JP3833591B2 - Ultrasonic flaw detection method - Google Patents

Ultrasonic flaw detection method Download PDF

Info

Publication number
JP3833591B2
JP3833591B2 JP2002249485A JP2002249485A JP3833591B2 JP 3833591 B2 JP3833591 B2 JP 3833591B2 JP 2002249485 A JP2002249485 A JP 2002249485A JP 2002249485 A JP2002249485 A JP 2002249485A JP 3833591 B2 JP3833591 B2 JP 3833591B2
Authority
JP
Japan
Prior art keywords
wave
ultrasonic
defect
plate
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002249485A
Other languages
Japanese (ja)
Other versions
JP2004085478A (en
Inventor
英之 向野
一行 中川
洋一 淵元
尚重 久保
昌典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Toyo Kanetsu KK
Original Assignee
Osaka Gas Co Ltd
Toyo Kanetsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Toyo Kanetsu KK filed Critical Osaka Gas Co Ltd
Priority to JP2002249485A priority Critical patent/JP3833591B2/en
Publication of JP2004085478A publication Critical patent/JP2004085478A/en
Application granted granted Critical
Publication of JP3833591B2 publication Critical patent/JP3833591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0428Mode conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、隅肉溶接部、例えばタンク底板外周部のアニュラー板とタンク側板との間の溶接部における欠陥を検出する探傷方法に関するものである。
【0002】
【従来の技術】
重油や液化ガス等を貯蔵するためのタンクは、一般に、タンク底板の外周部であるアニュラー板上にタンク側板を置き、両者を隅肉溶接によって接合して構成されている。アニュラー板とタンク側板との間の隅肉溶接のアニュラー板表面側(上面)に、万が一生じる略鉛直方向の亀裂を探傷するため、必要に応じ探傷試験を行う。
【0003】
従来一般の探傷試験は、超音波探触子によりアニュラー板に超音波パルスを伝搬させ、欠陥により反射される超音波を受信することで、欠陥の存在を検出するというものである。また、アニュラー板とタンク側板との間の隅肉溶接部での欠陥のうち、アニュラー板の表面側に発生する亀裂を探傷しようとする場合は、超音波探触子として、アニュラー板表面を伝播する縦波、いわゆるクリーピング波を送受信するタイプのものが用いられる。隅肉溶接形状及び探傷しようとする欠陥は異なるが、特開2000−97919号公報に記載のように、クリーピング波探触子から発せられる横波を板材の底面ないしは裏面にて反射させ、その際に生ずる二次クリーピング波を隅肉溶接部の欠陥にて反射させて、その反射クリーピング波を送信と同経路で受信して欠陥を見出すという方法もある。
【0004】
【発明が解決しようとする課題】
しかしながら、上述したようなクリーピング波タイプの超音波探触子を用いた従来の探傷方法では、探触子に受信される反射波のレベルが低い、言い換えるならばS/N比が低いという問題点があった。
【0005】
そこで、本発明の目的は、高S/N比にて、隅肉溶接部における欠陥を高精度で検出することのできる超音波式探傷方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の本発明は、タンクにおけるアニュラー板とタンク側板のような第1板材と第2板材との間の隅肉溶接部の欠陥を検出する超音波式探傷方法において、第1板材の表面から裏面に向かって横波の超音波パルスを発信するステップと、第1板材の裏面にて反射された横波が隅肉溶接部の欠陥にて反射されることにより生じたクリーピング波を受信して電気的信号に変換するステップと、前記電気的信号の有無を検出することにより欠陥の有無を検出するステップとを含むことを特徴としている。
【0007】
かかる探傷方法では、送信波を横波とし、反射波のみがクリーピング波になるようにしている。横波は伝搬中にモード変換することは極めて少なく、よってモード変換に伴うエネルギー損失は小さい。一方、クリーピング波は、伝搬中に横波にモード変換していき、このためのエネルギー損失が大きい。従って、片道だけがクリーピング波となる本発明による方法では、受信信号のレベルは大きく、高精度で欠陥の検出が可能である。
【0008】
