JPH05172789A - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JPH05172789A
JPH05172789A JP3337128A JP33712891A JPH05172789A JP H05172789 A JPH05172789 A JP H05172789A JP 3337128 A JP3337128 A JP 3337128A JP 33712891 A JP33712891 A JP 33712891A JP H05172789 A JPH05172789 A JP H05172789A
Authority
JP
Japan
Prior art keywords
flaw detection
ultrasonic
defect
flaw
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3337128A
Other languages
Japanese (ja)
Inventor
Katsuhiro Onda
勝弘 恩田
Ichiro Furumura
一朗 古村
Satoshi Nagai
敏 長井
Taiji Hirasawa
泰治 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Chubu Electric Power Co Inc
Original Assignee
Toshiba Corp
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Chubu Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP3337128A priority Critical patent/JPH05172789A/en
Publication of JPH05172789A publication Critical patent/JPH05172789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable detecting of the position and dimension of flaws existing in a inspected body of metal material and the like and also the distribution status of neighbouring flaws and indicating on a display. CONSTITUTION:An ultrasonic flaw detector 12 having a pair of horizontal wave slanting angle flaw detection vibrators 131, 132 which emit ultrasonic waves slantingly at a certain refraction angle from the opposit direction with respect to the vertical line into the inspected body 11 surface, is provided. The flaw detection data from each of the horizontal wave slanting angle flaw detection vibrators 131, 132 which is accompanied by the movement of the ultrasonic flaw detector 12 in its flaw detection scanning area, is stored in a wave shape memory 17. An opening synthesize signal processing is made with this flaw detection data stored in the wave shape memory 17 and this result is again processed for synthesizing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属材料等の被検査体の
内部に存在する欠陥に対し、その位置及び寸法、近接欠
陥の分布状況等を検出し画像表示する超音波探傷装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detector for detecting the position and size of a defect existing inside an object to be inspected, such as a metallic material, and the distribution of adjacent defects, and displaying the image.

【0002】[0002]

【従来の技術】金属材料等の被検査体の内部に存在する
割れ,巣および剥離等の欠陥を超音波を用いて検出する
超音波探傷法においては、特に欠陥寸法の測定精度向上
と近接欠陥の分解能の向上が強く望まれており、これに
加えて、これら結果を画像化・視覚化して理解し易く表
示する技術の要求も高まっている。
2. Description of the Related Art In an ultrasonic flaw detection method for detecting defects such as cracks, cavities and peeling existing inside an object to be inspected, such as a metallic material, using ultrasonic waves, in particular, improvement of measurement accuracy of defect size and proximity defect Is strongly desired, and in addition to this, there is an increasing demand for a technique for displaying and visualizing these results in an easily understandable manner.

