると共に前記反射信号の最大値を規準値として求めておき、
前記被検査体において、前記フェーズドアレイ探触子を前記溶接部の片側に配置すると共に任意の点に集束する横波を屈折角を異ならせて複数送信して、前記溶接部で反射した横波の反射信号より検査部データを作成し、
前記検査部データを前記規準値で除算して信号強度比を求め、
前記信号強度比が所定値以上である場合に前記欠陥と判定する超音波検査方法。
The ultrasonic wave is transmitted from the phased array probe to the inspection target part of the object to be inspected, the reflected wave of the ultrasonic wave reflected by the inspection target part is received, and the reflected wave of the received reflected wave is used to transmit the ultrasonic wave of the inspection target part. An ultrasonic inspection method for detecting defects, comprising:
The object to be inspected is a tank for storing liquefied natural gas having a base material made of an ultrasonic high attenuation material,
The inspection object part is a welded part welded with a weld metal made of an ultrasonic high-attenuation material,
The ultrasonic wave is a transverse wave,
In advance, in the sound test body, the phased array probe is arranged on one side of the sound welded portion where the defect does not exist, and a plurality of transverse waves focused at arbitrary points are transmitted with different refraction angles, and the sound welding is performed. The sound part data is created from the reflected signal of the transverse wave reflected by the part and the maximum value of the reflected signal is obtained as a reference value,
In the object to be inspected, the phased array probe is arranged on one side of the welded portion, and a plurality of transverse waves focused at an arbitrary point are transmitted with different refraction angles, and reflected by the welded portion. Create inspection data from the signal,
Divide the inspection section data by the reference value to obtain a signal strength ratio,
An ultrasonic inspection method for determining a defect when the signal intensity ratio is a predetermined value or more.
前記健全部データ及び前記検査部データに対し溶接部の少なくとも一部を含む部分からの信号を含む解析エリアをそれぞれ設定し、前記健全部データの解析エリア内における最大振幅値を前記規準値として求め、前記検査部データの解析エリア内の所定の区画毎に前記反射信号の最大振幅値を求めると共に前記規準値で除算することにより前記区画毎に前記信号強度比を求める請求項1記載の超音波検査方法。 An analysis area including a signal from a portion including at least a part of a welded portion is set for each of the healthy portion data and the inspection portion data, and a maximum amplitude value in the analysis area of the healthy portion data is obtained as the reference value. 2. The ultrasonic wave according to claim 1, wherein a maximum amplitude value of the reflected signal is obtained for each predetermined section in the analysis area of the inspection unit data, and the signal intensity ratio is obtained for each section by dividing by the reference value. Inspection method. 前記フェーズドアレイ探触子を少なくとも前記被検査体上で前記溶接部の溶接線に沿う方向に移動させて走査すると共に、前記検査部データの前記信号強度比をCスコープ画像として表示する請求項1又は2記載の超音波検査方法。 The phased array probe is scanned by moving the phased array probe on at least the inspection object along a weld line of the welded portion, and the signal intensity ratio of the inspection portion data is displayed as a C scope image. Or the ultrasonic inspection method of 2. 前記信号強度比が所定値以上となる信号のみを前記Cスコープ画像として表示する請求項4記載の超音波検査方法。 The ultrasonic inspection method according to claim 4, wherein only a signal having the signal intensity ratio equal to or greater than a predetermined value is displayed as the C scope image. 前記解析エリアを前記溶接部の厚さ方向に複数設ける請求項2〜4のいずれかに記載の超音波検査方法。 The ultrasonic inspection method according to claim 2, wherein a plurality of the analysis areas are provided in a thickness direction of the welded portion. 前記フェーズドアレイ探触子は、少なくとも32個以上の振動子を有する請求項1〜5のいずれかに記載の超音波検査方法。 The ultrasonic inspection method according to claim 1, wherein the phased array probe has at least 32 transducers. 前記フェーズドアレイ探触子は、64個以上の振動子を有する請求項6記載の超音波検査方法。 The ultrasonic inspection method according to claim 6, wherein the phased array probe has 64 or more transducers. 