また、前記の本発明による探傷方法を有効に実施するための装置としては、第1板材の表面から裏面に向かって横波の超音波パルスを発信することができ且つ第1板材の表面を伝搬するクリーピング波の超音波を受信して電気的信号とすることができる超音波探触子と、超音波探触子から超音波パルスを発生させるためのパルス発生手段と、超音波探触子がクリーピング波の超音波を受信して発生する電気的信号を処理し、当該電気的信号の有無から隅肉溶接部の欠陥を検出する信号処理手段とを備えるものが考えられる。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。
【0010】
図1は、本発明による超音波式探傷装置10を概略的に示したものである。図示実施形態における探傷装置10は、液化天然ガス等のタンク12におけるアニュラー板(第1板材)14とタンク側板(第2板材)16との間の隅肉溶接部18に生じた亀裂等の欠陥20を検出するためのものである。
【0011】
図1において、符号22は超音波探触子である。この超音波探触子22は、図1の点線の矢印で示すように、被検材であるアニュラー板14の表面から裏面に向かって横波を送信することができ、且つ、図1の実線及び一点鎖線の矢印で示すように、アニュラー板14の表面を伝搬するクリーピング波(縦波)を受信することができるタイプのものであるが、クリーピング波の送受信用に作られた一般的なクリーピング波タイプの探触子も、クリーピング波の発生と同時に横波も発生されるため、用いることができる。
【0012】
超音波探触子22は、図示しないが、超音波パルスの送信部材と受信部材とを兼ねる一つの圧電素子を有している。この圧電素子には、パルスを発生させるパルス発生回路24、及び、受信した信号を処理してブラウン管26に表示する信号処理回路28とが接続されている。
【0013】
パルス発生回路24には掃引発生回路30が接続されている。掃引発生回路30は鋸歯状の掃引信号を発生し、この掃引信号から一定の周期のトリガーパルスを生成する。パルス発生回路24はこのトリガーパルスを受けて駆動され、超音波探触子22の圧電素子に大きなエネルギーを加えて超音波パルスを発生させる。圧電素子からのこの超音波パルスはアニュラー板14にクリーピング波及び横波として伝搬される。
【0014】
なお、掃引発生回路30で発生された掃引信号は水平増幅されてブラウン管26のX軸偏光板に印加され、スポットを左から右へと振るよう機能する。
【0015】
また、超音波探触子22の圧電素子に接続される信号処理回路28は、圧電素子がクリーピング波を受信して発生した電気的信号を増幅する高周波増幅回路32、そしてその増幅された信号を検波してビデオ増幅する検波・ビデオ増幅回路34、更にこの検波・ビデオ増幅回路34からの出力を垂直増幅する垂直増幅回路36とを有している。垂直増幅回路36を経た信号はブラウン管26のY軸偏向板に印加されることで、ブラウン管26にその受信信号の波形が表示される。
【0016】
なお、図1に示す回路には、検波方式を切り替える検波切替回路38や、信号を時間的に限定して取り出すためのゲート回路40等の周知の回路が含まれている。
【0017】
図示実施形態の超音波式探傷装置10は、更に、超音波探触子22を支持する台車42を備えている。この台車42は、タンク側板16からの距離を一定に維持しながらアニュラー板14上をタンク周方向に自動的に走行することができるよう構成されている。
【0018】
次に、上述したような構成の探傷装置10を用いて、アニュラー板14とタンク側板16との間の隅肉溶接部18に発生した亀裂等の欠陥20を検出する方法について説明する。
【0019】
まず、前処理として、開放されたタンク12のアニュラー板14の形状及び板厚を確認する。次いで、隅肉溶接部18に隣接するアニュラー板14の表面部位であって、亀裂等の欠陥40が発生し得る範囲を特定する。更に、アニュラー板14の板厚と、タンク側板16の内面に対する超音波式探傷装置10の設置位置(すなわち、超音波探触子22の超音波パルスの入射位置からタンク側板16までの距離)とから超音波パルスの伝搬距離を算出し、前記の亀裂20が発生し得る範囲からスキャニング範囲を算出する。この算出値に基づき、探傷装置10の時間軸や探傷感度等の校正を行う。
【0020】
また、アニュラー板14の表面に対し超音波探触子22の密着性を向上させてより良好な探傷試験が可能となるよう、適当な接着媒質をアニュラー板14上に塗布する等の処理を行う。
【0021】
この後、探傷装置10の台車42をアニュラー板14上の所定位置にセットし、台車42をタンクの周方向に移動させながら、超音波パルスを発して探傷試験を行う。
【0022】
超音波探触子22の圧電素子にパルス発生回路24から電気的エネルギーが印加されると、超音波パルスが発せられる。この超音波パルスの縦波成分のうちその第一臨界角でアニュラー板14に入射したものは、クリーピング波となってタンク径方向に沿って外方に伝搬する。また、クリーピング波の発生と同時に、アニュラー板14の表面から裏面へと超音波パルスの横波が伝えられる。この横波はアニュラー板14の裏面で反射し、その一部が隅肉溶接部18に向かう。
【0023】
このようにクリーピング波及び横波が発せられた時、超音波探触子22に正対する位置の隅肉溶接部18に亀裂20が入っていた場合、まず、クリーピング波がその亀裂20で反射され、クリーピング波のまま超音波探触子22に戻り圧電素子により電気的な受信信号に変換される(図1の一点鎖線の矢印を参照)。そして、信号処理回路28にて処理された後、ブラウン管26にその信号が表示される。図2において符号aで示す波形がその受信反射波を表したものである。