【0003】この目的を達成するための代表的技術の一
つとして、従来開口合成超音波信号処理法が知られてい
る。この手法は、垂直探傷法や斜角探傷法に適用可能に
したもので、ここで、垂直法による探傷装置として、第
7図に示すように、広い音場特性を有する、即ち比較的
小口径で、被検査体内部の広い範囲に対する欠陥情報を
含む探傷波形を検出し得る探触子1と、通常の超音波探
傷器2と、探触子走査中の各探触子位置での探傷波形を
デジタル値として収録するデータ収録系3と、この波形
データを信号処理演算し画像標示する解析処理系4によ
り構成されるものを例にとると、このものは開口合成信
号処理演算により解析すべく指定された領域に対し、図
8(a)に示すごとく探触子位置P1 に於ける欠陥エコ
ーのビーム路程l1 を半径とする円弧C1 (即ち推定さ
れる欠陥存在範囲)上に欠陥エコー振幅を加算されるよ
うになっており、これにより、ある欠陥が検出される探
触子位置範囲P1 からPn までの探傷波形データによっ
て円弧C1 からCn 上に欠陥エコー振幅が加算されるよ
うになる。この円弧C1 からCn の交点の位置が欠陥の
位置であり、この交点の位置は加算された欠陥エコー振
幅の値、即ち解析後の音圧分布の強度が交点周囲に較べ
著しく高くなるので、この音圧分布の最大値を用いて全
解析領域を規格化して表せば図8(b)に示すごとく急
峻な立ち上がりを示す欠陥像が再構成され、近接欠陥の
分解能の向上とともにどの様な敷居値レベルで切っても
欠陥寸法の変化が少ない結果が得られる。
As one of the typical techniques for achieving this purpose, the aperture synthetic ultrasonic signal processing method has been conventionally known. This method can be applied to the vertical flaw detection method and the oblique angle flaw detection method. Here, as shown in FIG. 7, the flaw detection apparatus according to the vertical method has a wide sound field characteristic, that is, a relatively small aperture. , A probe 1 capable of detecting flaw detection waveforms including defect information over a wide range inside the object to be inspected, a normal ultrasonic flaw detector 2, and flaw detection waveforms at respective probe positions during probe scanning. Taking as an example a data recording system 3 for recording as a digital value and an analysis processing system 4 for performing signal processing calculation and image display of the waveform data, this should be analyzed by aperture synthesis signal processing calculation. As shown in FIG. 8A, a defect is present on the specified region on an arc C 1 (that is, an estimated defect existing range) having a radius of the beam path l 1 of the defect echo at the probe position P 1. The echo amplitude is added, and As a result, the defect echo amplitude is added to the arcs C 1 to C n according to the flaw detection waveform data in the probe position range P 1 to P n where a certain defect is detected. The position of the intersection of the circular arcs C 1 to C n is the position of the defect, and the value of the added defect echo amplitude, that is, the strength of the sound pressure distribution after analysis is remarkably higher than the position of the intersection, because the position of the intersection is significantly higher than that around the intersection. If the entire analysis region is standardized by using the maximum value of this sound pressure distribution, a defect image showing a steep rise as shown in FIG. Even if it cuts at the threshold level, the result that the change in the defect size is small is obtained.

【0004】ところが、屈折角の比較的大きな斜角探傷
の場合や斜角探傷で被探傷面が凹面の曲率を有している
場合には、垂直探傷の場合とは異なった状況となる。こ
こで、斜角探傷における開口合成処理の場合を例にとっ
て示せば図9(a)のように、ある欠陥が検出される探
触子位置範囲P1 からPn までの走査により得られた探
傷波形データを用いて算出される推定欠陥存在位置範
囲、すなわち欠陥エコー振幅順次が加算されて行く円弧
1 からCn が、屈折角と探触子の移動方向の関係で比
較的角度を持たない近接した位置に描かれることにな
る。この場合も円弧C1 からCn の交点が欠陥であり、
加算された欠陥エコー振幅の値、すなわち解析後の音圧
分布はこの点で最大となるが、超音波ビームに直角な方
向に沿った交点の左右の円弧C1 からCn が接近してい
る部分では、交点ほどではないものの欠陥エコー振幅の
加算が比較的密なので、全解析領域を交点における音圧
分布の最大値で規格化した場合に、さきに述べた垂直法
の場合ほど急峻な音圧分布ではなく、図9(b)に示す
ように欠陥位置の左右の音圧分布の裾野がなだらかにな
ってしまう。
However, in the case of oblique flaw detection with a relatively large refraction angle or in the case of oblique flaw detection where the surface to be inspected has a concave curvature, a situation different from that in the case of vertical flaw detection is obtained. Here, as an example of the case of aperture synthesis processing in oblique flaw detection, as shown in FIG. 9A, a flaw detection waveform obtained by scanning from the probe position range P 1 to Pn where a certain defect is detected. The estimated defect existing position range calculated using the data, that is, the arcs C 1 to C n to which the defect echo amplitudes are sequentially added are close to each other with a relatively small angle due to the relationship between the refraction angle and the moving direction of the probe. It will be drawn at the position you did. Also in this case, the intersection of the arcs C 1 to C n is defective,
The value of the added defect echo amplitude, that is, the sound pressure distribution after analysis is maximum at this point, but the left and right circular arcs C 1 to C n of the intersections along the direction perpendicular to the ultrasonic beam are close to each other. In the part, the addition of the defect echo amplitude is relatively dense, although not as much as at the intersection, so if the entire analysis region is normalized by the maximum value of the sound pressure distribution at the intersection, the sound is as steep as the vertical method described above. Instead of the pressure distribution, as shown in FIG. 9B, the foot of the sound pressure distribution on the left and right of the defect position becomes gentle.