前記母材はニッケルを6%以上10%以下含有し、前記溶接金属はニッケルを55%以上含有する請求項1〜7のいずれかに記載の超音波検査方法。 The ultrasonic inspection method according to claim 1, wherein the base material contains 6% to 10% of nickel, and the weld metal contains 55% or more of nickel. 前記母材はアルミニウム合金よりなり、前記溶接金属はアルミニウム合金よりなる請求項1〜7のいずれかに記載の超音波検査方法。 The ultrasonic inspection method according to claim 1, wherein the base material is made of an aluminum alloy, and the weld metal is made of an aluminum alloy. 前記溶接部は、突合せ溶接、重ね溶接又は隅肉溶接のいずれかである請求項1〜9のいずれかに記載の超音波検査方法。 The ultrasonic inspection method according to claim 1, wherein the welded portion is any one of butt welding, lap welding, and fillet welding. 前記突合せ溶接は、裏板付き突合せ溶接である請求項10記載の超音波検査方法。 The ultrasonic inspection method according to claim 10, wherein the butt welding is butt welding with a back plate. 前記母材の板厚は、5mm以上70mm以下である請求項1〜11のいずれかに記載の超音波検査方法。 The ultrasonic inspection method according to claim 1, wherein a thickness of the base material is not less than 5 mm and not more than 70 mm. 前記横波を前記母材内で1回以上反射させる請求項1〜12のいずれかに記載の超音波検査方法。 The ultrasonic inspection method according to claim 1, wherein the transverse wave is reflected at least once in the base material. 被検査体の検査対象部にフェーズドアレイ探触子から超音波を送信すると共に前記検査対象部で反射した前記超音波の反射波を受信し、受信した反射波の反射信号により前記検査対象部の欠陥を検出する超音波検査装置であって、
前記被検査体は、超音波の高減衰材料よりなる母材を有する液化天然ガスを貯蔵するタンクであり、
前記検査対象部は、前記母材を超音波の高減衰材料よりなる溶接金属により溶接した溶接部であり、
前記超音波は、横波であり、
予め、健全試験体において、前記フェーズドアレイ探触子を前記欠陥の存在しない健全溶接部の片側に配置し、任意の点に集束する横波を屈折角を異ならせて複数送信して、前記健全溶接部で反射した横波の反射信号より健全部データを作成すると共に前記反射信号の最大値を規準値として求めておき、
前記被検査体において、前記フェーズドアレイ探触子を前記溶接部の片側に配置すると共に任意の点に集束する横波を屈折角を異ならせて複数送信して、前記溶接部で反射した横波の反射信号より検査部データを作成し、
前記検査部データを前記規準値で除算して信号強度比を求め、
前記信号強度比が所定値以上である場合に前記欠陥と判定する超音波検査装置。
The ultrasonic wave is transmitted from the phased array probe to the inspection target part of the object to be inspected, the reflected wave of the ultrasonic wave reflected by the inspection target part is received, and the reflected wave of the received reflected wave is used to transmit the ultrasonic wave of the inspection target part. An ultrasonic inspection apparatus for detecting defects,
The object to be inspected is a tank for storing liquefied natural gas having a base material made of an ultrasonic high attenuation material,
The inspection object part is a welded part welded with a weld metal made of an ultrasonic high-attenuation material,
The ultrasonic wave is a transverse wave,
In advance, in the sound test body, the phased array probe is arranged on one side of the sound welded portion where the defect does not exist, and a plurality of transverse waves focused at arbitrary points are transmitted with different refraction angles, and the sound welding is performed. The sound part data is created from the reflected signal of the transverse wave reflected by the part and the maximum value of the reflected signal is obtained as a reference value,
In the object to be inspected, the phased array probe is arranged on one side of the welded portion, and a plurality of transverse waves focused at an arbitrary point are transmitted with different refraction angles, and reflected by the welded portion. Create inspection data from the signal,
Divide the inspection section data by the reference value to obtain a signal strength ratio,
An ultrasonic inspection apparatus that determines the defect when the signal intensity ratio is a predetermined value or more.
JP2012259450A 2012-11-28 2012-11-28 Ultrasonic inspection method and ultrasonic inspection apparatus Active JP6026245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012259450A JP6026245B2 (en) 2012-11-28 2012-11-28 Ultrasonic inspection method and ultrasonic inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012259450A JP6026245B2 (en) 2012-11-28 2012-11-28 Ultrasonic inspection method and ultrasonic inspection apparatus