【0024】
一方、超音波探触子22から発せられた横波はアニュラー板14の裏面で反射した後、亀裂20に到達する(図1の点線の矢印を参照)。この亀裂20に到達した横波はモード変化してクリーピング波となり、超音波探触子22に向かって逆行し、受信される(図1の実線の矢印を参照)。この反射クリーピング波も圧電素子により電気的な受信信号に変換され、信号処理回路28にて処理された後、ブラウン管26にその信号が表示される。その信号は、図2において符号bで示すものである。
【0025】
ここで、送受信ともクリーピング波の場合に得られた信号aの受信レベルと、横波からクリーピング波にモード変換した場合に得られた信号bの受信レベルとを比較すると、後者が前者よりも格段に大きくなっていることが、図2から理解されよう。これは、クリーピング波は伝搬中に横波にモード変換するため、エネルギー損失が著しく大きく、横波は伝搬中のモード変換は殆どなく、伝搬中のエネルギー損失は極めて少ないということに起因する。すなわち、送信波及び反射波が共にクリーピング波の場合は、反射波のみがクリーピング波の場合の2倍以上のエネルギー損失が生じるため、受信信号のレベルに大きな差が生じる。従って、横波からクリーピング波にモード変換して亀裂20を検出する方法の方がS/N比が高く、確実に亀裂20の検出が可能となる。
【0026】
このように、横波・クリーピング波による超音波式探傷方法のみを用いて、受信信号bの有無から亀裂20の検出が可能であるが、亀裂20の位置や深さ、或いは超音波の進路中の障害物の存在等、種々の原因により、いずれか一方の信号が現れないことが生じ得る。従って、信号a,bの少なくとも一方を受信した場合には、亀裂等の欠陥20の存在の疑いがあるものとして取り扱うことが好適である。
【0027】
また、アニュラー板14の材料とその材料での超音波の速度とは分かっている。例えばアニュラー板14がSM400である場合、横波の音速は3230m/s、縦波は5920m/sである。従って、アニュラー板14の板厚、及び、タンク側板16内面からの超音波探触子22までの距離を予め測定しておけば、信号a,bの現れる時間から検出した欠陥20の同定を行うことができる。これにより、より確実な欠陥検出が可能となる。
【0028】
なお、隅肉溶接部18に欠陥20が全くない場合には、反射波が発生しないため、信号a,bのいずれも発生しないため、正常な状態であると判断することができる。
【0029】
以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されないことはいうまでもない。
【0030】
例えば、上記実施形態では、受信信号の処理をアナログ的に行っているが、デジタル回路によってデジタル処理、デジタル表示することができ、或いは、デジタル信号から欠陥位置の特定や信号の記録等を行うことができる。
【0031】
また、台車42は自動走行タイプのものではなくてもよい。或いはまた、特定の箇所のみを探傷試験するような場合には、台車42は不要である。
【0032】
更に、上記実施形態では、アニュラー板14とタンク側板16との間の隅肉溶接部18の欠陥20を検出するものとしているが、上記のSM400に限られず、9%ニッケル鋼等の他の材料隅肉溶接部の探傷に対しても本発明は適用可能である。
【0033】
【発明の効果】
以上述べたように、本発明によれば、横波の超音波パルスを発信し、それが亀裂等の欠陥により反射されて形成されるクリーピング波を受信することで、より高いレベルの受信信号が得られ、板材間の隅肉溶接部に生じた欠陥を高精度で検出することが可能となる。
【図面の簡単な説明】
【図1】本発明による超音波式探傷装置の一実施形態を示す概略説明図である。
【図2】図1の超音波式探傷装置により得られる信号の波形を示すグラフである。
【符号の説明】
10…超音波式探傷装置、12…タンク、14…アニュラー板(第1板材)、16…タンク側板(第2板材)、18…隅肉溶接部、20…欠陥、22…超音波探触子、24…パルス発生回路(パルス発生手段)、26…ブラウン管、28…信号処理回路(信号処理手段)、42…台車。
[0001]
[Industrial application fields]
The present invention, fillet welds, which for example relates to a testing method for detecting defects in welds between the annular plate and the tank side plate of the tank bottom plate outer periphery.
[0002]
[Prior art]
A tank for storing heavy oil, liquefied gas, or the like is generally configured by placing a tank side plate on an annular plate, which is the outer peripheral portion of the tank bottom plate, and joining them together by fillet welding. A flaw detection test is performed as necessary to detect cracks in the vertical direction that occur in the surface (upper surface) of the annular plate between fillet welds between the annular plate and the tank side plate.