【0005】この傾向は斜角探傷で被探傷面が凹面の曲
率を有している場合には特に大きくなり、図10(a)
に示すように超音波ビームの進行方向と探触子の移動方
向の関係から、欠陥が検出される探触子位置範囲P1
らPn までの走査により得られた探触波形データを用い
て算出される推定欠陥存在位置範囲、即ち欠陥エコー振
幅順次が加算されて行く円弧C1 からCn が、ほとんど
同様な曲線上に描かれることとなる。従って、欠陥存在
位置近傍の音圧分布はこの曲線に沿って類似した値とな
り、全解析領域を音圧分布の最大値で規格化した結果を
示す図10(b)は、さきに述べた被検査面が平坦な場
合の斜角探傷による開口合成演算処理結果よりも、更に
欠陥位置の左右の音圧分布の裾野がなだらかになってし
まう。
This tendency becomes particularly large when the surface to be inspected has a concave curvature in the oblique angle inspection, as shown in FIG.
Based on the relationship between the traveling direction of the ultrasonic beam and the moving direction of the probe, the probe waveform data obtained by scanning from the probe position range P 1 to P n where the defect is detected is used as shown in FIG. The calculated estimated defect existing position range, that is, the arcs C 1 to C n to which the defect echo amplitudes are sequentially added are drawn on almost the same curve. Therefore, the sound pressure distribution near the defect existing position becomes a similar value along this curve, and FIG. 10B showing the result of normalizing the entire analysis region by the maximum value of the sound pressure distribution is the same as the one described above. The bottom of the sound pressure distribution on the left and right of the defect position becomes gentler than the result of the aperture synthesis calculation processing by oblique angle flaw detection when the inspection surface is flat.

【0006】[0006]

【発明が解決しようとする課題】このように、屈折角の
比較的大きな平面斜角探傷の場合や斜角探傷で被探傷面
が凹面の曲率を有している場合には、解析処理された結
果としての音圧分布が垂直探傷の場合とは異なって、な
だらかになってしまうが、このような場合に欠陥寸法測
定のための一般的な方法である最大音圧を基準として、
その50%等のレベルに敷居値を設け、この敷居値を横
切った点の距離から欠陥寸法を測定する方法を採用する
と、図11(a)および(b)に示すように音圧分布が
急峻である場合は敷居値レベルをどんな値に設定しても
欠陥寸法の変化は少ないが、音圧分布がなだらかな場合
には敷居値レベルの設定の高さで欠陥寸法は大幅に変化
してしまう欠点があった。
As described above, in the case of the plane oblique flaw detection with a relatively large refraction angle or in the case where the surface to be inspected has a concave curvature in the oblique flaw detection, the analysis processing is performed. Unlike the case of vertical flaw detection, the resulting sound pressure distribution becomes gentle, but in such a case, the maximum sound pressure, which is a general method for measuring defect dimensions, is used as a reference.
If a threshold value is set at a level such as 50% and the defect dimension is measured from the distance of the points that cross the threshold value, the sound pressure distribution becomes steep as shown in FIGS. 11 (a) and 11 (b). If the threshold level is set to any value, the defect size does not change much, but if the sound pressure distribution is gentle, the defect size changes significantly at the set threshold level. There was a flaw.

【0007】本発明は上記事情に鑑みてなされたもの
で、被検査物内部に存在する欠陥の断面像を、超音波の
入射角や曲面を有する被検査物表面の極率に影響されず
に再構成することが可能で、欠陥寸法測定のために設定
する敷居値の高さの影響が少なく、欠陥寸法測定精度の
高い超音波探傷装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and a cross-sectional image of a defect existing inside an object to be inspected is not affected by the incident angle of ultrasonic waves or the polarities of the surface of the object to be inspected having a curved surface. An object of the present invention is to provide an ultrasonic flaw detector that can be reconfigured, is less affected by the height of a threshold value set for defect dimension measurement, and has high defect dimension measurement accuracy.