Publications (2)

Publication Number Publication Date
JP2014106130A JP2014106130A (en) 2014-06-09
JP6026245B2 true JP6026245B2 (en) 2016-11-16

Family

ID=51027742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012259450A Active JP6026245B2 (en) 2012-11-28 2012-11-28 Ultrasonic inspection method and ultrasonic inspection apparatus

Country Status (1)

Country Link
JP (1) JP6026245B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146520A (en) 2017-03-08 2018-09-20 三菱日立パワーシステムズ株式会社 Ultrasonic flaw detection method, system, program, and storage medium
CN107576729B (en) * 2017-09-15 2021-02-12 南京中车浦镇城轨车辆有限责任公司 Ultrasonic phased array-based weld defect detection and rapid extraction system and method
JP2019203722A (en) 2018-05-21 2019-11-28 三菱日立パワーシステムズ株式会社 Ultrasonic flaw detection method, system, program, and storage medium
JP7485942B2 (en) 2020-08-28 2024-05-17 日本製鉄株式会社 How to inspect laminated hooks for cracks

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222160A (en) * 1986-03-25 1987-09-30 Hitachi Constr Mach Co Ltd Strength measurement of seam-welding by means of supersonic wave
JPH05172789A (en) * 1991-12-19 1993-07-09 Chubu Electric Power Co Inc Ultrasonic flaw detector
JP3140157B2 (en) * 1992-04-09 2001-03-05 川崎重工業株式会社 Ultrasonic flaw detection method for planar defects
JP3833591B2 (en) * 2002-08-28 2006-10-11 トーヨーカネツ株式会社 Ultrasonic flaw detection method
CA2593893C (en) * 2007-01-26 2016-11-08 Roentgen Technische Dienst B.V. Improved technique and phased array transducer for ultrasonic inspection of coarse grained, anisotropic welds
JP5414977B2 (en) * 2007-06-22 2014-02-12 株式会社東芝 Ultrasonic flaw inspection apparatus and ultrasonic flaw inspection method
JP4792440B2 (en) * 2007-09-14 2011-10-12 株式会社日立製作所 Pipe weld inspection system
JP5421633B2 (en) * 2009-03-30 2014-02-19 中央精機株式会社 Ultrasonic exploration method and ultrasonic exploration apparatus
JP5519215B2 (en) * 2009-08-24 2014-06-11 東邦車輛株式会社 Axle shaft inspection method
JP5372875B2 (en) * 2010-09-10 2013-12-18 日立Geニュークリア・エナジー株式会社 Ultrasonic flaw detection method and apparatus using array probe
JP5342619B2 (en) * 2011-08-30 2013-11-13 三菱重工業株式会社 Program, processing apparatus and processing method for processing ultrasonic flaw detection data

Also Published As

Publication number Publication date
JP2014106130A (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5535044B2 (en) Circuit device for ultrasonic nondestructive testing of subjects
CN101124478B (en) Method and device for measuring flaw height in ultrasonic testing
JP4884930B2 (en) Ultrasonic flaw detection apparatus and method
US9423380B2 (en) Ultrasonic inspection method, ultrasonic test method and ultrasonic inspection apparatus
CN105699492A (en) An ultrasonographic method used for weld seam detection
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
JP2007315820A (en) Ultrasonic flaw inspection device and ultrasonic flaw inspection program
JP2008209364A (en) Apparatus and method for ultrasonically detecting flaw of tube
JP5306919B2 (en) Ultrasonic flaw detection method and apparatus
JP2011257384A (en) Method for imaging structure shape in welded part and device therefor
KR101915281B1 (en) Phased array ultrasonic testing system and testing method for weld zone on elbow pipes
JP2009540311A (en) Ultrasonic testing equipment with array probe
CN105021142A (en) Measuring method of laser lap joint welding seam width and device used by method
JP2013019715A (en) Ultrasonic inspection method and ultrasonic inspection device
JP6026245B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
Harvey et al. Finite element analysis of ultrasonic phased array inspections on anisotropic welds
JP5890437B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2016090272A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP6871534B2 (en) Comparison test piece and ultrasonic phased array flaw detection test method
JP5567471B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP5738684B2 (en) Ultrasonic flaw detection test method, ultrasonic flaw detection test apparatus and ultrasonic flaw detection test program incorporating surface shape identification processing of ultrasonic flaw detection test specimen
JP2007178186A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2008164396A (en) Flaw detection method and flaw detector used therefor
CN109142527A (en) A kind of defect positioning method for ultrasonic phase array weld seam detection
JP5567472B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161012

R150 Certificate of patent or registration of utility model

Ref document number: 6026245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250