[0003]
A conventional general flaw detection test is to detect the presence of a defect by propagating an ultrasonic pulse to an annular plate using an ultrasonic probe and receiving an ultrasonic wave reflected by the defect. In addition, among the defects in the fillet welds between the annular plate and the tank side plate, when trying to detect cracks occurring on the surface side of the annular plate, it propagates on the surface of the annular plate as an ultrasonic probe. A longitudinal wave that transmits and receives so-called creeping waves is used. Although the fillet weld shape and the defect to be flawed are different, as described in Japanese Patent Application Laid-Open No. 2000-97919, the transverse wave emitted from the creeping wave probe is reflected on the bottom surface or back surface of the plate material. There is also a method in which the secondary creeping wave generated in the above is reflected by a defect in the fillet weld and the reflected creeping wave is received through the same path as the transmission to find the defect.
[0004]
[Problems to be solved by the invention]
However, in the conventional flaw detection method using the creeping wave type ultrasonic probe as described above, the level of the reflected wave received by the probe is low, in other words, the S / N ratio is low. There was a point.
[0005]
Therefore, an object of the present invention is to provide an ultrasonic flaw detection method capable of detecting a defect in a fillet weld with high accuracy at a high S / N ratio.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention according to claim 1 is directed to ultrasonic detecting a defect of a fillet weld between a first plate and a second plate such as an annular plate and a tank side plate in a tank. In the type flaw detection method, a step of transmitting a transverse wave ultrasonic pulse from the front surface of the first plate material toward the back surface, and the transverse wave reflected by the back surface of the first plate material is reflected by a defect of the fillet weld. Receiving a creeping wave generated by the above-mentioned method and converting it into an electrical signal, and detecting the presence or absence of a defect by detecting the presence or absence of the electrical signal.