【0008】[0008]

【課題を解決するための手段】本発明は、被検査物表面
における法線を挟んで反対方向から一定の屈折角で超音
波ビームを斜角入射する一対の横波斜角探傷用振動子を
有する超音波探触子と、この超音波探触子の探傷走査範
囲の移動にともなう上記各横波斜角探傷用振動子からの
探傷データを記憶する記憶手段と、この記憶手段に記憶
された探傷データについて開口合成信号処理を施し、さ
らにこれらの結果を再度合成処理するようになってい
る。
SUMMARY OF THE INVENTION The present invention has a pair of transverse wave oblique flaw detectors which obliquely enter an ultrasonic beam at a constant refraction angle from opposite directions across a normal line on the surface of the object to be inspected. Ultrasonic probe, storage means for storing the flaw detection data from each of the above-mentioned transverse wave oblique angle flaw transducers associated with the movement of the flaw detection scanning range of the ultrasound probe, and flaw detection data stored in this storage means Is subjected to aperture synthesis signal processing, and these results are subjected to synthesis processing again.

【0009】[0009]

【作用】このような探傷装置によれば、再構成された欠
陥像を明瞭に、即ち、屈折角の比較的大きな平面斜角探
傷の場合や斜角探傷で被探傷面が凹面の曲率を有してい
る場合に傾向の強い欠陥部の左右に広がった、なだらか
な解析処理後の音圧分布を欠陥部に集中した急峻な音圧
分布へと改善することができるので、欠陥寸法測定の際
に、音圧分布が敷居値を越えて大きくなる点と、再度、
敷居値以下に下がる点の距離から計算される欠陥寸法
が、設定する敷居値レベルを高く設定しても、あるいは
低く設定しても、その変動幅が少なく、即ち敷居値レベ
ル設定値の影響が少なく、欠陥寸法評価精度と近接欠陥
の分解能の向上を計ることが可能となる。
According to such a flaw detector, the reconstructed defect image can be clearly seen, that is, in the case of a plane oblique flaw detection with a relatively large refraction angle or a flaw surface having a concave curvature in the oblique flaw detection. When the defect size is measured, it is possible to improve the sound pressure distribution after the smooth analysis processing that spreads to the left and right of the defect with a strong tendency to a sharp sound pressure distribution concentrated in the defect. At the point where the sound pressure distribution increases beyond the threshold value,
The defect size calculated from the distance of the points falling below the threshold value has a small fluctuation range even if the threshold level to be set is set high or low, that is, the influence of the threshold level setting value is small. It is possible to improve the accuracy of defect dimension evaluation and the resolution of adjacent defects.

【0010】[0010]

【実施例】以下、本発明の一実施例を図面にしたがい説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1は本発明による超音波探傷装置の回路
構成を示すものである。この場合、被検査体11の表面
に置かれた超音波探触子12は、屈折角の絶対値が等し
く超音波入射方向が入射点における法線を挟んで反対方
向に設定されている一対の横波斜角振動子131および
132を内蔵しており、これら振動子のどちらを用いる
かを選択する探触子切換器14を経由して超音波探傷器
15に接続している。
FIG. 1 shows a circuit configuration of an ultrasonic flaw detector according to the present invention. In this case, the ultrasonic probe 12 placed on the surface of the device under test 11 has a pair of ultrasonic waves in which the absolute values of the refraction angles are equal and the ultrasonic wave incident directions are opposite to each other with the normal line at the incident point therebetween. Transverse wave bevel transducers 131 and 132 are built in, and are connected to an ultrasonic flaw detector 15 via a probe switching device 14 that selects which of these transducers to use.

【0012】この超音波探傷器15は各々の振動子への
超音波送信のための励振パルスを時分割で与えるととも
に、被検査物内部の欠陥等からの反射エコーを電気信号
に変換する。受信された探傷波形はA/Dコンバータ1
6に与えられデジタル値に変換され、波形メモリー17
に送られる。波形メモリー17は受信探傷波形を探触子
毎に記録するようにしている。なお、探触子12は探触
子駆動装置18に取り付けられており、探触子走査にと
もなう位置を探触子位置検出器19により検出されてい
る。この場合の探触子位置検出器19の出力も探傷波形
データとともに波形メモリー17に記録される。
The ultrasonic flaw detector 15 applies an excitation pulse for transmitting ultrasonic waves to each transducer in a time-division manner, and converts a reflection echo from a defect inside the object to be inspected into an electric signal. The received flaw detection waveform is the A / D converter 1
Waveform memory 17
Sent to. The waveform memory 17 records the received flaw detection waveform for each probe. The probe 12 is attached to the probe driving device 18, and the position associated with the probe scanning is detected by the probe position detector 19. The output of the probe position detector 19 in this case is also recorded in the waveform memory 17 together with the flaw detection waveform data.