[0007]
In such a flaw detection method, the transmitted wave is a transverse wave, and only the reflected wave is a creeping wave. Transverse waves rarely undergo mode conversion during propagation, and thus energy loss associated with mode conversion is small. On the other hand, the creeping wave undergoes mode conversion into a transverse wave during propagation, resulting in a large energy loss. Therefore, in the method according to the present invention in which only one way becomes a creeping wave, the level of the received signal is large and the defect can be detected with high accuracy.
[0008]
Further, as an apparatus for effectively carrying out the flaw detection method according to the present invention, a transverse ultrasonic pulse can be transmitted from the surface of the first plate material to the back surface, and propagates through the surface of the first plate material. An ultrasonic probe that can receive an ultrasonic wave of a creeping wave and convert it into an electrical signal, a pulse generation means for generating an ultrasonic pulse from the ultrasonic probe, and an ultrasonic probe It is conceivable to include signal processing means for processing an electrical signal generated by receiving ultrasonic waves of a creeping wave and detecting a defect in the fillet weld from the presence or absence of the electrical signal .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
FIG. 1 schematically shows an ultrasonic flaw detector 10 according to the present invention. The flaw detection apparatus 10 in the illustrated embodiment includes a defect such as a crack generated in a fillet weld 18 between an annular plate (first plate member) 14 and a tank side plate (second plate member) 16 in a tank 12 of liquefied natural gas or the like. This is for detecting 20.
[0011]
In FIG. 1, reference numeral 22 denotes an ultrasonic probe. The ultrasonic probe 22 can transmit a transverse wave from the front surface of the annular plate 14 as the test material to the back surface, as indicated by the dotted arrow in FIG. 1, and the solid line in FIG. As indicated by the one-dot chain line arrow, the creeping wave (longitudinal wave) propagating on the surface of the annular plate 14 can be received. A creeping wave type probe can also be used because a transverse wave is generated simultaneously with the generation of the creeping wave.
[0012]
Although not shown, the ultrasonic probe 22 has one piezoelectric element that serves as both an ultrasonic pulse transmitting member and a receiving member. Connected to this piezoelectric element are a pulse generation circuit 24 for generating a pulse and a signal processing circuit 28 for processing the received signal and displaying it on the cathode ray tube 26.
[0013]
A sweep generation circuit 30 is connected to the pulse generation circuit 24. The sweep generation circuit 30 generates a sawtooth sweep signal, and generates a trigger pulse having a constant period from the sweep signal. The pulse generation circuit 24 is driven in response to this trigger pulse, and generates an ultrasonic pulse by applying large energy to the piezoelectric element of the ultrasonic probe 22. This ultrasonic pulse from the piezoelectric element is propagated to the annular plate 14 as a creeping wave and a transverse wave.
[0014]
The sweep signal generated by the sweep generation circuit 30 is horizontally amplified and applied to the X-axis polarizing plate of the cathode ray tube 26, and functions to swing the spot from left to right.
[0015]
The signal processing circuit 28 connected to the piezoelectric element of the ultrasonic probe 22 includes a high-frequency amplifier circuit 32 that amplifies an electrical signal generated when the piezoelectric element receives a creeping wave, and the amplified signal. And a video amplification circuit 34 for detecting the video signal and amplifying the video signal, and a vertical amplification circuit 36 for vertically amplifying the output from the detection / video amplification circuit 34. The signal that has passed through the vertical amplifier circuit 36 is applied to the Y-axis deflection plate of the cathode ray tube 26 so that the waveform of the received signal is displayed on the cathode ray tube 26.
[0016]
The circuit shown in FIG. 1 includes a known circuit such as a detection switching circuit 38 for switching the detection method and a gate circuit 40 for taking out a signal in a limited time.
[0017]
The ultrasonic flaw detection apparatus 10 of the illustrated embodiment further includes a carriage 42 that supports the ultrasonic probe 22. The carriage 42 is configured to automatically travel on the annular plate 14 in the circumferential direction of the tank while maintaining a constant distance from the tank side plate 16.
[0018]
Next, a method for detecting a defect 20 such as a crack generated in the fillet weld portion 18 between the annular plate 14 and the tank side plate 16 using the flaw detection apparatus 10 having the above-described configuration will be described.
[0019]
First, as a pretreatment, the shape and thickness of the annular plate 14 of the opened tank 12 are confirmed. Next, the surface region of the annular plate 14 adjacent to the fillet weld portion 18 and a range in which a defect 40 such as a crack can occur is specified. Further, the thickness of the annular plate 14 and the installation position of the ultrasonic flaw detector 10 with respect to the inner surface of the tank side plate 16 (that is, the distance from the incident position of the ultrasonic pulse of the ultrasonic probe 22 to the tank side plate 16). From this, the propagation distance of the ultrasonic pulse is calculated, and the scanning range is calculated from the range in which the crack 20 can occur. Based on this calculated value, the time axis and flaw detection sensitivity of the flaw detection apparatus 10 are calibrated.
[0020]
Further, a treatment such as applying an appropriate adhesive medium on the annular plate 14 is performed so that the adhesion of the ultrasonic probe 22 to the surface of the annular plate 14 is improved and a better flaw detection test is possible. .
[0021]
Thereafter, the carriage 42 of the flaw detection apparatus 10 is set at a predetermined position on the annular plate 14, and the flaw detection test is performed by emitting ultrasonic pulses while moving the carriage 42 in the circumferential direction of the tank.
[0022]
When electrical energy is applied from the pulse generation circuit 24 to the piezoelectric element of the ultrasonic probe 22, an ultrasonic pulse is generated. Of the longitudinal wave component of this ultrasonic pulse, the one incident on the annular plate 14 at the first critical angle becomes a creeping wave and propagates outward along the tank radial direction. Simultaneously with the generation of creeping waves, a transverse wave of ultrasonic pulses is transmitted from the front surface of the annular plate 14 to the back surface. This transverse wave is reflected by the back surface of the annular plate 14, and a part thereof goes to the fillet weld 18.
[0023]
When a creeping wave and a transverse wave are generated in this way, if a crack 20 is present in the fillet weld 18 at a position facing the ultrasonic probe 22, first, the creeping wave is reflected by the crack 20. Then, the creeping wave is returned to the ultrasonic probe 22 and converted into an electrical reception signal by the piezoelectric element (see the dashed line arrow in FIG. 1). Then, after being processed by the signal processing circuit 28, the signal is displayed on the cathode ray tube 26. In FIG. 2, the waveform indicated by symbol a represents the received reflected wave.
[0024]
On the other hand, the transverse wave emitted from the ultrasonic probe 22 is reflected by the back surface of the annular plate 14 and then reaches the crack 20 (see the dotted arrow in FIG. 1). The transverse wave that has reached the crack 20 changes its mode to become a creeping wave, and travels backward toward the ultrasonic probe 22 (see the solid line arrow in FIG. 1). This reflected creeping wave is also converted into an electrical reception signal by the piezoelectric element, processed by the signal processing circuit 28, and then displayed on the cathode ray tube 26. The signal is indicated by symbol b in FIG.
[0025]
Here, when the reception level of the signal a obtained in the case of the creeping wave in both transmission and reception is compared with the reception level of the signal b obtained in the mode conversion from the transverse wave to the creeping wave, the latter is more than the former. It can be seen from FIG. 2 that it is much larger. This is because the creeping wave is mode-converted into a transverse wave during propagation, so that the energy loss is remarkably large, the transverse wave has almost no mode conversion during propagation, and the energy loss during propagation is extremely small. That is, when both the transmitted wave and the reflected wave are creeping waves, the energy loss is more than twice that of the case where only the reflected wave is a creeping wave. Therefore, the method of detecting the crack 20 by mode conversion from a transverse wave to a creeping wave has a higher S / N ratio, and the crack 20 can be reliably detected.