【0013】波形メモリー17に収録された全探傷波形
データは演算処理装置20に送られ、開口合成処理演算
が行なわれる。この場合、解析範囲や解析条件の入力等
は入力装置21により行なわれ、また解析結果としての
断面像の表示等はCRTディスプレイ等の出力表示装置
22で行なわれる。また、探触子毎にわずかずつ異なる
屈折角や入射点位置等の初期条件は探触子特性メモリー
23にあらかじめ入力されており、解析の際に、この内
部データが参照される。なお、24は探傷制御装置で、
以上に述べた各機能ブロックの一連の動作を制御するよ
うにしている。次に、本実施例の動作を説明する。
All the flaw detection waveform data recorded in the waveform memory 17 are sent to the arithmetic processing unit 20 and the aperture synthesis processing operation is performed. In this case, the input of the analysis range and the analysis conditions is performed by the input device 21, and the display of the sectional image as the analysis result is performed by the output display device 22 such as a CRT display. Further, initial conditions such as a refraction angle and an incident point position that are slightly different for each probe are input in advance in the probe characteristic memory 23, and this internal data is referred to during analysis. In addition, 24 is a flaw detection control device,
A series of operations of each functional block described above are controlled. Next, the operation of this embodiment will be described.

【0014】まず、探傷操作を図2により説明すると、
最初に超音波探触子の走査範囲を指定する(ステップA
1)。次に、図3(a)に示すように振動子131より
左方向超音波ビームを出力し、この超音波ビームによる
探傷波形データ記録を記録する(ステップA2)。同様
に、図3(b)に示すように振動子132により右方向
超音波ビームを出力し、この超音波ビームによる探傷波
形データを記録する(ステップA3)。次に、探触子位
置データの記録を時分割に行ない(ステップA4)、探
触子を次の探傷位置に移動する(ステップA5)。この
動作を指定した全探傷範囲にわたり繰り返し、ステップ
A6でYESになると探傷動作を終了する。
First, the flaw detection operation will be described with reference to FIG.
First, specify the scanning range of the ultrasonic probe (step A
1). Next, as shown in FIG. 3A, a left ultrasonic beam is output from the oscillator 131, and flaw detection waveform data recording by this ultrasonic beam is recorded (step A2). Similarly, as shown in FIG. 3B, the transducer 132 outputs an ultrasonic beam in the right direction and records flaw detection waveform data by the ultrasonic beam (step A3). Next, the probe position data is recorded in time division (step A4), and the probe is moved to the next flaw detection position (step A5). This operation is repeated over the specified flaw detection range, and if YES in step A6, the flaw detection operation ends.

【0015】次に、解析操作を図4により説明すると、
この場合、解析領域を指定した(ステップB1)後、図
5(a)に示すように振動子131の左方向超音波ビー
ムに基づく全探傷波形データを用いて解析領域内の各ピ
クセルへ探傷エコー振幅値を信号の極性も含めて加算処
理し(ステップB2,ステップB3)、同様に、図5
(b)に示すように振動子132の右方向超音波ビーム
に基づく全探傷波形データを用いて領域内の各ピクセル
へ探傷エコー振幅値の加算処理を行なう(ステップB
4,ステップB5)。そして、このように左右各々の方
向から解析領域に入射された超音波ビームを用いた振幅
値の加算処理結果は互いに加算処理された(ステップB
6)後、各ピクセル毎に自乗処理されエネルギーに対応
する量に変換され(ステップB7)、最終的にはこの値
の解析領域内の最大値で各ピクセル毎の値が規格化さ
れ、開口合成処理による規格化された音圧分布として求
められる(ステップB8)。なお、左方向超音波ビーム
を発生する振動子と右方向超音波ビームを発生する振動
子131,132は屈折角,入射点およびシュー内ビー
ム路程等が製作時の誤差として僅かには異なっているの
で、探触子特性メモリー23に予め入力されているこれ
らの値を参照して、左右各々の方向からの解析結果が互
いに加算処理される際に補正が行なわれる(ステップB
9)。
Next, the analysis operation will be described with reference to FIG.
In this case, after the analysis region is designated (step B1), as shown in FIG. 5 (a), the flaw detection echo is performed on each pixel in the analysis region using all the flaw detection waveform data based on the left ultrasonic beam of the transducer 131. The amplitude value is added together with the signal polarity (step B2, step B3), and similarly, as shown in FIG.
As shown in (b), the processing for adding the flaw detection echo amplitude value to each pixel in the area is performed using all the flaw detection waveform data based on the right direction ultrasonic beam of the transducer 132 (step B).
4, step B5). Then, the addition processing results of the amplitude values using the ultrasonic beams incident on the analysis region from the left and right directions in this way are added to each other (step B).
6) After that, each pixel is squared and converted into an amount corresponding to energy (step B7), and finally the value of each pixel is standardized by the maximum value in the analysis region, and aperture synthesis is performed. The sound pressure distribution is standardized by the processing (step B8). It should be noted that the transducers that generate the leftward ultrasonic beam and the transducers 131 and 132 that generate the rightward ultrasonic beam are slightly different from each other in terms of manufacturing error in the refraction angle, the incident point, the beam path within the shoe, and the like. Therefore, by referring to these values which are input in advance in the probe characteristic memory 23, correction is performed when the analysis results from the left and right directions are added together (step B).
9).

【0016】このように左右両方向からの解析結果を再
度合成することにより、図6(a)に示す欠陥の再構成
像は、左右各々の方向からの解析結果が交わる交点近傍
で周囲に比べて音圧分布の著しく高い部分が存在するよ
うになり、また、図6(b)に示すように音圧分布の立
ち上がりが急峻になり、欠陥寸法を決定する際に敷居値
レベルの高低による影響を少なくできるようになる。
By thus recombining the analysis results from both the left and right directions, the reconstructed image of the defect shown in FIG. 6 (a) is compared with the surroundings in the vicinity of the intersection where the analysis results from the left and right directions intersect. There is a remarkably high portion of the sound pressure distribution, and the rise of the sound pressure distribution becomes steep as shown in FIG. 6 (b), and the influence of the level of the threshold value level when determining the defect size is affected. You can do less.

【0017】[0017]

【発明の効果】本発明によれば、屈折角の比較的大きな
平面斜角探傷や被探傷面が凹面の曲折を有している場合
の開口合成信号処理において、敷居値レベルを設定して
欠陥寸法を測定する際に問題となる解析処理後の欠陥像
の周辺のなだらかな音圧分布を、一つの探触子に組み込
んだ左右両方向に超音波ビームを放射する振動子により
データ収録した探傷波形から合成して解析することによ
り、欠陥近傍に集中した立ち上がりの急峻な音圧分布に
改善することができ、欠陥寸法を決定する際に設定する
敷居値レベルの高低による影響を少なくすることがで
き、欠陥寸法評価精度と近接欠陥の分解能の向上を計る
ことが可能になる。
According to the present invention, the threshold value level is set in the aperture synthesis signal processing in the case of flat bevel flaw detection with a relatively large refraction angle or the flaw detection surface having a concave bend, and a defect level is set. A flaw detection waveform in which the gentle sound pressure distribution around the defect image after analysis processing, which is a problem when measuring dimensions, is recorded as data by a transducer that emits ultrasonic beams in both left and right directions incorporated in one probe. By synthesizing and analyzing from, it is possible to improve the sound pressure distribution with a sharp rising edge concentrated in the vicinity of the defect, and it is possible to reduce the influence of the high and low threshold levels set when determining the defect size. It is possible to improve the accuracy of defect dimension evaluation and the resolution of adjacent defects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の回路構成を示すブロック
図。
FIG. 1 is a block diagram showing a circuit configuration of an embodiment of the present invention.

【図2】図1に示す実施例での探傷操作の手順を示すフ
ローチャート。
FIG. 2 is a flowchart showing a procedure of flaw detection operation in the embodiment shown in FIG.

【図3】図1に示す実施例での探傷操作を説明するため
の図。
FIG. 3 is a view for explaining a flaw detection operation in the embodiment shown in FIG.

【図4】図1に示す実施例での開口合成演算処理の手順
を示すフローチャート。
4 is a flowchart showing a procedure of aperture synthesis calculation processing in the embodiment shown in FIG.