[0026]
As described above, the crack 20 can be detected from the presence or absence of the received signal b by using only the ultrasonic flaw detection method using the transverse wave / creeping wave. However, the position and depth of the crack 20 or the path of the ultrasonic wave is being detected. One of the signals may not appear due to various causes such as the presence of an obstacle. Therefore, when at least one of the signals a and b is received, it is preferable to handle it as a suspicion of the existence of the defect 20 such as a crack.
[0027]
In addition, the material of the annular plate 14 and the speed of ultrasonic waves in the material are known. For example, when the annular plate 14 is SM400, the sound velocity of the transverse wave is 3230 m / s, and the longitudinal wave is 5920 m / s. Therefore, if the thickness of the annular plate 14 and the distance from the inner surface of the tank side plate 16 to the ultrasonic probe 22 are measured in advance, the defect 20 detected from the time when the signals a and b appear is identified. be able to. Thereby, more reliable defect detection becomes possible.
[0028]
In addition, when there is no defect 20 in the fillet welded portion 18, no reflected wave is generated, and neither of the signals a and b is generated, so that it can be determined that the state is normal.
[0029]
As mentioned above, although preferred embodiment of this invention was described in detail, it cannot be overemphasized that this invention is not limited to the said embodiment.
[0030]
For example, in the above embodiment, the received signal is processed in an analog manner, but it can be digitally processed and digitally displayed by a digital circuit, or a defect position can be specified and a signal can be recorded from the digital signal. Can do.
[0031]
Further, the carriage 42 may not be of the automatic traveling type. Alternatively, the carriage 42 is not necessary when a flaw detection test is performed only on a specific portion.
[0032]
Furthermore, in the above embodiment, the defect 20 of the fillet weld 18 between the annular plate 14 and the tank side plate 16 is detected. However, the present invention is not limited to the SM400, and other materials such as 9% nickel steel. The present invention is also applicable to flaw detection of fillet welds.
[0033]
【The invention's effect】
As described above, according to the present invention, a transversal ultrasonic pulse is transmitted and a creeping wave formed by being reflected by a defect such as a crack is received. As a result, it is possible to detect a defect generated in the fillet weld between the plate members with high accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an embodiment of an ultrasonic flaw detector according to the present invention.
FIG. 2 is a graph showing a waveform of a signal obtained by the ultrasonic flaw detector shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Ultrasonic flaw detector, 12 ... Tank, 14 ... Annular board (1st board | plate material), 16 ... Tank side board (2nd board | plate material), 18 ... Fillet weld part, 20 ... Defect, 22 ... Ultrasonic probe , 24 ... pulse generation circuit (pulse generation means), 26 ... cathode ray tube, 28 ... signal processing circuit (signal processing means), 42 ... bogie.