【図5】図1に示す実施例での演算処理を説明するため
の図
FIG. 5 is a diagram for explaining arithmetic processing in the embodiment shown in FIG.

【図6】図1に示す実施例での解析結果を説明するため
の図。
FIG. 6 is a diagram for explaining an analysis result in the embodiment shown in FIG.

【図7】一般的な垂直開口合成法の処理系を示す図。FIG. 7 is a diagram showing a processing system of a general vertical aperture synthesis method.

【図8】垂直,斜角および被探傷面が凹面の曲率を有す
る場合の斜角探傷開口合成法の特性を示す図。
FIG. 8 is a diagram showing the characteristics of the oblique angle flaw detection aperture synthesis method in the case where the vertical surface, the oblique angle, and the surface to be inspected have a concave curvature.

【図9】垂直,斜角および被探傷面が凹面の曲率を有す
る場合の斜角探傷開口合成法の特性を示す図。
FIG. 9 is a diagram showing characteristics of the oblique angle flaw detection aperture synthesis method in the case where the vertical surface, the oblique angle, and the surface to be inspected have a concave curvature.

【図10】垂直,斜角および被探傷面が凹面の曲率を有
する場合の斜角探傷開口合成法の特性を示す図。
FIG. 10 is a diagram showing the characteristics of the oblique angle flaw detection aperture synthesis method in the case where the vertical surface, the oblique angle, and the surface to be inspected have a concave curvature.

【図11】従来技術による音圧分布の形状が欠陥寸法測
定に及ぼす影響を説明するための図。
FIG. 11 is a diagram for explaining the influence of the shape of the sound pressure distribution on the defect size measurement according to the conventional technique.

【符号の説明】[Explanation of symbols]

11…被検査体、12…超音波探触子、13…振動子、
14…探触子切換器、15…超音波探傷器、16…A/
Dコンバータ、17…波形メモリー、18…探触子駆動
装置、19…探触子位置検出器、20…演算処理装置、
23…探触子特性メモリー、24…探傷制御装置。
11 ... Inspected object, 12 ... Ultrasonic probe, 13 ... Transducer,
14 ... Probe switching device, 15 ... Ultrasonic flaw detector, 16 ... A /
D converter, 17 ... Waveform memory, 18 ... Probe drive device, 19 ... Probe position detector, 20 ... Arithmetic processing device,
23 ... Probe characteristic memory, 24 ... Flaw detection control device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長井 敏 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 平澤 泰治 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Nagai 2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Toshiba Keihin Office (72) Inventor Taiji Hirasawa 2-4, Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Address inside Toshiba Keihin office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検査物表面における法線を挟んで反対
方向から一定の屈折角で超音波ビームを斜角入射する一
対の横波斜角探傷用振動子を有する超音波探触子と、 この超音波探触子の探傷走査範囲の移動にともなう上記
各横波斜角探傷用振動子からの探傷データを記憶する記
憶手段と、 この記憶手段に記憶された探傷データについて開口合成
信号処理を施すとともにこれらの結果を再度合成処理す
るデータ処理手段とを具備したことを特徴とする超音波
探傷装置。
1. An ultrasonic probe having a pair of transverse-wave oblique-angle flaw-detecting transducers that obliquely enter an ultrasonic beam at a constant refraction angle from opposite directions across a normal line on the surface of the object to be inspected. Storage means for storing the flaw detection data from each of the above-mentioned transverse wave oblique angle flaw detection transducers accompanying the movement of the flaw detection scanning range of the ultrasonic probe, and aperture synthesis signal processing for the flaw detection data stored in this storage means. An ultrasonic flaw detector, comprising: a data processing unit that synthesizes these results again.
JP3337128A 1991-12-19 1991-12-19 Ultrasonic flaw detector Pending JPH05172789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3337128A JPH05172789A (en) 1991-12-19 1991-12-19 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3337128A JPH05172789A (en) 1991-12-19 1991-12-19 Ultrasonic flaw detector

Publications (1)

Publication Number Publication Date
JPH05172789A true JPH05172789A (en) 1993-07-09