Claims (1)

第1板材(14)と第2板材(16)との間の隅肉溶接部(18)の欠陥(20)を検出する超音波式探傷方法であって、
前記第1板材(14)の表面から裏面に向かって横波の超音波パルスを発信するステップと、
前記第1板材(14)の裏面にて反射された前記横波が前記隅肉溶接部(18)の欠陥(20)にて反射されることにより生じたクリーピング波を受信して電気的信号に変換するステップと、
前記電気的信号の有無を検出することにより欠陥(20)の有無を検出するステップと、
を含む超音波式探傷方法。
An ultrasonic flaw detection method for detecting a defect (20) of a fillet weld (18) between a first plate (14) and a second plate (16),
Transmitting a transverse ultrasonic pulse from the front surface to the back surface of the first plate (14);
The creeping wave generated by reflecting the transverse wave reflected by the back surface of the first plate member (14) by the defect (20) of the fillet weld (18) is received as an electrical signal. Converting, and
Detecting the presence or absence of a defect (20) by detecting the presence or absence of the electrical signal;
Ultrasonic flaw detection method including
JP2002249485A 2002-08-28 2002-08-28 Ultrasonic flaw detection method Expired - Lifetime JP3833591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002249485A JP3833591B2 (en) 2002-08-28 2002-08-28 Ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002249485A JP3833591B2 (en) 2002-08-28 2002-08-28 Ultrasonic flaw detection method

Publications (2)

Publication Number Publication Date
JP2004085478A JP2004085478A (en) 2004-03-18
JP3833591B2 true JP3833591B2 (en) 2006-10-11

Family

ID=32056584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002249485A Expired - Lifetime JP3833591B2 (en) 2002-08-28 2002-08-28 Ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JP3833591B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156166A (en) * 2011-04-08 2011-08-17 东北电力科学研究院有限公司 Ultrasonic climbing wave detection method for laterally assembled fir tree blade root of steam turbine and special probe for method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520067B (en) * 2011-12-16 2016-09-14 北京工业大学 Nozzle weld detection method based on CIVA simulation software
JP6026245B2 (en) * 2012-11-28 2016-11-16 非破壊検査株式会社 Ultrasonic inspection method and ultrasonic inspection apparatus
CN104007178A (en) * 2014-06-17 2014-08-27 上海振华检测技术咨询有限公司 Phased array ultrasonic detection method for curved surface fillet weld of pile leg racks of drilling platform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156166A (en) * 2011-04-08 2011-08-17 东北电力科学研究院有限公司 Ultrasonic climbing wave detection method for laterally assembled fir tree blade root of steam turbine and special probe for method
CN102156166B (en) * 2011-04-08 2012-11-07 东北电力科学研究院有限公司 Ultrasonic climbing wave detection method for laterally assembled fir tree blade root of steam turbine

Also Published As

Publication number Publication date
JP2004085478A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
US4419562A (en) Nondestructive real-time method for monitoring the quality of a weld
US5431054A (en) Ultrasonic flaw detection device
JP5419592B2 (en) Ultrasonic inspection probe and ultrasonic inspection device
BE1018930A5 (en) ULTRASONE INSPECTION METHOD AND DEVICE FOR PLASTIC WALLS.
EP1043584A1 (en) Method and apparatus for ultrasonic flaw detection of weld portion
JP3833591B2 (en) Ultrasonic flaw detection method
JP2008151763A (en) Welded part measuring method and welded part measuring instrument
JP3165888B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP3023641B2 (en) Composite longitudinal wave bevel probe for ultrasonic flaw detection of pipe welds
JP2009058238A (en) Method and device for defect inspection
US20210181153A1 (en) Bonding interface evaluation method and bonding interface evaluation device
JP2007178186A (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP3140157B2 (en) Ultrasonic flaw detection method for planar defects
JP3791436B2 (en) Ultrasonic flaw detection method
JP2682390B2 (en) Ultrasonic flaw detector for welds
JP2003057214A (en) Ultrasonic flaw detection method and apparatus in fillet welding section
JP2004340807A (en) Ultrasonic flaw detection method and device
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP2007232526A (en) Method and device for evaluating spot welding section by ultrasonic wave
JP2002277447A (en) Ultrasonic flaw detection method and apparatus
JP4614219B2 (en) Inspection method and inspection apparatus for laser welded joint
KR20090085752A (en) Measurement method of penetration width in laser welding using ultrasonic inspection
JP3176495B2 (en) Bevel probe for ultrasonic inspection of socket weld joint
JP2943567B2 (en) Pipe shape inspection device
JPH0720096A (en) Method for ultrasonic flaw detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060719

R150 Certificate of patent or registration of utility model

Ref document number: 3833591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term