Family

ID=18305711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3337128A Pending JPH05172789A (en) 1991-12-19 1991-12-19 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPH05172789A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189349A (en) * 2005-01-06 2006-07-20 Kawasaki Heavy Ind Ltd Nondestructive defect inspection system
JP2014106130A (en) * 2012-11-28 2014-06-09 Non-Destructive Inspection Co Ltd Ultrasonic inspection method and ultrasonic inspection device
WO2020184521A1 (en) * 2019-03-13 2020-09-17 Jfeスチール株式会社 Ultrasonic flaw detection method, ultrasonic flaw detection device, facility for manufacturing steel material, method for manufacturing steel material, and steel material quality control method
WO2020250379A1 (en) * 2019-06-13 2020-12-17 Jfeスチール株式会社 Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189349A (en) * 2005-01-06 2006-07-20 Kawasaki Heavy Ind Ltd Nondestructive defect inspection system
JP2014106130A (en) * 2012-11-28 2014-06-09 Non-Destructive Inspection Co Ltd Ultrasonic inspection method and ultrasonic inspection device
WO2020184521A1 (en) * 2019-03-13 2020-09-17 Jfeスチール株式会社 Ultrasonic flaw detection method, ultrasonic flaw detection device, facility for manufacturing steel material, method for manufacturing steel material, and steel material quality control method
JPWO2020184521A1 (en) * 2019-03-13 2021-03-18 Jfeスチール株式会社 Ultrasonic flaw detection method, ultrasonic flaw detector, steel material manufacturing equipment, steel material manufacturing method, and steel material quality control method
WO2020250379A1 (en) * 2019-06-13 2020-12-17 Jfeスチール株式会社 Ultrasound flaw detection method, ultrasound flaw detection device, manufacturing equipment line for steel material, manufacturing method for steel material, and quality assurance method for steel material
CN113994204A (en) * 2019-06-13 2022-01-28 杰富意钢铁株式会社 Ultrasonic flaw detection method, ultrasonic flaw detection device, steel product manufacturing equipment, steel product manufacturing method, and steel product quality assurance method
CN113994204B (en) * 2019-06-13 2024-04-26 杰富意钢铁株式会社 Ultrasonic flaw detection method, ultrasonic flaw detection device, and steel manufacturing method

Similar Documents

Publication Publication Date Title
JP5535044B2 (en) Circuit device for ultrasonic nondestructive testing of subjects
JPH07167842A (en) Method and device for measuring and controlling angle of refraction of ultrasonic wave
US4744250A (en) Method for classification of point and elongated single defects in workpieces by means of ultrasonics
Bazulin Comparison of systems for ultrasonic nondestructive testing using antenna arrays or phased antenna arrays
US20180231508A1 (en) Ultrasonic inspection configuration with beam overlap verification
WO2015001624A1 (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, and weld inspection method for panel structure
JPS6317184B2 (en)
US6142019A (en) Method of determining surface acoustic wave paths
JP3535417B2 (en) Ultrasonic defect height measuring device and defect height measuring method
WO2015111143A1 (en) Ultrasonic flaw detection device for inspecting welds, ultrasonic flaw detection method for inspecting welds, and railroad-car-structure manufacturing method using same
JPH05172789A (en) Ultrasonic flaw detector
JP7233646B2 (en) ULTRASOUND INSPECTION METHOD, ULTRASOUND INSPECTION APPARATUS AND PROGRAM
RU2651431C1 (en) Method of industrial ultrasound diagnostics of vertically oriented defects of prismatic metal products and device for its implementation
JP2002243703A (en) Ultrasonic flaw detector
JPH09171005A (en) Method for discriminating kind of defect by ultrasonic flaw detection
JP3746413B2 (en) Ultrasonic flaw detection result display method and ultrasonic flaw detection apparatus
JPH0419558A (en) Image processing method for ultrasonic flaw detection test
JP3637146B2 (en) Method and apparatus for determining wounds to be inspected
JP2642459B2 (en) Ultrasonic inspection image processing equipment
JP2001013114A (en) Ultrasonic inspection method and device
SU1516958A1 (en) Method of determining configuration of defect in articles
JP2761928B2 (en) Non-destructive inspection method and device
JPH1082766A (en) Ultrasonic flaw detector and unit for assisting discrimination of defect
JPH11211706A (en) Ultrasonic inspection apparatus of fan shape scanning type
JPS60190855A (en) Dual-probe ultrasonic flaw detection apparatus